CUV
0.9.201304091348
|
Functions | |
template<class V1 , class V2 , class T , class M > | |
void | cuv::integral_img::integral_image (cuv::tensor< V1, T, M > &dst, const cuv::tensor< V2, T, M > &src) |
calculate the integral image | |
template<class V1 , class V2 , class T , class M > | |
void | cuv::integral_img::scan (cuv::tensor< V1, T, M > &dst, const cuv::tensor< V2, T, M > &src) |
integrate rows of an image | |
template<class V , class M > | |
void | cuv::integral_img::integral_image_4d (cuv::tensor< V, M > &dst, const cuv::tensor< V, M > &src) |
calculates many integral images in parallel, for data given in format required by Alex' convolutions. |
void cuv::integral_img::integral_image | ( | cuv::tensor< V1, T, M > & | dst, |
const cuv::tensor< V2, T, M > & | src | ||
) |
calculate the integral image
this applies
src | source |
dst | destination |
void cuv::integral_img::integral_image_4d | ( | cuv::tensor< V, M > & | dst, |
const cuv::tensor< V, M > & | src | ||
) |
calculates many integral images in parallel, for data given in format required by Alex' convolutions.
The input (and output) is assumed to be row-major and
nChannels x nRows x nCols x nImages.
every channel of every image is integrated separately.
We compute the /exclusive/ scan, s.t. the output is
nChannels x (nRows+1) x (nCols+1) x nImages.
src | source |
dst | destination |
void cuv::integral_img::scan | ( | cuv::tensor< V1, T, M > & | dst, |
const cuv::tensor< V2, T, M > & | src | ||
) |
integrate rows of an image
src | source |
dst | destination |