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Abstract— Efficient and collision-free navigation is an es-
sential requirement for deploying robots in quotidian sce-
narios. In the robotics community, Reinforcement Learning
(RL) approaches have increasingly gained popularity and have
demonstrated their applicability on control tasks based on
visual observations. In this paper, we propose a novel deep RL
approach to address the mapless navigation problem, in which
the actions are taken online based on the knowledge encoded
in learned models. Planning happens by generating open-loop
trajectories in a learned latent space that captures the dynamics
of the environment. Our planner considers visual (RGB images)
and non-visual observations (e.g., attitude estimations). This
confers the agent upon awareness not only of the scenario, but
also of its own state. In addition, we incorporate a termination
likelihood predictor model as an auxiliary loss function of the
control policy, which enables the agent to anticipate terminal
states of success and failure. In this manner, the sample
efficiency of the approach for episodic tasks is increased. Our
model is evaluated on the NimbRo-OP2X humanoid robot that
navigates in scenes avoiding collisions efficiently in simulation
and with the real hardware.

I. INTRODUCTION

Mobile robot navigation typically requires a robot to

traverse a series of static and dynamic obstacles in the

environment to reach desired target poses, e.g., by walking

with pedestrians on sidewalks. Traditional methods tackle

this problem by processing raw sensor information (e.g.,

RGB images or laser scans) in order to construct local maps

for path planners [1–3]. Traditional approaches, however,

lose expressivity with the increment of uncertainty and com-

plexity of the environments mainly because of computational

limitations associated with high-dimensional systems and

real-time constraints. In the last decade, the rapid advances

of learning methods have paved the path for an increasing

development of robot learning approaches, which are a

promising alternative to solve these issues by leveraging

data [4–8].

In this paper, we address the problem of mapless navi-

gation, in which the robot needs to reach a known relative

target pose without constructing a map of the environment.

The target pose is assumed to be given by higher level mod-

ules (e.g., object detection, semantic segmentation or Wi-

Fi signal localization). Several DRL approaches have been

proposed to solve this problem based on 3D data (e.g., laser

scans) [9–11]. In our approach, however, the environment is

perceived by RGB-only images which, in contrast to depth

data, render a harder problem for planning, since no direct

measurements to object distances are provided. Our learned
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Fig. 1. The NimbRo-OP2X robot navigates to reach the goal (ball) while
avoiding obstacles. The actions are inferred online by a control policy (at
10 Hz), given a segmented image (surrounded by black squares) and non-
visual sensor data. For clarity, only three segmented images are shown.

path planner considers additionally non-visual observations

such as IMU measurements. In this manner, the planner can

act upon large instabilities of the robot posture in order to

avoid falls.

Our approach is able to plan collision-free paths with-

out local maps by learning a latent world model and by

imagining possible future outcomes based on learned models.

These open-loop (imagined) trajectories address the problem

of lack of memory of Markov Decision Processes which are

typically used to formulate RL tasks. Re-planning happens

implicitly with each new inference step. This allows our

approach to handle uncertainty present in scenarios with

dynamic obstacles.

In order to handle episodic tasks, as the one discussed

here, we incorporate a predictor model that infers a ter-

mination likelihood and provides this information to the

control policy as an auxiliary loss. We explicitly differentiate

between successful and failed terminal states; the former

encourages the agent to finish the episode collecting a high

reward, while the latter contributes to the sample efficiency

and training time reduction by neglecting experiences col-

lected during failed terminal states, e.g., when the robot is

lying on the floor after falling.

We evaluate our approach on a real autonomous humanoid

robot (Fig. 1). To handle the sim-to-real transfer, segmented

images are employed for training the learned models, which

in conjunction with noise injection and system identification

allows to transfer the control policy to the real robot without

retraining.



In summary, the main contributions of this paper are:

• the formulation of a novel approach for online path

planning that considers visual (RGB images) and non-

visual observations to learn a control policy and an

environment dynamics model;

• the introduction of a termination likelihood predictor

to handle multiple terminal states specially relevant for

episodic tasks;

• and the demonstration on a real humanoid robot of the

learned policy for mapless navigation.

II. RELATED WORK

Previous research on visual control problems, in which

an agent takes actions based on image observations, has led

to multiple analytical open-loop approaches [12–14]. To ad-

dress the typical shortcomings of analytical solutions, espe-

cially related to the curse of dimensionality, novel learning-

based methods have called the attention of the community

due to their generalization capabilities to uncertainty and due

to the inference time that enables their usage in real-world

tasks [15–17].

Particularly, Reinforcement Learning (RL) approaches

have gained increased popularity in robotics, where policies

are learned by interaction with the environment. Popular

model-free RL methods, such as DQN [18], aim to construct

a state-action value function (Q-value) that quantifies the

quality of state-action pairs to maximize an accumulative

reward in the long term [4–6]. Other model-free RL ap-

proaches, called policy gradient methods, construct a policy

by optimizing a cost function directly, such as D4PG [7]

and PPO [19]. Although these RL methods have been

successfully implemented in robotics applications [11, 20]

including visual control tasks [15, 21], the training with raw

images requires a large amount of data — due to the absence

of a learned dynamics model, which could encode the state

evolution effectively.

While model-free RL approaches are often straightfor-

ward to employ, model-based methods can be more sample-

efficient by exploiting a learned dynamics model. One of

the first attempts to learn a control policy in conjunction

with a dynamics model is Dyna-Q [22]. Recent approaches

such as [8], [23] and [24] are able to process raw image

observations directly by using self-supervised representation

techniques, i.e., autoencoders. Inspired by these works, in

this paper, we present a novel model-based RL approach for

mapless navigation.

Mapless navigation using RL have been previously ad-

dressed [9–11]. Khan et al. [11] proposed a two stage

architecture consisting of local planners defined by value

iteration networks and differentiable memory networks that

provide past information. Zhelo et al. [9] do not define

any memory component but they encourage curiosity-based

exploration formulated in a secondary reward function, and

consequently the agent is able to navigate in long corridors

and dead corners. None of these approaches, however, are

able to handle dynamic obstacles and require depth data

as input. Moreover, these approaches were evaluated in

known scenarios only, thus their generalization capabilities

are questionable.

Few RL approaches for robot navigation based on RGB

images have been demonstrated in real robots [15, 21].

Xie et al. [15] propose a depth prediction network based

on monocular RGB images that infers a depth field and

a Q-value function for controlling a mobile robot. Lobos-

Tsunekawa et al. [21] investigate visual navigation on a

bipedal platform and learned a control policy by using

DDPG. None of these approaches, however, incorporate

latent dynamics models and terminal states for episodic tasks

are not explicitly handled.

III. BACKGROUND

As common in RL, we model the environment as a

Markov Decision Process (MDP) described by a tuple

(S,A, P,R, γ) of environment states S, action space A,

state transition probabilities P : S ×A× S → [0, 1], reward

function R : S ×A → R, and discounted factor γ ∈ [0, 1].
The goal of the agent is to take actions at ∈ A that

maximize the collected reward. Often, the agent only has

access to partial observations ot ∈ O of the environ-

ment, which are provided according to state observation

probabilities Ω : S ×O → [0, 1]. This results in a Partially

Observable Markov Decision Process (POMDP) defined by

(S,A, P,R, γ,O,Ω).
In domains where the observations are defined as im-

ages, policies are often expensive to train due to the high

dimensionality of the observation space O. Thus, represen-

tation techniques such as autoencoders (E : O → W ) are

frequently incorporated to reduce the dimensionality of the

image input and to define a prior latent state W of the

environment model [8, 23, 24]. The latent state dynamics

D : W ×A → W can be learned effectively to resemble the

unknown true state transition P of the environment. Both, the

autoencoder and the latent state dynamics can be combined

to form a non-linear Kalman Filter, where the state prediction

w̃ is given by D, while the filtering is done by the encoder

E [23].

Hafner et al. [24] recently proposed a model-based RL

approach that builds a latent space W and dynamics model

D which are ultimately employed in an open-loop fashion

to plan latent trajectories w̃t0 . . . w̃tN . For each of the latent

states wti , a state value is calculated by use of the Bellman

return:

vti =

tN
∑

t=ti

γ(t−ti)r̃t , (1)

given predicted rewards r̃t inferred by a predictor

R : W → R. Additionally, a value predictor model

V : W → R is incorporated to optimize the Bellman

consistency. The predicted rewards r̃t, values ṽt and actions

at are modeled stochastically. More precisely, the means

of Gaussian distributions are dictated by the prediction

models R,V, π. The standard deviations of the action

distributions are also inferred by the actor π, while a unit

standard deviation is chosen for the other predictors. In
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Fig. 2. Approach overview. Visual ot and non-visual zt observations are fused into a latent vector wt which is used by the policy π to infer actions
at. The dimensionality of the images is reduced by employing an autoencoder Eo. The dynamics model D predicts the next latent state w̃t+1 which is
later filtered by sensor data observed in t+ 1, namely by zt+1 and by Eo(ot+1). During training, a decoder is also learned which aims to reconstruct an
observed image ot from wt. Additionally, the state value V , the reward R, and the termination likelihood F predictors are learned, which are used in the
loss function of the policy π (Eq. (6)).

contrast to the fully stochastic prediction models, the latent

state is constructed using the Recurrent State Space Model

(RSSM), which represents the latent space by a mixture of

deterministic and stochastic states [23, 25].

The autoencoder E as well as the prediction model R are

trained using the negative log likelihood of the true data

from an experience replay buffer. In addition, the latent state

dynamics loss is based on the Kullback-Leibler divergence

between the open-loop 1-step prediction and the closed-

loop 1-step prediction. The loss is based on the Information

Bottleneck objective [26], defined as:

LE,R,D = −E

[

∑

t

ln E (ot|wt) + lnR (rt|wt)

− β KL [E (wt|D (w̃t|wt−1, at−1) , ot) ||D (w̃t|wt−1, at−1)]
]

.

(2)

In contrast to the E ,R and D networks, the value model V
and the actor π are not trained on the recorded episodes, but

on state trajectories that are generated through consecutive

inference of the learned latent state dynamics D in conjunc-

tion with the actor π on a single filtered state posterior. This

results in a tuple (wti , . . . , wti+H
) of unfiltered states that are

used to train the value and actor models over a horizon of

length H . The loss of the value prediction network minimizes

the regression error of the state value that is calculated via

reward predictions:

LV = −E

[

ti+H
∑

t=ti

‖V(wt)− vt‖
2

]

, (3)

while the loss of the actor π maximizes the value of the

generated state tuples:

Lπ = E

[

ti+H
∑

t=ti

vt

]

. (4)

IV. METHOD

Our approach aims to solve the mapless navigation prob-

lem. We fuse visual ot and non-visual observations zt into a

latent state wt. Actions at are taken by a learned policy π that

is trained by open-loop (imagined) latent trajectories inferred

by an environment dynamics model D. State value V , reward

R, and termination likelihood F predictors are also learned

during training. The latter is employed to increase the sample

efficiency of this episodic task. The high dimensionality

of images is reduced by the incorporation of a variational

autoencoder Eo. Fig. 2 shows an overview of our approach.

A. Observation Model

We enrich the observation space by considering both,

image inputs and non-visual sensory data. Consequently, we

propose two separate autoencoders, Eo and Ez , where Eo
represents the convolutional autoencoder for image inputs

and Ez processes non-visual sensor information. Since zt
is low dimensional, we forego the encoder part of Ez and

only utilize the decoder to predict the measurements from

the latent state. The autoencoders Eo and Ez are trained by

optimizing the negative log likelihood of the true observa-

tions under the observation models:

LEz,Eo
= −E

[

∑

t

ln Eo(ot|wt) + ln Ez(zt|wt)

]

. (5)

B. Termination Likelihood Predictor

A terminal state can represent either success or failure

in episodic tasks. Typical episodic tasks define a successful



terminal state that indicates the achievement of the task’s

goal. Moreover, early termination is an established strategy

for improving sample efficiency, such that an episode is ter-

minated when certain states are reached whose contribution

is considered negligible for the overall task, e.g., states that

represent a biped robot lying on the floor in a navigation

task. In this manner, the sample acquisition time and the

corresponding gradient propagation are avoided for these

terminal states that do not contribute to reaching the task’s

goal.

Having multiple terminal states fi poses a challenge to the

design of the reward function, as it is no longer possible to

reward or to penalize termination per se. Due to the different

nature of each terminal state, success and failure need to

be addressed separately. In episodic tasks, one issue with

successful termination emerges when the agent prefers to

collect rewards instead of terminating because it continues

accumulating reward. While termination rewards at the end

of an episode promise a fast and straightforward solution to

this issue, their inherent discontinuity makes them hard to

predict. Thus, we introduce a termination likelihood model,

which predicts a continuous indicator fi,t for reaching a

terminal state. In contrast to R,V and π, the termination

likelihood is modeled as beta distributed. The inferred termi-

nation likelihood is weighed and passed as a smooth learning

signal to the actor model, enabling the agent to anticipate

success and failure states. The actor loss is then reformulated

as:

Lπ = −E

[

∑

t

(

vt +
∑

i

λiF(fi,t|wt)

)]

. (6)

C. Task Definition

The goal of the agent is to reach a desired 2D pose on

a flat ground plane without collisions with obstacles in the

environment.

The agent perceives the environment through RGB images

and additional non-visual sensors. The images are taken

from an ego perspective of a walking humanoid robot and,

hence, contain much walking-induced motion. They are

passed through a semantic segmentation module that clas-

sifies obstacles pixelwise. Unnecessary textural information

and background pixels are therefore removed. This image

segmentation facilitates the image prediction and the real-

world transfer. The resulting segmented image (resolution

64× 64 in our experiments) defines the visual observations

ot of our approach.

In addition, the non-visual observation is defined as

zt = [Vt, ht, dt, θt,Rt]
T , where Vt is the current gait ve-

locity, ht is the yaw joint position of the head, [dt, θt]
T is

the relative target position expressed in polar coordinates,

and Rt contains the pitch and roll rotation of the robot base

link. Note that in real world applications, the relative target

position is often determined by high level-task planners or

perception modules.

In each time step, the agent selects an action at =
[∆Vt,∆ht]

T , where ∆Vt is an increment of the gait

velocity, i.e., Vt+1 = Vt +∆Vt, and ∆ht represents an

increment of the yaw head position. Note that the incremental

action representation is introduced to guide the agent learning

process, especially at the beginning of training where explo-

ration of the action space might lead to oscillating motions

that saturate the low-level joint controllers. The velocity

vector Vt = [vx, vy, ωz]
T consists of the translational x-

and y-velocities, as well as a rotational velocity around the

z-axis of the robot. Overall, a 4D action space is defined.

D. Terminal States

We propose two different termination criteria. The robot

arrives into a successful terminal state when the distance dt
to the target is below a certain threshold, whereas the failure

terminal state is reached when the sum of the absolute roll

and pitch rotations |R0,t| + |R1,t| of the robot surpasses

limit values that indicate an imminent robot fall. Both error

values, i.e., the distance and orientation errors, are passed

through an exponential decay to yield a continuous signal fi,t
that indicates termination whenever fi,t = 1. Note that the

causality fi,t = 1 =⇒ ∀∆t > 0 : fi,t+∆t = 1 holds, which

can be incorporated into the latent world model.

E. Reward Function

We define the task reward at time t, rt =
∑N

i=0 ηiri,t as

the weighted sum of N sub-reward terms. For brevity, the

dependence of time will be dropped in the equations.

The main sub-rewards encourage the agent to reach the

target pose and are formulated as:

rd = 1−
d

d0
∈ (−∞, 1], (7)

rθ = −

∣

∣

∣

∣

θ

π

∣

∣

∣

∣

∈ [−1, 0] , (8)

where d is the distance to the target position, d0 is the

distance from the initial pose to the target, and θ ∈ (−π, π]
is the relative orientation of the robot to the target position,

for example, θ = 0 means the robot is directly facing the

target position. The former sub-reward encourages the agent

to walk towards the target by reducing the distance d, while

the latter penalizes the robot when it is not facing the target.

In addition, we define a sub-reward based on the location

of the target inside the robot’s camera image. This target

attention reward is generated by the multiplication of an

importance map L ∈ [0, 1]64×64 with a binary segmented

image I ∈ {0, 1}64×64 showing only the target:

ra =

∑

i,j Li,jIi,j
∑

i,j Ii,j
∈ [0, 1] . (9)

We set ra = 0 if the target is not visible in the image, i.e.,
∑

i,j Ii,j = 0. To ensure that the agent prefers to keep the

target in the center of the observed egocentric images, we

set Li,j = 1 for pixels at the center while we quadratically

discount the values towards Li,j = 0 at the borders of the

image.

Consequently, the agent will try to keep the target in

the center of its field of view mainly by controlling the

head yaw joint, whose motion relates directly with the



relative movement of the target in the observed images.

Moreover, this relative position of the target is also affected

by the gait and contacts with the floor. In order to avoid

oscillating motions of the head, we penalize the normalized

head position h and the normalized head control action ∆h
quadratically:

rh = −(∆h)2 ∈ [−1, 0], (10)

rH = −(h)2 ∈ [−1, 0] . (11)

In addition, we encourage the agent to maintain a safe

distance to obstacles by penalizing its distance towards the

closest obstacle ρ:

rρ = clip (−(1− ρ),−1, 0) ∈ [−1, 0] . (12)

Finally, we penalize the current gait velocity using a

sigmoid kernel k(x) = 1/[1 + exp(−αx − c)] to limit

the maximum gait velocity of the agent due to difference

between the simulated and the real gait. This penalization is

formulated as:

rv = 1− k(||V||2) . (13)

V. EVALUATION

We evaluate our approach on the NimbRo-OP2X hu-

manoid robot [27]. All training is done using experience

collected only in simulation employing MuJoCo as multi-

body simulator. Eight environments are executed in parallel

to speed up the data acquisition. The policy frequency is

10 Hz, while the simulation runs at 1 kHz. The robot incor-

porates a bipedal gait engine, which generates leg motions

based on a target gait velocity Vt [27, 28]. The gait runs

at 100 Hz. For collision checking operations, the robot links

are approximated by geometrical primitives.

Each episode starts with the humanoid robot standing

without any obstacle in its direct vicinity. The target position,

the number of obstacles, their poses and geometries are

drawn uniformly at random. To encourage the development

of robot skills to circumvent obstacles, each episode places

an obstacle between the initial position of the robot and the

target pose with probability pblock = 0.5. The feasibility

of reaching the target is checked by an A* planner; if no

path is found, a new environment is generated. The agent

has a maximum time of 60 s to complete the task before the

episode ends.

The agent captures a monocular color image (64 × 64),

which is later processed to get the segmented input image.

The inferred actions are bounded to ∆V ∈ [−0.06, 0.06]3

and ∆h ∈ [−0.012, 0.012]. The weights of the reward

functions are: ηd = 1.0, ηθ = 0.2, ηa = 0.2, ηh = 0.08,

ηH = 0.08, ηρ = 0.2, and ηv = 0.35, and the weights of

the terminal states are: λs = −1150 and λf = 3250. The

models are trained every 4,000 recorded steps by batches

containing 50 samples of length 50. The learning rates take

the following values: 6× 10−4 for the observation model and

8× 10−5 for the value and actor networks. The horizon of

the open-loop trajectories is set to 15. The policy is trained

for 2 million simulation steps, resulting in a total training

Fig. 3. The learned policy successfully navigates in different scenarios
where a direct path to the goal pose is blocked by obstacles. Observe that
the agent is able to circumvent small and large single obstacles. Finer control
is evidenced in scenarios where the robot is required to go through a passage
of obstacles (bottom right)

time of around 2 days on a computer with an Intel i9-9990K

CPU, 64GB of RAM and an nVidia GeForce 2080 Ti with

12GB of VRAM. This model is able to solve simple scenes

after 200.000 steps, i.e., less than five hours of training.

After training, the control policy is able to command the

robot to reach target poses avoiding obstacles. Figure 3 shows

sample scenarios that the robot is able to navigate collision-

free with our learned control policy. As anticipated, the robot

is able to circumvent obstacles and to go through narrow

passages without falling. All the environments are presented

to the robot for the first time.

We compare our approach against two ablated versions of

our method. The first ablation (Mf) does not include the ter-

mination likelihood predictor and the second one (Mnv) does

not consider non-visual observations. The return and success

rate are presented in Fig. 4. Note that although the Mnv model

accumulates more reward compared to our model, it is not

able to reach the target indicated by its low success rate. The

larger reward is attributed to longer sequences that do not

reach the goal, where, for example, the robot might stand in

front of the target. The main contribution in the performance

increment is clearly attributed to the introduction of non-

visual information, which is rather to be expected because

the agent is not forced to obtain information from the images

0.0 0.5 1.0 1.5 2.0

0

50

100

Return

0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00
Success rate

Ours

w/o

 

term.

 

lik.

w/o

 

non visual

Fig. 4. Performance over the number of collected episodes. We compare
our approach against two ablations by removing the non-visual observations
and the termination likelihood predictor.



TABLE I. Success rate, accumulated reward and episode length of our

model and ablations over 100 samples.

w/o non-visual w/o Pterm fi Ours

Success rate 0.0 0.7 0.86
Acc. reward 108.50 104.37 111.59
Ep. length 585.36 401.15 419.77
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Fig. 5. Reconstructed non-visual observations and reward signal for a
sampled sequence inferred by our models. The better the reconstruction,
the more realistic are the imagined trajectories used for training.

but it is given directly. In other words, the incorporation of

non-visual information improves the data-efficiency of the

overall approach.

We evaluate the performance of each of the learned models

compared above. We generate a set of 100 random scenes

sampled as during training. The results are presented in

Table I. After 2 million steps, the Mnv model is not able

to successfully complete the task. The accumulated reward

and the long episodes indicate that the agent does not fall

but does not find the target in the given time per episode

(60 s). The higher success rate and reward of our approach

compared against the model without termination predictor

F demonstrates the improvement in the sample efficiency

by incorporating a predictor for fi.

Since the performance of the agent strongly depends on the

ability of the model to reproduce the actual observations and

reward values from the latent state, we evaluate the quality

of their reconstruction. Figure 5 shows the reconstructed

non-visual observations and reward for a random sequence.

For clarity in the figure, only one sequence is shown, but

other sequences present a similar behavior. Note how well

the model tracks the ground truth signals, which is to be

expected once the models have converged. The accuracy of

the reconstruction is an indicator of the quality of the inferred

open-loop trajectories used for training the value and actor

networks.

0 s 7 s 13 s 17 s 20 s 34 s

32 s24 s17 s12 s7 s0 s

Fig. 6. The top row shows the real robot navigating a scene by taking a
right turn, followed by rotating left to walk through a tight corridor between
the obstacles. At the end, the robot walks into the target (soccer ball)
by stepping laterally. The corresponding segmented image observations of
the real experiment are shown in the middle row. At the bottom rows, a
simulated scene is presented, where the agent chooses a similar path as the
real-world one.

A. Real-World Transfer

The simulated robot is equipped with the same sensor

systems as the real robot. Furthermore, the visual complexity

of the camera images is reduced through semantic seg-

mentation. In conjunction, this allows a real-world transfer

with low additional effort and no retraining. Due to sim-to-

real dissimilarities in the robot model, joint controllers and

contact properties, the simulated gait does not behave as the

one on the real robot. To facilitate the sim-to-real transfer,

we inject Gaussian noise, N (0, 0.3), on the inferred actions

during training. In addition, the gaits are tuned by introducing

scaling factors to the inferred actions in order to obtain a

similar response in simulation and with the real hardware.

Figure 6 shows a real and a simulated robot performing the

same scenario consisting of traversing a narrow passage. The

row in the middle presents the segmented images captured

with the real robot, whereas the bottom row shows the task

performed in simulation. This is a challenging scenario that

requires precise actions from the agent to avoid collisions.

The temporal differences between the real and the simulated

trajectories are attributed mainly to contact parameters such

as frictions.

Finally, the control policy is tested with dynamic obstacles

with the real robot. Figure 7 shows snapshots of the robot

avoiding a moving obstacle which is blocking the direct path

to the target pose.

0 s 4 s 9 s 15 s 19 s 30 s

Fig. 7. The real NimbRo-OP2X robot avoids a moving obstacle that is
constantly blocking the path to the target pose (top row). The segmented
images taken from a first-person view are shown in the bottom row.



VI. CONCLUSION

In this paper, we have proposed a novel approach for

learning mapless navigation around obstacles based on visual

and non-visual observations. We have demonstrated that the

incorporation of a termination likelihood predictor increases

the data-efficiency of the approach. In addition, we have

shown that our model produces a robust policy that can be

successfully transferred to a real humanoid robot.

In the future, we would like to extend our approach

to incorporate hierarchies. Multiple consistent policies are

envisioned to solve more complex tasks that require long-

term planning. Additionally, learning local and global maps

seems to be a promising alternative to provide the agent with

more sophisticated navigation skills, such as remembering

dead ends. More dynamic scenarios where multiple objects

move simultaneously require the agent to track and estimate

the velocities of the moving bodies, which also states an

interesting problem to enrich our approach.
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[12] G. López-Nicolás, C. Sagüés, J. J. Guerrero, D. Kragic, and P.

Jensfelt, “Switching visual control based on epipoles for mobile
robots,” Robotics Auton. Syst., vol. 56, no. 7, pp. 592–603, 2008.

[13] M. T. De Xu and Y. Li, “Visual control system for robotic welding,”
Industrial Robotics, p. 713, 2006.
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