
Institute for Computer Science
Department VI
Autonomous Intelligent Systems

Rheinische
Friedrich-Wilhelms-

Universität Bonn

Rheinische
Friedrich-Wilhelms-Universität Bonn

Master Thesis

Overlap and Speaker-Turn Awareness for
Low-Latency Automatic Speech Recognition

Author:
Lukas Storck

First Examiner:
Prof. Dr. Sven Behnke

Second Examiner:
Prof. Dr. Frank Kurth

Supervisor:
Bastian Pätzold

Date: April 11, 2025

Abstract

Many applications, including service robotics, require an audio perception system
capable of processing single voice commands or understanding entire conversations.
Such a system must be able to transcribe speech and associate speakers with min-
imal latency in challenging acoustic environments. Existing methods struggle to
correctly transcribe overlapping speech from multiple speakers, which is common
in natural conversation. We propose an online speech recognition pipeline that
uses a diarization-first approach to identify and associate speakers before apply-
ing speech recognition. This formulation allows additional processing steps to be
applied in between, if necessary, to handle overlapping speech segments by sepa-
rating the audio sources to improve the quality of the transcription and speaker
assignments. The pipeline is evaluated on single and multi-speaker datasets and
analyzed in terms of transcription and speaker assignment quality, latency, and re-
quired computational resources. Our approach produces accurate diarization and
transcription results for single-speaker speech. Overlapping multi-speaker speech
is a challenging task, even for offline methods, but we were able to match these
results with low-latency online processing, while having low memory requirements
for diarization and speaker recognition.

Contents

1. Introduction 1

2. Theory 3
2.1. Audio Signals . 3
2.2. Speech Processing Tasks . 5
2.3. Machine Learning Methods . 8
2.4. Sliding Windows . 10
2.5. Metrics . 10

3. Related Work 13
3.1. Single Task Approaches . 13
3.2. Integrated Diarization and Speech Recognition 15

4. Method 17
4.1. Overview . 18
4.2. Streaming Speaker Diarization . 19

4.2.1. Speaker Probabilities . 19
4.2.2. Speaker Permutation . 20
4.2.3. Probability Aggregation . 21
4.2.4. Diarization . 22
4.2.5. Confidence Decision . 23

4.3. Speech Separation . 25
4.4. Speaker Recognition . 27
4.5. Speech Recognition . 27
4.6. Implementation . 28

5. Evaluation 31
5.1. Datasets . 31
5.2. Evaluation Setup . 34
5.3. Results . 40

5.3.1. Computational Performance Analysis 41
5.3.2. Diarization and Transcription Quality Analysis 45

vii

Contents

6. Discussion 55
6.1. Limitations . 56
6.2. Future Work . 57

7. Summary 59

Appendices 61

A. Additional Data on Clustering and Speaker Embedding Models 61

B. Evaluation Data 63

viii

1. Introduction

Speech serves as a fundamental medium for communication among humans, of-
fering an intuitive and accessible means of sharing information. In the field of
human-robot interaction, particularly within service robotics, the ability to per-
ceive and understand speech is crucial. This capability allows robots to understand
conversations around it and respond to questions or voice commands. As such,
developing robust audio perception systems that can handle real-world scenarios
is essential. One example is the Restaurant task from the RoboCup@Home com-
petition, wherein a robot acts as a server and must listen to a customer to take
their order [1]. Another example would be a household robot that is prompted
with speech commands to summarize the contents of a refrigerator and suggest
recipes from the items available [2].

A typical challenge faced by audio perception systems is the Cocktail Party Prob-
lem. This phenomenon occurs in environments where multiple speakers converse
simultaneously amidst background noise and reverberation. Humans have the abil-
ity to concentrate one speakers voice and blend out the others, thereby separating
foreground from background speech, recognizing speaker turns and identifying the
correct speaker. [3] The task of isolating and transcribing each speaker’s speech,
particularly when overlaps occur, presents a challenge for current audio perception
systems.

The audio perception system must provide transcriptions of the spoken words.
While other representations of speech content are generally possible, common
speech recognition systems use text transcriptions as output, which allow eas-
ier comparisons between different systems and provide more interpretable results.
Additionally, the system must assign speaker labels to the words and recognize
previously seen speakers. In the case of overlapping speech, it should provide the
words and assigned speaker labels of all overlapping parts, and not just of the more
prominent speaker. Finally, the delay between when a word is spoken and when
the transcription is provided must be minimal, so as not to interrupt the flow of
conversation when providing answers or responding to voice commands. Humans
rarely leave a pause longer than one second from the previous utterance, with an
average pause length of 275 ms [4]. In other words, the system must provide the
speech information with low latency.

1

1. Introduction

The audio pipeline used so far in the NimbRo project [5], developed for the
RoboCup@Home competition, employs voice activity detection to select speech
segments and speech recognition to transcribe the speech. It assumes only a single
speaker and therefore avoids dealing with overlapping speech or speaker infor-
mation. There are existing methods that solve the tasks of transcription [6, 7],
diarization [8, 9, 10], and speaker identification [11, 12]. There are also methods
that solve diarization in combination with transcription [13] or focus on low-latency
processing [13, 14]. However, most of these systems operate in non-real-time en-
vironments or fail to address overlapping speech effectively. The integration of
low-latency processing with accurate speaker diarization on overlapping speech
remains a gap in current research.

We propose an audio perception system with three primary goals:

1. Achieve similar performance to the NimbRo audio pipeline for single-speaker
speech.

2. Add speaker information to the transcription output to distinguish between
multiple speakers.

3. Improve transcription quality for overlapping speech from multiple speakers.

The developed method uses a pipeline approach that combines several foundation
models for the intermediate steps. The models used are pre-trained to avoid costly
training and utilize previously established methods. This has the advantage that
models can be replaced as better state-of-the-art models in terms of quality and
computational performance become available. It is also possible to evaluate only
parts of the pipeline on their own and use intermediate results for other tasks.

Chapters 2 and 3 provide an overview of the theory and related work. Then,
chapter 4 details the methodology and design of the proposed pipeline. Chapter 5
evaluates the performance of the pipeline. After that, chapter 6 discusses the
results and compares them with existing methods. Finally, chapter 7 summarizes
the thesis.

2

2. Theory

This chapter describes the relevant theoretical background for the preparation of
this thesis, as well as the various tasks solved throughout the proposed pipeline.
First, some basics about audio signals and speech are introduced as well as the
tasks that are addressed in the pipeline approach. Then, foundation models used
to solve these tasks and sliding windows as a solution for continuous audio data
are explained. Finally, the metrics used in this work are described.

2.1. Audio Signals
Sound can be represented by digital audio signals when recorded by a microphone.
Such a signal is a time series of samples representing the amplitude of a sound
wave over time. It can be expressed as a function f : R → R which maps time to
sound pressure values. The recorded signal is the superposition of all sound sources
reaching the microphone, including the desired sources, in our case speech from the
primary conversation, and noise. Noise includes direct sources such as background
speech from people not speaking in the primary conversation, laughter, music that
may contain vocal parts, impact or breaking sounds (e.g., a glass breaking on the
floor), ventilation or wind, and other outdoor or natural sounds. There is also
indirect noise due to acoustic effects of the environment, such as reverberation
and echoes from the direct sources.

The first graph in Figure 2.1 depicts the time domain representation of a signal,
showing how the amplitude changes over time, which can be used to analyze the
average loudness over a segment of the signal and to detect silence. An audio signal
can also be represented in the frequency domain, which decomposes the signal into
its spectral components, showing the energy of each frequency within the signal,
which is classically done with the Fast Fourier Transform [15]. Another approach
is to use filter banks, which apply a series of bandpass filters to the signal, allowing
for a more targeted analysis. For example, Mel filter banks [16] are commonly used
to approximate human auditory perception. The Mel scale was originally created
to map frequencies onto a linear scale of perceived equally spaced intervals. Using
the Mel scale gives the filter banks more granularity in the low frequency bands,

3

2. Theory

0 1 2 3 4 5
Time (in s)

0.5
0.0
0.5

Am
pl

itu
de

Time Domain Representation

0 1000 2000 3000 4000 5000
Frequency (in Hz)

0

200

M
ag

ni
tu

de

Frequency Domain Representation

1 2 3 4
Time (in s)

0

2500

5000

Fr
eq

ue
nc

y
(in

 H
z) Spectrogram

150

100

50

Po
we

r (
in

 d
B)

Figure 2.1: A short audio signal is displayed as a waveform in the time domain, as the
magnitude of each frequency component in the frequency domain, and as a
spectrogram, which combines both time and frequency information.

which also have the most energy for the human voice. The information on the
energy for each frequency or frequency band can be used to detect and classify
different types of sounds, or even voices, based on their different characteristics.
While the second graph in Figure 2.1 shows the frequency information as a sum
over the whole signal, the last graph shows a spectrogram, which is a combination
of both time and frequency information, showing the energy of frequencies over
time.

Differentiating between foreground and background speech can be difficult. Us-
ing loudness alone as an indicator, assuming that foreground speakers are closer
to the microphone and therefore louder, can fail if the background speakers tem-
porarily speak louder. Additional information can be provided by the acoustic
data contained in the audio signal, as the environment affects sound propagation
through reverberation or attenuation of frequency bands. Stereo microphones or
microphone arrays are designed to capture small differences in the spatial posi-
tion of sound sources, which can be used to further differentiate foreground and
background speech.

4

2.2. Speech Processing Tasks

A digital audio signal has a sample rate, the number of data points per second of
audio, which is typically 8 kHz or 16 kHz for audio recordings in speech datasets.
Historically, these sample rates were chosen for digital recordings based on the
Nyquist–Shannon sampling theorem [17] to accommodate the audio bandwidth
of telephones (300 – 3.4 kHz). This is sufficient to capture most of the speech
information for accurate transcription. [18] While stereo audio is common in media,
many speech methods and datasets can only process and provide mono audio data.
In this thesis, 16 kHz mono audio data is used for all experiments and resampled
and mixed as necessary.

2.2. Speech Processing Tasks
Next, the general speech processing tasks of the proposed pipeline are introduced
and discussed.

Speaker Diarization
The task of speaker diarization is to detect when each speaker is speaking. It is
one step further than voice activity detection, since the task is to classify audio
segments into speech and non-speech, but also to add speaker information. The
input for speaker diarization is the audio data as a stream from a microphone or
from a file. The output is a list of timestamps indicating the start and end time of
speech segments with a label indicating the speaker, also called speaker annotation.
The resulting speech segments are called utterances, which is an uninterrupted
sequence of words spoken by one speaker. The utterances are separated by pauses
and can therefore be shorter or longer than grammatical sentences, depending on
the speaker’s speech cadence.

Historically, the speaker diarization task has been divided into several subtasks.
First, voice activity detection was used to detect speech segments regardless of the
speaker. Next, potential points of speaker changes in the audio were identified.
Finally, clustering was used to match speech segments with similar characteristics
to recover speaker information. [19]

With End-to-End Neural Diarization (EEND) [20], a monolithic machine learn-
ing approach was introduced, that uses multi-label classification to solve speaker
diarization. The model outputs the estimated speaker activity for a fixed number
of concurrent speakers at each time step, which are called speaker probabilities. In
this approach, the authors were able to directly minimize the diarization error due
to the monolithic model and handle overlapping speech, since they did not have to
assume single-speaker audio as before. A drawback is that the model provides only

5

2. Theory

local diarization, as there is no method, to track speakers over longer periods of
silence. Therefore, this is called local speaker diarization, and the diarization result
that tracks speakers over the entire duration is called global speaker diarization.

In addition to the multi-label representation for the diarization output, there
is also a powerset multi-class encoding, as depicted in Figure 2.2. Instead of a
single label per speaker, with multiple labels active at the same time to denote
overlapping speech, the powerset multi-class encoding uses only one active class
at a given time which denote the possible combinations of the multi-label encod-
ing. Contrary to the simplified values shown in the figure, both encodings use
continuous probabilities to represent the speaker activity. Results in the powerset
multi-class encoding can be converted to the multi-label encoding.

Figure 2.2: Diarization encodings: Multi-label has one class per speaker and can have
multiple labels active at the same time. Powerset multi-class has only one
active class which signifies either no speaker, one individual speaker, or a
combination of two speakers. From [9].

Speaker Recognition and Clustering
Speaker recognition is the task of determining who is speaking in a selected audio
segment. Clustering algorithms are used to compare the identities of selected audio
segments to recognize previous or identify new speakers. These identities are com-
puted from the given audio segments containing a speaker’s speech. In the past,

6

2.2. Speech Processing Tasks

hand-crafted features such as Mel-Frequency Cepstral Coefficients (MFCCs) [16]
and i-vectors [21] were used to compute speaker embeddings. Modern systems like
pyannote.audio [8] use machine learning to compute speaker embeddings from au-
dio segments. These speaker embeddings represent the characteristics of a speaker’s
voice as high-dimensional vectors that can be compared using a distance metric.
Two segments from the same speaker have a high similarity in the embedding
space, so their embeddings have a small distance. Similarly, segments of different
speakers have low similarity and show a high distance. The assignment to clus-
ters is usually done by a distance threshold. The distance metric depends on how
the embeddings are designed or what error metric a machine learning model was
trained on, but a common metric is cosine similarity.

Diart [14] use an online incremental clustering algorithm to solve speaker di-
arization. Embeddings of new speech segments are compared to representations
of existing speakers. These representations are calculated as the center of all em-
beddings associated with that speaker, which is called centroid. If the distance to
a centroid is below a distance threshold, the segment is assigned to that speaker.
It is ensured, that two overlapping speaker segments cannot be assigned to the
same speaker. If the distance is above the threshold, a new speaker is added. The
distance threshold is a hyperparameter that can be adjusted to tune the sensitivity
of the algorithm.

DBSTREAM [22], an online adaptation of DBSCAN, is a density-based cluster-
ing algorithm for data streams. It aggregates the incoming data embeddings into
micro-clusters in an online step and uses the density between these micro-clusters
to assign macro-cluster labels in an offline step. New embeddings are compared to
the existing micro-cluster centers, based on their distance and a distance threshold.
If covering micro-clustes are found, they are nudged towards the new embedding,
otherwise a new micro-cluster is initialized. The movement is controlled to avoid
excessive overlap. Weak micro-clusters are periodically pruned. Macro-clusters
are formed by connecting micro-clusters that have a high density in overlapping
areas.

It is important to note that both algorithms cannot prevent clusters in later
timesteps from moving away from embeddings seen in earlier timesteps. In some
cases, this may lead to different cluster assignments in hindsight.

Speech Recognition
Speech recognition is the task of transcribing speech into text, also known as
speech-to-text. Just as with the previous tasks, the input is the audio data con-
taining speech. The output is a transcript, which is a sequence of words, sometimes

7

2. Theory

with timestamps for each word, depending on the system or dataset. Speech recog-
nition approaches usually target single-speaker or non-overlapping speech.

Early approaches relied on the detection of phonemes, basic sounds of speech,
based on pre-stored representations and hand-crafted rules to match these pho-
nemes to syllables and words. These had only a limited vocabulary spanning only
the words of digits or the letters of the alphabet and struggeled with pronunciation
and speaker differences. [23] Modern speech recognition systems use recent machine
learning advances to train on large amounts of speech data. A popular state-of-the-
art system is Whisper [6]. By training on very large and diverse speech datasets,
they can handle different languages, automatically detect the spoken language,
distinguish speech from background noise or silence, and adapt to different accents
and speaking styles. They report transcription quality for their system to be close
to the level of professional human transcribers.

Speech Separation

Speech separation is an audio enhancement technique that can isolate speakers for
other methods that do not expect multiple speakers. The input is a single audio
track containing a mixture of multiple speakers that may have overlapping speech.
The outputs are multiple audio tracks, each track containing the audio from a
single speaker, with all others removed. In other words, it provides the inverse
operation of mixing multiple audio tracks. Typically, these systems are trained to
output a fixed number of speakers, which means that the number of speakers in
the input mix must match the expected number of output tracks of the system.
Otherwise, an output track may contain multiple speakers, or a speaker’s speech
may be split across multiple tracks. In practice, the number of speakers in an
audio segment must be known before the correct speech separation system can be
selected and applied.

2.3. Machine Learning Methods
Recently published systems for solving the above tasks use machine learning meth-
ods. In machine learning, methods are trained on large datasets to learn the solu-
tion to a specific task, rather than being directly programmed. The methods used
in this context are neural networks, consisting of layers of artificial neurons that
are connected between the layers. Each neuron processes input values, applies a
mathematical transformation, and passes the output to the next layer. These net-
works learn through backpropagation, where errors from predictions are propagated

8

2.3. Machine Learning Methods

backwards to adjust the model’s internal parameters, improving performance over
time.

There are many different architectures for neural networks commonly used in
speech processing. In speech processing, the first step is to extract features from
the audio data. This can also be done using a neural network, like the Sinc-
Net [24], which processes the time-domain signal directly. The SincNet consists of
parameterized sinc functions as filters, allowing the network to learn optimal filter
parameters during training. It therefore acts similar to filter banks, but with the
advantage to adjust to the most interesting acoustic characteristics depending on
the task.
Deep Neural Networks (DNNs) are feed-forward networks with multiple hidden

layers between input and output layers, enabling them to learn hierarchical repre-
sentations of data. Each additional layer allows the network to model increasingly
complex and abstract patterns in the data. While powerful for various speech
tasks, standard DNNs lack the ability to model temporal dependencies inherent
in speech signals.
Time Delay Neural Networks (TDNNs) address this limitation by incorporat-

ing time-shifted copies of the input features. TDNNs process multiple frames
simultaneously by delaying input features across different time steps, allowing the
network to capture temporal patterns and acoustic context. This architecture is
particularly effective for detecting acoustic events regardless of their position in
time, making them well-suited for speaker-specific vocal characteristics.

Another architecture is the Long Short-Term Memory (LSTM) network, which
is a type of recurrent neural network that captures dependencies over time. Each
LSTM cell consists of an input gate, a forget gate, and an output gate, each
with learned parameters. These gates control the flow of information, allowing
the network to retain relevant information and discard irrelevant data over long
sequences. Bidirectional LSTMs (Bi-LSTM) are used to capture dependencies in
both forward and backward directions, so that the model has access to both past
and future audio data at a given time step. A Bi-LSTM cannot be used directly
for streaming data because in an online setting only past data is available at any
given time, not future data. Only a simple forward LSTM can be used in real
time, or the input to a Bi-LSTM must be handled in chunks with no context
between chunks. Then additional post-processing is required to mitigate the loss
of temporal dependencies between chunks.
Transformer architectures have recently revolutionized speech processing with

their attention mechanisms. Unlike recurrent networks, Transformers process en-
tire sequences in parallel through self-attention, which weighs the importance of
different parts of the input relative to each other. This allows the model to focus

9

2. Theory

on relevant parts of the speech signal regardless of position, capturing long-range
dependencies more effectively than recurrent architectures.

Encoder-Decoder Transformers, like for example Whisper, combine two Trans-
former blocks for sequence-to-sequence tasks such as speech recognition. The en-
coder processes the input speech features, creating contextual representations,
while the decoder generates the output text one token at a time. This architec-
ture incorporates cross-attention mechanisms, allowing the decoder to focus on
relevant parts of the encoded speech when generating each output token. While
models like Whisper achieve state-of-the-art results, they require significant com-
putational resources and face challenges in low-latency, real-time applications due
to their non-causal attention mechanisms.

2.4. Sliding Windows
The machine learning methods used for speech processing expect blocks of audio
data as input and not continuous data streams or the entire data of large files.
This has computational reasons, as large files and their processing data may not
fit into memory, but also represents a fundamental design choice that enables
the non-causal processing capabilities of modern architectures like Bi-LSTMs and
Transformers. As a result, the input audio stream must be split into blocks. To
avoid information loss at the block boundaries, overlapping windows are used in a
sliding window approach. For this thesis, the duration of a window is called window
size and the interval between consecutive windows is called step size. The step size
must be smaller than the window size to create an overlap between consecutive
windows.

2.5. Metrics
There are several quality metrics for speaker diarization and speech recognition.
They are calculated by comparing either the diarization or the transcription of
a ground truth reference with the hypothesis output of the evaluated system.
Additionally, there are metrics that measure the computational performance of
these systems or the integrated pipeline as a whole. The following metrics are
used during the evaluation of our proposed pipeline in chapter 5.

The Diarization Error Rate (DER) [25] is a basic metric used to measure the
quality of the diarization result. It is based on the duration of speech segments
that were falsely detected, missed, or assigned to the wrong speaker, as shown in
Figure 2.3. The error rate is the sum of these three categories divided by the total

10

2.5. Metrics

Figure 2.3: A graphical representation of the components of the Diarization Error Rate
(DER). The ground truth and diarization output are compared based on
the duartion of speech segments. The durations of falsely detected, missed
speech, and speaker confusion are compared to the total duration of the
reference speech.

duration of the reference speech.

DER =
False Alarm+Missed+ Speaker Confusion

Total Reference Speech Duration
(2.1)

The Word Error Rate (WER) is a basic metric used to measure the quality of
the speech recognition result. It is similar to the Levenshtein distance. Instead of
addressing individual characters, it measures the ratio of word substitutions (S),
deletions (D) and insertions (I) in the hypothesis to the total number of words
in the reference transcription. It is only defined for single-speaker transcriptions
or assumes that all words are from the same speaker and does not provide any
information about the correct or incorrect assignment of words to speakers.

WER =
S +D + I

N
(2.2)

The Word Diarization Error Rate (WDER) [26] is a combination metric of both
diarization and speech recognition results. Like DER, it measures the quality of
the diarization, but it is not duration based. It is calculated as the ratio of words
with incorrectly assigned speakers to the total number of words in the reference
transcription. More specifically the numerator is the sum of all substituted SIS or
correctly recognized CIS words in the generated hypothesis transcription for which
an incorrect speaker label was assigned. The denominator is the total number
of substitutions S and correct words C. It does not take into account insertions
and deletions in the transcription, since they have no speaker assigned in the
ground truth and therefore cannot be compared in terms of diarization accuracy.
Therefore, WDER cannot be evaluated without also considering the WER.

WDER =
SIS + CIS

S+ C
(2.3)

Concatenated Minimum-Permutation Word Error Rate (cpWER) [27] is a com-

11

2. Theory

bination metric for evaluating the transcription results for multiple speakers. It
uses the speaker assignments of the recognized words to calculate the WER for
each speaker. The WER of a transcription with multiple speakers is the aver-
age of the WERs for each speaker. Since the speaker labels between hypothesis
and reference may not match or may be permutated, cpWER is calculated as the
minimum WER over all possible speaker permutations (π(s)).

cpWER = min
π∈Π

∑S
s=1 WER(references, hypothesisπ(s))

S
(2.4)

To measure the computational performance, the memory usage and processing
time can be measured. Memory usage is measured for the general Random Access
Memory (RAM) or Video RAM (VRAM) dedicated to the Graphics Processing
Unit (GPU). While the RAM holds all the data from the audio input, to interme-
diate results, like calculated speaker probabilities and embeddings, to the output
as speaker annotations and transcriptions, the VRAM holds the loaded machine
learning models and their intermediate results during inference.

The processing time is the duration between when the input to the system was
provided and when the output is received. By comparing it to the length of the
processed audio, we can measure the real-time factor, so how much faster than
real-time the system can run. Alternatively, we can also measure the processing
time for each step of a system, such as the speaker diarization or speech recognition
steps in the proposed pipeline. This provides more insight into the performance
of each component and allows us to track the processing time at the utterance
or word level. The total latency is the sum of the computational latency and
the artificial latency (delay in pipeline design, see section 4.2) of the pipeline.
The computational performance metrics are highly dependent on the hardware
used. The goal is to develop a method with a real-time factor greater than one on
hardware that is feasible in a robotics context.

12

3. Related Work

There has been extensive research in many aspects of audio speech processing in
recent years. This chapter describes several advances in single-task methods that
form the basis for the processing steps of the proposed pipeline. It also presents
other existing methods that combine speaker diarization with speech recognition
for both online and offline processing.

3.1. Single Task Approaches
The pyannote.audio toolkit [28] is an actively developed Python library for tasks
related to speaker diarization. It provides tools for training, evaluating and apply-
ing speaker diarization models. Over the years there have been several publications
around their segmentation model. Like EEND [20], it is an end-to-end neural net-
work that provides speaker activity values.

The pyannote segmentation model [29] was first published in 2021. It was trained
on five second audio chunks from longer conversations. First, audio features are
extracted using a SincNet for every block with a duration of 16 ms. Then, bidi-
rectional LSTM layers are used to incorporate temporal context. Finally, fully
connected layers are used with the last layer having a sigmoid activation function
to provide speaker activity values for up to three speakers. These values are be-
tween 0 and 1 and form the basis for the multi-label classification. The model
was trained using permutation-invariant training. This means that the loss is
indifferent to the generated speaker order.

In 2023, an advancement to the segmentation model was published. Instead of
multi-label classification with one label per speaker, the new model [9] performs
powerset multi-class classification. They achieved this by changing the activation
function of the last layer to softmax and adjusting the output size to the number
of powerset classes. Free and open-source pre-trained models are provided for both
publications.

Based on the work of pyannote, the Diart pipeline was released, which uses
the segmentation model to achieve online speaker diarization. Their approach en-
tails generating local speaker diarizations for incoming overlapping segments of

13

3. Related Work

audio. As the speaker order of subsequent diarization outputs can be permutated,
they extract speaker embeddings for active local speakers and cluster these using
constrained incremental controid clustering as decribed in section 2.2. When the
correct speaker mapping is recovered, the speaker probabilities of overlapping win-
dows are aggregated as the average for each frame of the window. Then, the speech
segments can be identified by thresholding the aggregated speaker probabilities as
new segments become available. [14]

In this thesis, three speaker embedding models are evaluated. The first, py-
annote/embedding from pyannote [28], is based on x-vector [11] and SincNet [24].
In x-vector, filter banks are used to extract basic features, which in this case
are replaced by trained SincNet filters. These features are then processed by a
TDNN with increasing temporal context for deeper layers. During training, an
additional softmax output layer is used for classification, which is excluded in the
final model. This aggregates speaker information over the entire audio input into
a 512-dimensional embedding.

The speaker embedding model pyannote/wespeaker-voxceleb-resnet34-LM
is a wrapper for the WeSpeaker [30] model of the same name. The model is based
on r-vectors [31] using the ResNet34 [32] topology. Filter banks are used to extract
features from the audio input, which are then refined using the CNN layers of the
ResNet model. The number of output dimensions for embedding is 256.

Third, the speaker embedding model pyannote/spkrec-ecapa-voxceleb of the
SpeechBrain toolkit [33] is based on the ECAPA-TDNN architecture [12]. It im-
proves the x-vector approach by adding self-attention, which can weight different
time steps independently for each feature channel to find the most relevant fea-
tures. In addition, it uses Res2Net blocks [34] to increase temporal context in
network layers, and it uses multi-layer feature aggregation to capture both low-
level (e.g., pitch, energy) and high-level (e.g., articulation) speech features in the
embedding. The number of output dimensions for this embedding model is 192.

In the area of audio enhancement, MossFormer 2 [35] was proposed and pub-
lished as part of the SpeechBrain toolkit [33]. MossFormer 2 is a speech separation
model that uses a masking network to generate the individual speaker outputs and
an encode-decoder structure for feature extraction and audio signal reconstruction.
The core of MossFormer 2 is a hybrid structure of the previous MossFormer mod-
ule and a recurrent module. The MossFormer module uses self-attention to cap-
ture dependencies within short time segments to capture long-range, coarse-scale
dependencies. But it does not caputre recurrent dependencies, which is comple-
mented by the recurrent module to capture recurrent patterns.

14

3.2. Integrated Diarization and Speech Recognition

3.2. Integrated Diarization and Speech Recognition
There are many audio processing systems available that advertise speech recogni-
tion and speaker diarization, but in many cases the code and models are propri-
etary and the companies do not publish their research or detailed documentation.
Therefore, only publicly available and reproducible work will be discussed.

WhisperX [7] improves on the original Whisper speech recognition model [6].
The revised system described in the paper first analyzes the audio input with
voice activity detection to identify speech segments. Among other things, this
allows them to avoid truncation during speech segments when the input has to be
split due to length constraints, and it is used to truncate silence segments before
performing the actual speech recognition. Not included in the paper and only
added to the WhisperX repository [36] after publication is a combination with
the pyannote speaker diarization pipeline. After generating the normal Whisper
transcription, they apply speaker labels as a post-processing step. First, they
compute a complete speaker annotation using the diarization system. Then, for
each transcription segment, they compare the intersection of the segment with the
speaker utterances in the annotation using the generated segment timestamps. The
speaker with the largest intersection is selected and applied as a label to all words
for the transcription segment. In this way, they add speaker information to the
transcribed words. While this approach is similar to the proposed pipeline in that
it uses preprocessing to skip silent segments before applying speech recognition, it
assumes non-overlapping speech segments. Therefore, any errors from the speech
recognition due to overlapping speech will also propagate to the post-processed
speaker information and the final output. A major difference is that it is an offline
system.

In 2024, an online audio processing system that combines speech and speaker
recognition was proposed [13]. They iteratively generate timestamped segments
of transcriptions by using the Whisper speech recognition [6]. The text of these
segments is immediately reported to the user, but can still change and be updated.
When a certain number of segments is reached, they compute a speaker embedding
for the full duration of the oldest segment. They assume a single speaker for the
segment and assign a speaker label based on a clustering of the embedding. Only
then will the speaker information be reported and the segment will not be changed
by subsequent processing. As before, this system requires non-overlapping speech
segments to provide accurate results. While this system provides online process-
ing, it increases latency by waiting for multiple transcription segments before out-
putting the final speaker information. Both methods use the timestamps provided
in the Whisper transcription to look up or generate speaker information.

15

4. Method

This chapter explains the proposed pipeline for streaming speaker diarization and
speech recognition. Other approaches in the literature, as mentioned in section 3.2,
use a transcription-first approach. Transcription-first means that they first use
speech recognition to generate a transcription of the audio, and only in a later
step add additional speaker information to the transcription. The speech recogni-
tion system used (Whisper) is only trained to output words grouped by segments
and an estimated probability for a segment to contain speech [6], but no speaker
information. It is not trained to disambiguate speakers or overlapping speech, but
rather expects speech from a single speaker. Both systems mentioned in section 3.2
assume that speakers are disambiguated and expect their speech to be accurately
transcribed into an interleaved pattern that can be subsequently associated. In the
system by Lyu et al. [13] a single speaker for each extracted transcription segment
is assumed and WhisperX [7] use a heuristic to select the most likely speaker.
While this may work on non-overlapping speech, overlapping speakers are likely
to be suppressed or confused by Whisper’s training on noisy data, resulting in a
distorted transcription. This is also error-prone in terms of speaker assignments,
as embeddings on multi-speaker speech may not be clustered correctly, and for
online systems there is less information about future speech available, leading to
biased results from a heuristic.

Instead, we employ a diarization-first approach that first detects speaker activity
and then performs speech recognition with the knowledge of utterances and their
speakers. This has the advantage that the audio can be pre-processed based on
the speaker information before speech recognition is applied, and the segments
processed by the speech recognition system are unlikely to begin or end in the
middle of a word or utterance. This last aspect can also be achieved via voice
activity detection and removing segments of silence as a pre-processing step [7].

We propose a diarization-first approach that processes segments from an in-
coming audio stream by first extracting utterances using local speaker diarization,
then recovering isolated speaker audio, performing speaker recognition, and finally
transcribing the utterances. It provides low-latency transcriptions of words with
their associated speaker. The following sections describe each step in detail.

17

4. Method

4.1. Overview

In Figure 4.1 the general structure of the pipeline is shown. The input can come
from a microphone or can be a simulated audio stream from a dataset file. The
raw audio data is received in the time domain as samples with a fixed sample
rate, which are buffered and made available to the pipeline steps as needed. Next,
local speaker diarization is used to extract speaker activity for the most recently
received audio segment. This step returns speaker utterances that have not been
processed before, and if there is no new utterance, the remaining steps are skipped.

Figure 4.1: The general pipeline structure showing high-level processing steps from the
data input as a continuous audio stream to per-speaker transcriptions.

This translation from streaming data to utterance-based time segments allows
processing methods in subsequent steps that do not have to adapt to the streaming
nature of the input data. However, the methods used in subsequent steps still
cannot benefit from information not yet seen at that time step, unlike when these
methods are used in systems with offline processing. For example, clustering can
only be based on previously seen speaker embeddings and not on all embeddings
or any embeddings of future speech, which increases the difficulty of the task for
online processing.

For each detected utterance, it is known whether it overlaps with an utterance
of another speaker based on the local speaker diarization. In case of overlapping
speech, the speaker embedding cannot be extracted directly. In this case, speech
separation is used to recover only the audio of the speaker to which the detected
utterance belongs. Then, the speaker embedding can be extracted from the recov-
ered audio, which is finally used for speaker recognition to map the local speaker
to a global speaker. Finally, the utterance is transcribed using speech recognition.

18

4.2. Streaming Speaker Diarization

4.2. Streaming Speaker Diarization
The input for Streaming Speaker Diarization is the incoming audio stream. The
goal is to extract speaker information and provide speaker utterances with times-
tamps and labels for their respective speaker. A similar approach to Diart [14]
is used with a changed solution for speaker activity aggregation. We pre-process
the incoming audio stream by applying a constant gain limiter to provide a loud
but undistorted signal to accommodate quiet or highly dynamic signals. This pre-
processed signal is then used for all subsequent processing steps that require audio
data.

4.2.1. Speaker Probabilities
At the core of the speaker diarization step are the speaker probabilities provided by
the pre-trained segmentation model of pyannote.audio [9]. Since the segmentation
model requires audio segments as input instead of an audio stream, fixed-length
sliding windows are computed on the audio stream as shown in figure 4.2. These
windows are defined by the parameters step size and window length, which
must be configured to allow overlap between windows. Overlapping windows are
important to maintain speaker detection quality at the edges of the windows and
to avoid discontinuities to the next set of speaker probabilities. When the audio
buffer has progressed enough to fill the next sliding window, the segmentation
model is used to predict the local speaker probabilities on this latest window of
the audio stream.

Figure 4.2: Incoming buffered audio segments are concatenated to form segments of slid-
ing windows with overlap. The parameters step size and window length
are used to configure the sliding windows.

The version of the segmentation model used is the latest iteration that uses the
powerset multi-class encoding (see section 2.2) as output values for a maximum of

19

4. Method

three simultaneous speakers. In total there are seven classes, one for the probability
of no active speaker, one for each single speaker, and one for all three combinations
of two speakers. There is no class for the combination of all three speakers, as this
was considered unlikely to be observed based on benchmarks of datasets with
diverse domains [9].

4.2.2. Speaker Permutation
For successive sets of speaker probabilities, their order does not correspond and
must be associated due to the permutation invariant training of the segmentation
model. In Figure 4.3, the order of the speakers, indicated by their colors, has
changed. The approach used here differs from the Diart implementation in that
the speaker identities are used to solve the permutation. However, due to the
overlap between windows, there is another piece of shared information, the speaker
probabilities themselves, that can be used to reconstruct the correct order. The
reason for not using speaker identities is that speaker embeddings computed on
very short audio segments of less than or close to a second are difficult to cluster.

Figure 4.3: The speaker order of successive speaker probabilities can be permutated. In
this case, the old blue speaker is now recognized as the orange speaker and
vice versa. The segments are matched by the similarity of their speaker
probabilities in the overlapping region.

To solve the speaker permutation problem, the shared speaker probabilities be-
tween two overlapping windows are compared. For each possible permutation,
the cross-correlation between the common window of the current and previous

20

4.2. Streaming Speaker Diarization

segment’s speaker probabilities is computed. Then, the permutation with the
lowest cost of cross-correlation dissimilarities across all speakers is selected. The
algorithm used, the Hungarian algorithm [37], is the same one used to ensure per-
mutation invariance of the training loss during the training of the segmentation
model. It is possible to use both the multi-label representation and the power-
set multi-class encoding directly as a basis for cross-correlation. The powerset
multi-class encoding provides more information with the explicit probabilities for
no speaker present (class 0). In the case of powerset multi-class encoding, not
all permutations between classes need to be checked, since the number of speakers
involved in a class must remain the same. So only the single-speaker classes can
be permutated and respectively the combination classes of two speakers, so only
those permutations are checked and compared. When the most likely permutation
is found, the speaker probabilities are permuted accordingly and saved with the
values of previous windows.

4.2.3. Probability Aggregation

Depending on the chosen parameters for step size and window length, there are
a number of overlapping sliding windows. Before computing the final diarization
results, these values have to be aggregated into one set of speaker probabilities.
The values are averaged across their overlapping regions. As speaker probabilities
at the edges of windows are inaccurate and to ensure smooth transitions at the
edges, the speaker probabilities are weighted with a window function that reduces
the weight at the edges of the window. The Tukey window [38] is used, which uses
a cosine fade-in at the beginning and a cosine fade-out at the end of the window.
The remaining part in the middle has a constant value of 1 and is therefore fully
weighted. The fade-in and fade-out each occupy 5% of the window length.

Figure 4.4 shows three consecutive outputs of speaker probabilities from the
segmentation model. If we always used the most recent data, here the speaker
probability data at time step t=3 from 82.5 to 83.5 seconds, the latency would
be minimal, but since there is no overlap with the previous data at this time
step, no aggregation is possible. To allow aggregation of overlapping segments
and thus improve the quality of speaker activity estimation, an artificial latency
is introduced in the form of the lag parameter. A delay is added that pushes
back the active time step. All present overlapping sets of speaker probabilities are
aggregated for the duration of the active time step. At this point, an optional
confidence decision is made, which is discussed in section 4.2.5. Based on the pow-
erset representation of the speaker probabilities, a confidence score is calculated,
and if the confidence is too low, the diarization is deferred until the confidence

21

4. Method

Figure 4.4: Three sets of speaker probabilities are combined for the currently active
time step to form aggregated speaker probabilities. The active time step
has a duration of step size and is delayed by lag behind the latest audio
data. For readability reasons, the probabilities are shown in their multi-label
representation.

increases. After that, the aggregated speaker probabilities are made available for
the diarization classification into speech segments.

4.2.4. Diarization

To classify speaker activity into segments of speech and segments of silence, a
threshold is applied to each local speaker. If the estimated speaker probability
is higher than the threshold, the local speaker is considered active. These active
speech segments are accumulated and added to previously detected speech seg-
ments of the same speaker to form utterances across the edges of the active time
step. For each time step, only the aggregated speaker probabilities during the ac-
tive time step are evaluated, and therefore only this region needs to be aggregated,
as shown in the last row of Figure 4.4. This avoids conflicting diarization results
for past time steps. For example, a modification or correction could result in a
small pause, so that a large utterance is split into two smaller ones, which are now

22

4.2. Streaming Speaker Diarization

different from the previously processed original large utterance. Thus, additional
complexity would be required to later handle these duplicate utterances or their
resulting transcriptions.

Figure 4.5: Utterances of the three local speakers, colored according to their status at
the current time step in either already processed, newly completed, or cur-
rently active utterances. The faded segment is not yet processed, but should
indicate that the utterance will not be completed until the next time step.

Based on the boundaries of the active time step, all detected utterances can
be categorized as either already processed, newly completed, or currently active,
as shown in Figure 4.5. Active utterances are utterances that overlap with the
active time step but have not yet been completed, meaning that their speaker
probability was higher than the threshold at the end of the active time step. They
are continued in the next time step. Completed utterances are utterances that are
completed during the active time step, which means that their speaker probability
has dropped below the threshold which ended the utterance. Most importantly,
these utterances are new and have not been processed before. All other detected
utterances have been processed in previous time steps. Together, these utterances
form the local speaker annotation. The new, completed utterances are selected
for the next processing step. Note that they are no longer stream-based, but since
their start and end are known, they can be processed with offline methods.

4.2.5. Confidence Decision

The speaker probabilities are just an estimate of the actual speaker activity with
continuous values between 0 and 1. In the case of the powerset multi-class rep-
resentation with an ideal predictor, only one class would have a probability of 1
and the others would have a probability of 0. For example, during silence, class
0 should have a probability of 1, or during overlapping speech, only one of the
combination classes for two speakers should have a probability of 1, while all other
classes should have a probability of 0 each. Instead, ambiguous results can be
observed, where multiple classes have partial activation. This effect is particularly
noticeable in very low latency scenarios during brief overlapping speech, laughter,

23

4. Method

or interjections. It results in a lower probability for the correct class, which can
lead to incorrect diarizations.

Originally this was solved in pyannote [9] by always choosing the class with the
highest value with the argmax function. This discards the remaining information
encapsulated in the other classes. This information can be used to estimate the
confidence of the computed speaker probability values.

Confidence Score = pclass_0 +max
(
pclass_1, pclass_2, . . . , pclass_6

)
(4.1)

The confidence score is described in 4.1. The maximum over all classes would
penalize all probabilities for classes other than the class with the highest proba-
bility. Thus, if a second class increases in probability, the confidence score will
decrease as the system becomes less certain about the correct class. This would
also regularly lower the confidence score at the beginning and end of utterances,
since there is a small interval where the probabilities switch from the speaker class
to the no-speech class. Instead, class 0, which indicates no speech, is added di-
rectly and excluded from the maximum, so that only the classes indicating speech
are considered. This way, the confidence score remains high when there is a speaker
change with a small pause. Since the sum of all classes at a given time is 1, the
confidence score can only reach a maximum of 1.

The confidence score alone does not resolve speaker probability ambiguity. To
resolve this, the latency of the pipeline is dynamically increased to allow recalcu-
lation of the speaker probabilities. After receiving the aggregated speaker prob-
abilities, the confidence score is calculated. If the confidence score is less than a
minimum confidence threshold, the final diarization step is deferred. The diariza-
tion is delayed until either the confidence score is higher than the threshold again
or until a maximum latency is reached. After that, the speaker probabilities are
recalculated over the now larger window, which improves the quality. Then di-
arization is performed over the extended active time step and processing continues
as usual.

Figure 4.6 shows the multi-label representation of the initial speaker probabili-
ties, the recalculated probabilities, and the confidence score. Initially, with the low
latency setting, several speakers were detected as partially active for the second
utterance, and the actual speaker had a lower estimated probability, which would
have resulted in a missed speech segment. The diarization was deferred because
the confidence score dropped below the threshold. After recalculation, the speaker
probabilities were less ambiguous and the correct speaker diarization was obtained.

24

4.3. Speech Separation

Figure 4.6: An excerpt of the local speaker diarization and confidence values from the
file ES2011a of the AMI Corpus dataset [39]. Initially ambiguous speaker
probabilities are recalculated due to a low confidence score, resulting in tem-
porarily higher latency but better diarization quality.

4.3. Speech Separation

The output of the streaming speaker diarization step is a local speaker annotation.
More precisely, the newly completed utterances for a given time step are selected
for further processing. There are not necessarily new completed utterances for
each time step. For example, with a step size of 0.1 seconds and an average
utterance length of 3 seconds, there are at least 29 time steps without a completed
utterance, assuming that there is no overlap between the utterances. In such cases,
the processing for these time steps is completed, since the further processing steps
depend on completed utterances.

In the case of a completed utterance, the local speaker annotation is queried
to determine any overlapping speech with the target speaker for the duration of

25

4. Method

the new utterance. If no overlapping speech is detected, the utterance can be
processed directly and no speech separation is required. Even if only a small part
of the utterance overlaps with the target speaker, speech separation is skipped
because there is a risk of introducing artifacts into the target speaker’s audio if
the second speaker is not recognized as a separate speaker. Otherwise, speech
separation is used to extract only the target speaker’s audio.

The speech separation model MossFormer 2 [35] is used to process the audio
segment of the utterance. The model is trained to separate two speakers, and
therefore outputs two audio signals, which matches the maximum number of ex-
pected simultaneous local speakers as described in section 4.2.1. It would be
possible to use different speech separation models for different numbers of speak-
ers in the audio mix. This could avoid potential artifacts for cases where there
are more than two speakers in the audio mixture, but it would require loading a
second speech separation model into the GPU memory.

Similar to the output of the segmentation model, it is not known whether the
target speaker is isolated to the first or the second audio output of the speech sep-
aration result. Again, it would be possible to solve this assignment using speaker
identities of computed embeddings, but as before, speech segments can be short,
leading to imprecise embeddings. The chosen solution is to compute speaker prob-
abilities for both outputs and compare the speaker activity with the previous local
speaker annotation. The audio signal is then selected based on similarity in the
same way as the permutation solving in section 4.3.

Even if there are exactly two speakers in the audio mix with sufficient speech
duration, the separation model may still add artifacts in the form of attenuated
speech from the second speaker, static, or high-pitched squeaks. To counteract
this, only the overlapping parts of the audio are taken from the separated audio,
while the single-speaker segments are kept from the original audio.

During development, it was observed that the separation output did not match
the original audio in amplitude. This is likely due to the fact that the model is
trained on a dataset with a specific loudness. Therefore, in order to match the
original audio as closely as possible, the loudness of the audio is adjusted using
the same limiter configuration as at the beginning of the pipeline. This is done
immediately after the separation and before the speaker probability estimation,
as these can also be affected by loudness. The end result is an utterance with
constant loudness that contains only the isolated audio of the target speaker.

26

4.4. Speaker Recognition

4.4. Speaker Recognition
Up to this point, the pipeline only has local speaker information for the given
utterance, originally provided by the segmentation model. This is useful for dis-
criminating between speakers speaking at the same time or in close temporal prox-
imity, but is not suitable for tracking speaker information over long periods of
time, especially with silence in between. Therefore, speaker recognition is used on
the extracted utterances to obtain global speaker information and to match local
speaker utterances to recurring global speakers.

The speaker recognition step consists of two components. First, a speaker em-
bedding is extracted from the isolated audio. For this embedding models such as
X-Vectors [11] or ECAPA-TDNN [12] are used. The speaker embedding is then
used in an online clustering algorithm. The clustering algorithm will either assign
a label of a matching cluster or create a new cluster for a new speaker.

There are some requirements for the used clustering algorithms. Since the em-
bedding models are usually trained on cosine distance, the clustering algorithms
should be able to handle cosine distance. Then, due to the streaming nature of
the pipeline, only embeddings of previous utterances are known, so the algorithm
must be able to handle sparse data. Also, the total number of speakers is not
known, so any algorithm that uses a fixed number of clusters is not suitable. The
clustering algorithms and embedding models used are described in section 2.2 and
section 3.1 respectively.

4.5. Speech Recognition
The last step in the pipeline is the speech recognition step. The words of an utter-
ance are transcribed using a speech recognition model such as Whisper [6]. Since
overlapping speech and speaker assignment are handled in the previous steps, the
single-speaker assumption of Whisper is retained. The output is a per-utterance
transcription, including the speaker label, which is provided to the user once the
transcription process is complete. Each word in the transcription also retains the
estimated timestamps provided by Whisper.

In most cases, the identified utterances contain speech, but sometimes very
short interjections or laughter are identified as utterances during the diarization
step that cannot be associated with any words during speech recognition. The
Whisper model has a tendency to add hallucinated words during periods of silence
or when it cannot distinguish words. The authors include a no speech probability
with each segment of the transcription output. This is used with a threshold to
filter out segments with a high probability of hallucinated words.

27

4. Method

Due to the architecture of the pipeline, it would be possible to skip the speech
recognition step altogether and output the separated audio with its speaker in-
formation directly for tasks that do not require word transcriptions. This is not
discussed further in this paper because the standard metrics used for similar meth-
ods are based on the transcribed words. This makes comparison with similar ap-
proaches difficult, as new metrics would be needed. However, one such use case
would be a multimodal large language model such as GPT-4 [40]. Instead of tran-
scribing the audio to text first, the model can process the audio directly in the
end-to-end model, adding additional information not covered in a pure text-based
transcription, such as tone, emphasis, or non-word based sounds like laughter [41].

In general, the pipeline is easily modifiable, so it can be changed to handle
simpler tasks. For example, if only single-speaker speech is expected, the speaker
recognition module could be skipped and only a single speaker assigned in the
output. However, for the evaluation in chapter 5, all modules are active for all
scenarios.

4.6. Implementation

The proposed pipeline has a modular architecture. The idea is that each step can
be replaced by a different implementation as long as the inputs and outputs are
compatible. This is especially advantageous for changing the different foundation
models, the clustering algorithm, or the processing logic of the pipeline steps them-
selves without having to rebuild the rest of the pipeline. Data is stored centrally
in buffers for the audio stream, speaker probabilities, confidence scores, local and
global annotations, and transcriptions. This way, data is not unnecessarily dupli-
cated, can be accessed by different processing steps as needed, and can be globally
purged when no longer needed.

The pipeline is implemented in Python and executed in a Docker environment
to be as independend as possible from the host environment. It is designed as a
standalone application, but can be integrated with other software by periodically
providing the audio stream as input. The output data or any intermediate data
can be retrieved via hooks at various points in the pipeline. These hooks are also
used to gather the data for the quality and performance metrics in the evaluation.

The pipeline was built on an Ubuntu 20.04 host with NVIDIA’s CUDA 12.2 in-
stalled. The base Docker image is nvidia/cuda:12.2.2-cudnn8-runtime-ubuntu
22.04, which comes with Python 3.10. The main Python libraries used are Py-
Torch 2.5.1 for running the models, pyannote.audio 3.3.2 [28] for diarization-related
helper functions and providing pre-trained models, and speechbrain 1.0.2 [33], also

28

4.6. Implementation

for pre-trained models.
The used speech separation model used is pyannote/segmentation-3.0 pro-

vided by pyannote, which also provided the speaker embedding models pyannote
/embedding and pyannote/wespeaker-voxceleb-resnet34-LM. Another speaker
embedding model is speechbrain/spkrec-ecapa-voxceleb which is provided by
SpeechBrain. The speech separation model used is MossFormer 2 [35] provided by
SpeechBrain and the speech recognition model is Whisper [6] large-v3 with the
implementation of faster-whisper 1.0.3 [42]. The pre-trained models are available
at either HuggingFace [43] or ModelScope [44].

For clustering algorithms, the implementation for online incremental clustering
is based on Diart [14] and the implementation for DBSTREAM [22] is provided
by the Python library river [45]. Pyannote provides an implementation for the
DER metric. The WER, cpWER and WDER metrics are provided in the GitHub
repository of DiarizationLM [46]. DiarizationLM applies input normalization for
the reference and hypothesis transcriptions by converting text to lower case and
removing punctuation.

29

5. Evaluation

This chapter evaluates the proposed pipeline described in chapter 4. First, the
datasets used for the evaluation are described. Then the evaluation setup is de-
scribed, including the selection of parameters for the pipeline. Finally, the results
of the evaluation are presented.

5.1. Datasets
There are many speech recognition and speaker diarization datasets that have
been created over the years for different use cases. The evaluation of the proposed
pipeline requires datasets that provide ground truth for both speaker annotations
and transcriptions. While both independently provide partial information, the
pipeline can only be fully tested with both pieces of information available on the
same dataset. At least one dataset must provide speech with overlap between
different speakers, as in conversations, to test realistic multi-speaker scenarios.
Therefore, two datasets, LibriSpeech [47] and AMI Corpus [39], were selected,
and additional datasets are sampled from LibriSpeech to gain further insight into
specific scenarios. Table 5.1 and Table 5.2 provide statistics about the selected
datasets.

LibriSpeech [47] is a dataset of 1000 hours of read audiobooks from the public
domain project LibriVox [48]. The audiobooks are always read by a single per-
son, making this a single-speaker dataset. The audiobooks are divided into short
segments of a few utterances per dataset file, with an average of 7 seconds per
file and a maximum of 30 seconds. The domain is natural, easily understand-
able, non-spontaneous speech with very little background noise. The audio books
read are all in English and may contain difficult sentence structure or names. The
dataset contains training, development and test splits, of which only dev-clean and
test-clean are used. Since most of the audio is contained in the training split, the
selected splits each contain 5.4 hours of audio.

Since the transcriptions provided by LibriSpeech only include the text and
speaker labels, a second source is used that provides timestamps for utterances
and words. Jemine [49] provides precomputed alignments for the words in the

31

5. Evaluation

Dataset
Name #Files

Total
File
Len.

Avg.
File
Len.

Avg.
Segment
Len.

#Spk.
Avg.

#Speakers
per File

in h in s in s
LibriSpeechdev 2703 5.4 7.18 1.85 40 1
LibriSpeechtest 2620 5.4 7.42 1.80 40 1
AMICorpusdev 18 9.7 1933 3.64 21 4
AMICorpustest 16 9.1 2039 4.10 16 3.94
Monologuedev 437 4.8 39.68 3.64 40 1
Monologuetest 441 4.9 39.77 3.65 40 1
Conversationdev 356 4.0 40.48 3.72 40 4
Conversationtest 329 3.8 41.12 3.78 40 4
Conversation*dev 247 3.4 50.15 5.37 40 4
Conversation*test 229 3.4 52.76 5.63 40 4

Table 5.1: First part of the overview of development and test sets of the datasets
used for the parameter selection and evaluation. The asterisk (*) for the
last two rows indicates that the dataset was sampled with overlapping
segments.

Dataset
Name

Avg.
Words
per min.

Speech Silence Overlap
vs. Total

Overlap
vs. Speech

in % in % in % in %
LibriSpeechdev 168.29 83 17 0 0
LibriSpeechtest 162.17 84 16 0 0
AMICorpusdev 192.76 78 22 11 14
AMICorpustest 192.74 80 20 12 15
Monologuedev 180.27 92 8 0 0
Monologuetest 172.30 92 8 0 0
Conversationdev 180.82 92 8 0 0
Conversationtest 171.97 92 8 0 0
Conversation*dev 204.17 98 2 9 9
Conversation*test 191.74 98 2 8 9

Table 5.2: Second part of the overview of development and test sets of the datasets
used for the parameter selection and evaluation. The asterisk (*) for the
last two rows indicates that the dataset was sampled with overlapping
segments.

32

5.1. Datasets

LibriSpeech dataset, which can be used to provide annotation ground truth for
evaluation. They achieve this by using the Montreal Forced Aligner [50], which
uses learned pronunciation dictionaries to map words to phonemes in the audio.
They then recover the timestamps of the detected phonemes and, in turn, the
words.

The AMI Corpus [39] is a multi-speaker dataset containing 100 hours of meeting
conversations. The conversations average about half an hour in length, but can
be over an hour in some cases. There are several sets of recordings with different
microphones. The specific audio used is a mix of the headset microphones worn by
the participants. There are four speakers per conversion, but for one file in the test
set there are only three speakers. The conversations are in English and include
discussions about work projects with roles for each speaker and naturally occurring
meetings with varying topics. While there may be longer segments with only one
speaker speaking, these contain natural interjections, but there are also segments
of discussion with natural overlapping speech in rapid succession. Training, devel-
opment, and test splits are provided, with the development and test sets totaling
9.7 and 9.1 hours of audio, respectively. The ground truth for each conversion
consists of transcriptions with speaker labels and word-level timestamps.

For both datasets, the training data is not used during the evaluation to avoid bi-
ased results, as some of the foundation models used were trained on these datasets.
While the development sets were used during pipeline development and parameter
selection, only the test sets are used for evaluation.

The datasets labeled as Monologue and Conversation are sampled from utter-
ances of the LibriSpeech dataset. Each dataset file in Monologue contains 10
utterances of the same speaker, concatenated with small pauses of 0.3 seconds
between utterances. Since the LibriSpeech dataset files contain at most a few ut-
terances, this dataset can provide insight for longer single-speaker scenarios. For
Conversation, 4 speakers per file were used with round-robin scheduling to ensure
a speaker change after each utterance. For Conversation*, again 4 speakers were
used, but with a pause length of -0.5 seconds, meaning that there is no silence
between utterances and they overlap. The Conversation datasets provide insight
into multi-speaker scenarios without speech overlap and scenarios with overlap
that are not as long as the AMI Corpus files. Note that Conversation* does not
include interjections, only interruptions and implicit speaker changes.

The actual pause length and overlap in the generated data do not exactly match
the values of 0.3 seconds and -0.5 seconds because there is some inaccuracy in the
alignment of the LibriSpeech dataset. These values were chosen to feel like a
natural pause length between speakers and to have a slight overlap, as if speaker
A is interrupted by speaker B, based on randomly chosen samples. Each dataset

33

5. Evaluation

split contains only sampled utterances from its respective split in LibriSpeech.
For reasons of consistency between sampled utterances, pauses shorter than the

absolute value of the selected pause length in the original dataset file are ignored
and these neighboring utterances are merged. This results in longer utterances
on paper for the sampled datasets compared to the original LibriSpeech dataset
and also for the Conversation dataset with overlap compared to the other sampled
datasets. Another observation is that the sampled datasets contain less silence
around the utterances than LibriSpeech and the AMI Corpus. This is mainly
due to untrimmed silence at the beginning and end of the original dataset files
and speaker pauses between utterances that occur in natural conversation and are
not considered in the sampling. This is also partly an effect of merging adjacent
utterances with short pauses during sampling.

5.2. Evaluation Setup
The pipeline is evaluated alongside three other methods that serve as comparisons
for the different goals defined in the introduction. While the other methods are
partly offline methods or handle data loading themselves, the pipeline can only
process data streams. Therefore, these streams are simulated by loading audio
files and providing the data to the pipeline in chunks. Each chunk has the length
of the pipeline’s step size, but any other length could be used, as the pipeline’s
audio buffer would simply buffer the data until there is enough data to process in
one step. A silence padding is added during the simulation to simulate the idle
state of a real input device receiving audio. This way, the pipeline receives the
first chunk of audio containing speech in the same way as later steps, rather than
starting with a large chunk at the beginning.

The various pipeline processing steps have parameters that need to be configured
for optimal performance. This section first calculates the pipeline parameters and
then describes the various other methods. All parameter selection calculations
and the various evaluations are performed on an Intel Core i9-9900K CPU and
a NVIDIA GeForce RTX 4090 GPU with 24 GB of VRAM. All methods use the
same Docker environment described in section 4.6.

Parameter Selection: Speaker Recognition
In section 4.6, three speaker embedding models and two clustering algorithms are
listed. To determine which model and algorithm is best suited for the pipeline,
the clustering performance is evaluated for the different embedding models and
algorithms. Based on the ground truth annotation of the development set of the

34

5.2. Evaluation Setup

AMI Corpus, speaker embeddings are extracted for each utterance present. As in
the pipeline, the embeddings are clustered online with the respective clustering
algorithm and the speaker segments are mapped to global speakers. In addition,
a second set of utterances and embeddings is obtained by detecting silences in
utterances originally labelled as speech and removing the silences to create shorter
utterances. To detect silences, the voice activity detection of Silero VAD [51] is
used. These two sets of embeddings are marked as long and short utterances in
Figure 5.1.

0.4 0.5 0.6 0.7 0.8 0.9
Threshold

10

20

30

40

50

60

70

Di
ar

iza
tio

n
Er

ro
r R

at
e

(in
 %

)

Comparison of clustering methods
Online Agglomerative Clustering
DBSTREAM
long utterances
short utterances

Figure 5.1: A comparison of clustering methods with different clustering threshold set-
tings. The values shown are the mean DER and the standard deviation of the
resulting local speaker annotation with pyannote/wespeaker-voxceleb-
resnet34-LM used as the speaker embedding model. The x-axis offset is
only a visual separation for better readability, and the thresholds evaluated
are the same for all methods.

Figure 5.1 shows the mean DER for different clustering thresholds. The error
bars indicate the standard deviation around the mean. The data are shown for
the combinations of both clustering algorithms with the pyannote/wespeaker-
voxceleb-resnet34-LM speaker embedding model. The other models produce 5
to 20 percentage points worse results than the selected model for both clustering
algorithms, but otherwise show similar characteristics. Additional data for the
other speaker embedding models can be found in appendix A.

35

5. Evaluation

Comparing the respective best results for shorter and original speech segments,
the error for the longer speech segments is lower for all embeddings and algorithms.
Online Agglomerative Clustering shows a minimum around a clustering threshold
of 0.5 to 0.55 for the original segments and 0.6 to 0.7 for the shorter segments. For
DBSTREAM, the minimum error is higher at 0.8.

DBSTREAM is consistently outperformed by the former algorithm at its best
clustering thresholds, both in terms of mean and variance. While Online Ag-
glomerative Clustering has the clustering threshold as its only parameter, the
DBSTREAM algorithm has more parameters, but the influence of the other pa-
rameters is insignificant compared to the clustering threshold. Therefore, Online
Agglomerative Clustering is selected with a clustering threshold of 0.5.

Parameter Selection: Streaming Speaker Diarization
The streaming speaker diarization includes the following parameters: limit-
er gain and limiter threshold of the audio pre-processing, as well as step
size, window length, lag, the diarization threshold and the confidence
threshold. They all contribute to the local speaker diarization. To find good val-
ues for these parameters, the classification accuracy into speech and non-speech
segments is compared to the ground truth for different parameter settings. We
make the assumption that pipeline parameters that show good speaker classifi-
cation for the first speaker will also lead to good classification for an overlapping
second or third speaker. Although the local speaker diarization contains individual
information for speech and non-speech segments of each local speaker, the speech
activity over all speakers is used because the diarization error is more volatile due
to the activity of changing and concurrent speakers, leading to more ambiguous
results.

Another constraint is that the parameters must be chosen so that the compu-
tation of the pipeline steps is fast enough to run in real time. This is discussed in
more detail as part of the evaluation results in section 5.3. The parameters that
have a large impact on the runtime are window length and step size. They
determine how often and how much data is processed. While a high confidence
threshold can also result in more reprocessing, this parameter is configured to only
affect low confidence spikes that are few and short in duration, resulting in a low
impact on runtime.

To evaluate different settings of these parameters, the streaming speaker di-
arization pipeline step is run on a subset of the AMI Corpus. Then, the speaker
probabilities are grouped into speech and non-speech categories by their ground
truth labels and classified by the diarization threshold. Grid search is used to

36

5.2. Evaluation Setup

find good parameters by evaluating the classification accuracy for each combina-
tion of parameter values and iteratively refining the search space. Since there are
many parameters that are difficult to optimize on their own, many combinations
must be tested, which is time-consuming for large datasets. This subset contains
30 randomly selected 60-second audio segments from the development set, kept
fixed for all parameter settings. This is a balance between enough test data to get
meaningful results and a practical runtime for parameter selection.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Segmentation Parameter - Window Length

window_length 1s (auc=0.867, x=0.61)
window_length 2s (auc=0.906, x=0.64)
window_length 3s (auc=0.893, x=0.66)
window_length 4s (auc=0.891, x=0.68)
window_length 5s (auc=0.857, x=0.68)

Figure 5.2: Receiver Operating Characteristic (ROC) for different window lengths show-
ing optimal values for the diarization threshold parameter. Both too long
and too short windows produce suboptimal results. The respectively optimal
threshold value x is marked on each curve.

Figure 5.2 shows the receiver operating characteristic (ROC) curves for different
window lengths and a fixed step size of 0.3 seconds. They plot the ratio of cor-
rectly classified speech segments (sensitivity) to the ratio of incorrectly classified
non-speech segments (specificity) for the full range of diarization thresholds. For
each curve, the threshold that maximizes the sum of sensitivity and specificity
is highlighted. The result for window lengths of one to three seconds is largely
homogeneous, while window lengths below and above this are less accurate over a
wide range of thresholds, as indicated by the reduced area under the curve (AUC).
While too short windows do not provide enough audio information for the segmen-
tation model to accurately distinguish speech from non-speech, too long windows
are more prone to speaker permutation errors.

37

5. Evaluation

Note the sharp increase in sensitivity for the upper right corner, which means
that almost regardless of the threshold and other parameters chosen, there are
about five percent of misclassified speech segments. This means that about five
percent of the audio labeled as speech in the dataset will be classified as non-
speech by the segmentation model no matter what. This is most likely due to
errors in labeling in the dataset or different definitions for margins around speech
and speech pauses.

The other parameters are more stable, yielding optimal results over a wider range
of values. There are several reasons for this. First and foremost, some parameters
only mitigate extreme events, such as unusually quiet utterances or segments with
low diarization confidence, which are rare and therefore not equally represented
in the dataset. Since these are underrepresented, the parameter evaluation is less
sensitive to them. In these cases, the parameter evaluation mainly shows that
the chosen parameters are also good for the majority of the data that does not
contain the extreme events. Second, the chosen metric does not directly evaluate
the quality of the overlapping speakers, but only the overall speech activity. This
means that the effect of some parameters on the quality of speaker probabilities in
overlapping cases is not measured. Specifically for the lag parameter, the increased
duration means that the processed speaker probabilities are selected from the
center of a speech segment rather than the edges, leading to more pronounced
speech activity and fewer speaker permutation errors.

The limiter gain is set to 20 dB with the limiter threshold set to -1 dB,
amplifying quiet speech segments and bringing all audio inputs to a similar level.
The step size is set to 0.3 seconds, with a window length of 2 seconds based on
the results from Figure 5.2. The duration of lag is also set to 0.3 seconds to allow
a full time step of overlap between aggregated segments, but no more to keep the
latency low. The confidence threshold is set to 0.7, which is lower than the
confidence level normally observed, so that only strong cases with low confidence
are recalculated. The diarization threshold is set to 0.64, which is the optimal
threshold based on the results of Figure 5.2.

Parameter Selection: Speech Recognition
Lastly, for the speech recognition step there is the size of the Whisper model and
the no speech probability parameter to consider. While smaller models provide
faster inference leading to shorter latency, they provide less accurate transcriptions.
The chosen model size is large-v3.

Whisper provides an estimated probability for each processed segment indicat-
ing whether it contains speech or not. This is used to mitigate hallucination in

38

5.2. Evaluation Setup

Figure 5.3: ROC curves for different values of the no_speech_prob parameter of Whisper
models. Only select models are shown for readability, as the larger models all
show high accuracy in this speech detection test. Best results are achieved
with large-v3 at a threshold of 0.11.

the model. To determine a good value for this parameter, speech recognition is
performed on speech and non-speech segments of the development set of the AMI
Corpus. Similar to Figure 5.2, the estimated speech probabilities of the Whisper
transcription are then grouped by ground truth labels and classified with the no
speech probability as a threshold. In Figure 5.3 the ROC curves for different
values of the no speech probability parameter are shown. This does only show
information about the accuracy of detecting any speech and not the quality or
accuracy of the transcriptions. Larger Whisper models and models that are not
English-only have a better accuracy for speech detection, with large-v3 having
an optimal threshold at 0.11 for the no speech probability parameter.

Baseline Methods
To compare the results of the proposed pipeline with existing methods, the existing
methods are also implemented and evaluated on the various datasets. These three
methods are used as baseline methods. However, they do not necessarily provide
the same functionality as the proposed pipeline, such as missing speaker informa-
tion or low latency processing. A one-to-one comparison may not be possible, but

39

5. Evaluation

only for certain aspects.
The first is the previous method used in [5], which consists of online voice

activity detection and then utterance-based speech recognition usingWhisper. The
method implemented for this experiment first performs voice activity detection on
the entire dataset file. The voice activity detection system used is Silero VAD [51],
which provides real-time timestamps for voice activity. After the utterances are
detected, speech recognition is performed. This method does not provide any
information about the speaker.

Additionally, the transcription first methods mentioned in section 3.2 are im-
plemented. So the second method is modeled after WhisperX as described in
its GitHub repository [36], which includes the added speaker diarization. For a
given dataset file, a single-speaker transcription is created using Whisper, and
the speaker diarization is created using pyannote’s diarization pipeline. Then the
timestamps of the transcribed utterances in the Whisper transcription are used
to find the best matching speech segments in the diarization output. The words
in the utterance are then assigned to the speaker label given by pyannote. This
method is denoted as Whisper+Lookup during the evaluation.

Finally, the method by Lyu et al. [13] is implemented. Similar to the previ-
ous method, utterances are extracted using the Whisper transcriptions, but then
embeddings are computed based on the time segments of the utterances. These
utterances are then clustered one at a time using the same clustering algorithm
used in the proposed pipeline. The resulting label after each individual clustering
output is assigned to the words in the given utterance. This method is denoted as
Whisper+Clustering during the evaluation.

While the second method is also originally computed offline, the first and third
methods are originally online methods, but are now implemented as offline meth-
ods. However, the first and third methods are implemented in such a way that
they do not take advantage of information that would not be available at a given
time step. In this way, the diarization and transcription output of the systems
does not change, only the output latency would be different, as the results are
provided at the very end of the computation.

5.3. Results

The pipeline is evaluated in terms of processing time and computational resources
required, as well as diarization and transcription quality. The metrics used are
defined in the section 2.5.

40

5.3. Results

5.3.1. Computational Performance Analysis
The goal of the computational performance analysis is to show whether the pro-
posed pipeline meets the real-time and low-latency requirements of the robotics
context. In addition, the computational resources consumed by the pipeline are
measured. The processing time for the pipeline and its substeps is measured dur-
ing the computation for the file EN2002a of the AMI Corpus test set. The file
contains 36 minutes of audio with speech overlap present, which is sufficient to
measure the processing time for all steps of the pipeline. The processing time is
measured by comparing timestamps before and after a pipeline step using Python’s
time.perf_counter_ns(), excluding the overhead cost of the measurement itself.
RAM and VRAM usage by the Python process is also measured during this ex-
periment.

0 50 100 150 200 250 300 350 400
Duration (in ms)

Audio
Preprocessing

Audio
Buffering

Streaming
Diarization

Utterence Audio
Aggregation

Speech
Separation

Speaker
Recognition

Speech
Recognition

Updating Global
Transcription

Average Duration of Pipeline Steps
with utterance n=762
without utterance n=6390

Figure 5.4: The average processing time for the pipeline steps is displayed. The results
are grouped according to whether an utterance was completed during the
computation of a time step. For steps with a completed utterance, the in-
ference time of the speech separation and recognition models dominates the
computation.

Figure 5.4 and Figure 5.5 show the average processing time for each pipeline
step or substep of the streaming speaker diarization step. The data is grouped
according to whether the result of the diarization step at a given time step con-
tains new completed utterances or not. The aggregation, separation and speaker

41

5. Evaluation

recognition steps show a duration of zero seconds for time steps without new com-
pleted utterances, because these steps are only executed when there is a newly
completed utterance. Pre-processing and buffering the audio input and updating
the global transcription do not differ in the processing time difference between time
steps with and without new completed utterances. For steps with an utterance,
the processing time is dominated by the speech separation and speech recognition
steps due to the inference time of the larger models.

0 5 10 15 20 25 30 35 40
Duration (in ms)

Audio
Preprocessing

Audio
Buffering

Segmentation
Inference

Aggregation

Confidence
Decision

Recalculation

Diarization

Utterance
Selection

Clean Up

Average Duration of Streaming Speaker Diarization Steps

with utterance n=762
without utterance n=6390

Figure 5.5: The average processing time for pipeline steps during the streaming speech
diarization is displayed. The results are again grouped according to whether
an utterance was completed during the computation of a time step.

For streaming speaker diarization, the time steps with new completed utter-
ances require more processing time. Since speaker changes are the main cause of
low diarization confidence, there can often be a recalculation of speaker probabil-
ities that leads to an utterance ending, so the processing time is increased by the
recalculation. Figure 5.5 shows that the following two substeps also have higher
processing times with new completed utterances, due to processing a longer seg-
ment than the normal step size. Note that the utterance selection for time steps
without a completed utterance is not zero, because there is still processing needed
to detect the active utterances.

The streaming speaker diarization step is dominated by the audio pre-processing.
The pre-processing is currently implemented in Python, which is slow because

42

5.3. Results

each frame depends on the previous frame, but could be improved with a faster
implementation in C. A matching implementation of the pre-processing in C is
measured to be over 50 times faster and could be called from the pipeline via
Python bindings.

The average pipeline processing time for time steps with no new completed
utterances is 110 ms and 806 ms for time steps with new completed utterances.
The former is significantly lower than the chosen step size of 300 ms. Furthermore,
the total average processing time is 184 ms. This means that, on average, the
pipeline takes less processing time than the duration of the input audio, thus
meeting the real-time requirement. For the pipeline latency, the 806 ms is the
more relevant value, because the delay is calculated between the time of audio
input and when the output data is generated, which is only the case for time
steps with a new completed utterance. The duration of 806 ms is larger than
the step size, which means that it creates a backlog for the next time steps. In
most cases, this backlog is irrelevant because the next utterance does not occur
immediately and the backlog can be recovered after a few seconds due to the faster
than real-time processing for time steps without new completed utterances.

While the processing time for time steps without new completed utterances has
low variance over all measured time steps, the processing time with a completed
utterance highly depends on the length of the processed utterance. In the analyzed
file, the step with the longest processing time had a duration of close to six seconds,
but these extreme values are only reached by rare outliers.

During the latency evaluation, an unexplained error was observed that causes a
sudden increase in processing time for all steps of the pipeline after processing a
part of the dataset file. This error occurs after about 12.5 seconds, leaving the first
part unaffected. Since the increased processing time has a significant impact on
the backlog, only the unaffected and explainable first part is used for the latency
evaluation. The increase in processing time affects all processing steps equally
and therefore does not change the main evaluation results. Solving this problem
would lead to different results for the parameter selection, as lower step size
and lag could be chosen, but these parameters have only a small impact on the
quality. The diarization and transcription results are not affected by the increased
processing time, only the latency.

The left graph in Figure 5.6 shows the simulated backlog that would normally
accumulate if audio were delivered and processed in real time instead of as quickly
as possible. As mentioned earlier, in most cases there is no backlog, or it can be
recovered in a short time. While there are many spikes of backlog, about 74% of
the time steps have no backlog, and another 5% of the time steps can be recovered
immediately during the next step.

43

5. Evaluation

0 200 400 600
Time (in s)

0

1

2

3

4

5
Ba

ck
lo

g
Le

ng
th

 (i
n

s)

Simlulated Backlog in Pipeline

2 4 6 8 10 12 14
Word Latency (in s)

0

10

20

30

40

50

60

Ab
so

lu
te

 Fr
eq

ue
nc

y

Histogram of Word-Level Latency

Figure 5.6: Left: Length of the pipeline backlog during the processing of EN2002a of
the AMI corpus test set.
Right: Word-level latencies of transcribed words. The latency is influenced
by the backlog from a previous time step, the length of the detected utter-
ances, as well as the artificial and computational latency of the pipeline.

Word-level latency measures the time between when a word is spoken and when
the transcription and speaker information is available in the pipeline output. The
worst example of pipeline latency would be the first word of a long utterance.
The pipeline would wait until the utterance is complete, which is almost the en-
tire duration of the utterance plus the artificial latency (step_size + lag = 0.6
seconds) of streaming speaker diarization. Finally, the computational latency is
added as the time it takes for the output to be provided by the pipeline. In ad-
dition, the backlog from a previous time step also contributes to the increased
latency. This total latency is measured as the difference between the timestamp
of the end of a detected word and when it is reported by the pipeline with the
simulated backlog from before.

The right graph in Figure 5.6 shows much longer latencies than just computa-
tional latency, which is often the only factor reported in other work. Our latency
measure more accurately represents the amount of time the audio information was
available and could have been processed, rather than a reaction time after an ut-
terance was completed. The majority of word-level latencies are between 1 and 6
seconds. Most of the detected utterances have a duration of less than 4 seconds, to
which an additional ∼1.4 seconds must be added for artificial and computational
latency. Assuming that words are generally evenly distributed in an utterance, this
results in words with latency values ranging from ∼1.4 to ∼1.4 plus the utterance

44

5.3. Results

length, which in the majority of cases explains the word-level latency shown. In
rare cases, increased latency occurs when several long processing steps occur in
close succession, but most of the longer latencies are due to long utterances that
are not further broken down into smaller utterances.

Name Size
pyannote/segmentation-3.0 5.91 MB

pyannote/wespeaker-voxceleb-resnet34-LM 26.6 MB
MossFormer2 223.48 MB

Systran/faster-whisper-large-v3 3.09 GB
runtime environment ∼650 MB
data during inference ∼1 GB

Table 5.3: description

Table 5.3 shows the VRAM usage of the pipeline. In total, about 4 GB of
VRAM is occupied by the loaded models and their runtime environments, and an
additional 1 GB of VRAM is required for the inference data. This does not include
the memory required for inference of the speech separation model, MossFormer2,
which may require more memory than the GPU can provide for long utterances.
The input length for speech separation inference had to be limited to less than
7.63 seconds to avoid out-of-memory errors in the GPU. In these cases, the unsep-
arated audio was used for further pipeline steps as if the target speaker had been
extracted. Although the speech separation step can occupy all of the VRAM, this
is only for the short duration of the inference itself. Thus, most of the time, at
most 5 GB of VRAM is needed for the pipeline. Outside of the GPU, about 2.2
GB of RAM is needed.

5.3.2. Diarization and Transcription Quality Analysis
To evaluate the diarization and transcription quality of the pipeline, the metrics
diarization error rate (DER), word error rate (WER), word diarization error rate
(WDER) and concatenated minimum-permutation word error rate (cpWER) are
computed on each file of the respective test split of a dataset. After each file, all
buffers are cleared and the pipeline is reset to not carry over information from
the previous file. The error rates are reported as averages over all files. Since the
files are of different lengths, they must be weighted accordingly. There are two
options, weighting by the total audio or the total speech length of a file. The
error difference between both options is negligible, for example the WER of the
pipeline on the LibriSpeech test set is 3.88% when weighted by total audio length

45

5. Evaluation

and 3.78% when weighted by total speech length. In order not to overestimate the
diarization and transcription quality of the methods, the values reported below are
always weighted by the length of the audio, as this showed the worse error rates
in most cases of all methods.

Single-Speaker Scenario

The quality of diarization and transcription is evaluated in three steps, which are
aligned with the research goals stated in section 1. For the first and third steps,
the pipeline is compared to alternative methods described in section 5.2, which
serve as a baseline even though they may not be comparable in all aspects. The
first goal was to match the transcription quality of a previous method for single-
speaker speech. The method used as a baseline is a combination of Silero VAD and
Whisper, which does not provide speaker information and therefore solves only a
subset of the tasks that the proposed pipeline attempts to solve.

To get an accurate comparison, the pipeline could be modified to perform only
voice activity detection instead of full diarization, or the clustering threshold could
be raised so that all speech is assigned to the same speaker cluster. However, this
would result in two slightly different pipeline architectures or two different sets
of selected pipeline parameters, skewing the comparison. It would omit potential
errors in assigning words of speech from one speaker to two detected speakers in
the form of speaker confusion. Therefore, the experiment is treated as a multi-
speaker experiment with only one true speaker in the ground truth, allowing the
proposed pipeline to make speaker confusion errors. The output of the baseline
method is labeled as coming from a single speaker, which means that the baseline
cannot make speaker assignment errors on the single-speaker dataset.

Figure 5.7 shows the evaluation results for the proposed pipeline and the base-
line method on the LibriSpeech and Monologue datasets. The values shown are
the mean for the different metrics, and the error bars are the standard deviation.
For all metrics, the results of the proposed pipeline are very similar to the baseline
method. The diarization error rate for the proposed pipeline is higher than the
baseline, partly due to differences in voice detection sensitivity. The voice activ-
ity segments produced by Silero VAD are closer to the expected segments in the
ground truth, while the proposed pipeline includes more margin around utterances
due to more gradual changes in speaker probabilities, which can lead to merged
utterances. Although this affects word-level latencies, it does not necessarily de-
grade transcription quality, but is shown as an additional diarization error in this
duration-based metric. However, there are occasional cases of short utterances
where the segmentation threshold is too high to capture the utterance, meaning

46

5.3. Results

DER WER WDER cpWER
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Er
ro

r R
at

e
(in

 %
)

LibriSpeech

DER WER WDER cpWER

Monologue
Pipeline (ours)
SileroVAD+Whisper

Figure 5.7: Evaluation results for single-speaker datasets are shown for the proposed
pipeline and a baseline method. The metrics show similar values between
both methods.

that the words of these utterances are missed. Similarly, some of the diarization
error is caused by speaker confusion, where some of the sampled utterances were
different enough to be detected as two separate speakers. These differences are due
to variations in speech expression, where the characteristics of the voice change.

The word error rate for both methods is about 3 to 4%, which is limited by the
transcription model used, Whisper, which has a WER of 3.33% on the LibriSpeech
test set. Common errors include misspellings of names, differences between British
and American spelling, contractions, abbreviations and rarely used vocabulary,
which are not covered by the text normalization. The average word diarization
error rate for the proposed pipeline is low, with about 1% of words incorrectly
assigned to an additional speaker. As mentioned above, the transcribed words for
the baseline are all assigned to one speaker, so the WDER is zero and the results
for the cpWER are not different from the WER. The cpWER for the proposed
pipeline is slightly worse than the WER, at about 5%, because some of the correctly
recognized words were assigned to the wrong speaker.

Multi-Speaker Scenario without Overlapping Speech

The next research goal was to provide speaker information for the generated tran-
scriptions. To test this, the proposed pipeline is evaluated on the Conversation
dataset without speaker overlap. Figure 5.8 shows these results in the same way as
the previous figure. Comparing the results of the proposed pipeline on the mono-
logue results with the multi-speaker results, the WER increased by 0.75 percentage
points to 4.71%, remaining relatively similar for both methods. Meanwhile, the

47

5. Evaluation

DER WER WDER cpWER
0

10

20

30

40

Er
ro

r R
at

e
(in

 %
)

Conversation
Pipeline (ours)

Figure 5.8: Evaluation results are shown for the proposed pipeline on the generated
multi-speaker no-speech-overlap dataset Conversation. While maintaining a
relatively low WER, speaker assignment errors are increased, resulting in an
increased error rate in the multi-speaker WER metric.

WDER increased from 1.79% to almost 15%, showing that a significant proportion
of words are misclassified. This can also be seen in the confusion component of
the DER, which accounts for 75% of the total DER, doubling the DER compared
to the monologue dataset, which is now about 20%. Since the cpWER is a com-
bination of diarization and transcription error, this increased diarization error is
also reflected in the cpWER, which has risen to about 28%.

The increased speaker confusion error can be caused by local speaker diarization
or speaker recognition. A new error for the multi-speaker scenario is that some
utterances are not split at a speaker change, resulting in a large utterance that can
only be assigned to one speaker. This merged utterance can either be assigned to
one of the speakers of the contained utterances or to a new speaker that is different
from any of the speakers. In the latter case, the entire utterance contributes to the
error, but in the former case, only the misassigned part contributes to the error.
The origin of the error is the local speaker diarization from the segmentation model,
which did not detect the speaker change and continued to assign the same local
speaker. A workaround would be to increase the segmentation threshold to get
finer grained, shorter utterances and let the speaker recognition handle the speaker
change. Alternatively, the segmentation output for the local speaker diarization
needs to be improved to better capture these speaker changes or individual speaker
probabilities.

Most of the speaker confusion errors are due to erroneous assignments during
speaker recognition. Two common errors are either assigning an utterance to the

48

5.3. Results

same speaker as the immediately preceding utterance, or assigning an utterance to
a completely new speaker, even though the speaker has already been established
by a previous utterance. The cause for this is that the clustering threshold is set
too low or too high, depending on the case, but the underlying reasons are speaker
embeddings that do not capture speech characteristics well enough to distinguish
between speakers or to be clustered correctly. In addition, the former case can
have a lasting effect on subsequent utterances, as the speaker cluster centroid
is updated based on both speakers, making it more likely to be the assignment
winner for utterances of both speakers. While this is more likely to happen on
the first utterance of each speaker, it can also happen after both speakers have
been established. In both cases, no specific speaker or speaker combination could
be identified that consistently causes the error, meaning that it is not due to the
general characteristics of a speaker’s voice, but to the variations in expression
during the utterance.

Lastly, the reason for the increased standard deviations is that the diarization
and transcription outputs for some files contain no errors at all, and some files con-
tain multiple errors, some of which are caused by previous errors in speaker recog-
nition. While the overall WER remains low, the increased difficulty of multiple
speakers causes errors in speaker assignments due to imperfect speaker recognition.
In some cases, this results in degraded multi-speaker error rates.

Multi-Speaker Scenario with Overlapping Speech

For the third goal of improving speech recognition on overlapping speech, the
proposed pipeline and two baseline methods are evaluated on the multi-speaker
datasets with overlapping speech Conversation with Overlap and AMI Corpus.
The first baseline method is Whisper combined with speaker lookup from a pyan-
note diarization and the second baseline method is Whisper with speech segment
clustering. Note that a direct comparison is difficult due to the lack of similar
methods, as explained in section 5.2

Figure 5.9 shows that overall, no method provides good multi-speaker tran-
scription results, as all methods have cpWER scores averaging between 30 and
60%. Whisper with speaker lookup has the lowest errors for most metrics on both
datasets, which is to be expected, since it also has access to more information than
the proposed pipeline and the other baseline method. The standard deviations are
lower for results on the AMI Corpus dataset because each file is much longer,
so sections of different levels of difficulty in the files compensate for each other.
Also, since speaker recognition errors can affect subsequent diarization efforts, the
methods are less likely to produce perfect results on longer files where these effects

49

5. Evaluation

DER WER WDER cpWER
0

20

40

60

80

Er
ro

r R
at

e
(in

 %
)

Conversation Overlap

DER WER WDER cpWER

AMI Corpus
Pipeline (ours)
Whisper+Lookup
Whisper+Clustering

Figure 5.9: Evaluation results for multi-speaker datasets with overlapping speech are
shown for the proposed pipeline and two baseline methods. The additional
complexity of overlapping speech leads to an increased error compared to
the non-overlapping datasets. No method provides good multi-speaker tran-
scriptions with error rates between 30 to 60%.

are more likely to occur.
Comparing the normal Conversation dataset with the Conversation dataset with

overlap, the proposed pipeline shows a general increase in error rates across all
metrics of 10 to 20 percentage points. For the Conversation dataset with overlap,
76% of the diarization error comes from the speaker confusion component, while for
the AMI Corpus dataset, the missed detection and speaker confusion components
are equally high. A higher proportion of missed recognition also means that more
words are missed in the transcription, which can be observed in the significantly
higher WER.

While many of the previously discussed error cases remain, overlapping speech
and the speech separation step add additional complexity and potential sources of
error. In contrast to the previous datasets, the conversations in the AMI corpus
contain, on the one hand, longer sections of utterances by one speaker, which often
contain short interjections, and, on the other hand, sections with many speaker
changes in short succession. Most of the short interjections like ”um” or ”hmm”
are already missed by the diarization step, which may be due to missing labels
in the training data used to train the segmentation model. In addition, these
interjections can be easily misspelled, such as ”okay” instead of ”’kay”, leading to
increased speech recognition errors.

In the case of overlapping speech, the proposed pipeline attempts to create iso-
lated audio by separating the speech of different speakers. This is not always

50

5.3. Results

successful, which can lead to duplicate transcriptions if the wrong speaker is iden-
tified as the target, or missing transcriptions if only parts of the utterance are
separated or are noisy due to artifacts from the separation model. Unseparated
speech also increases the likelihood of speaker confusion errors, not only for that
utterance, but also for subsequent utterances.

Figure 5.10: An example of the proposed pipeline successfully transcribing overlapping
speech from the Conversation with Overlap dataset file 222. The words of
the overlapping utterance are still correctly recognized and assigned to the
correct speaker.
BLUE: And as soon as I’ve had my coffee and oatmeal
ORANGE: I’ll (I will) take him to the room of the great knife and patch
him
ORANGE: Why should one not explore everything and study everything
GREEN: What I say is altogether on your own account
RED: In short, he becomes a prominent figure in London society
RED: And if he is not careful, somebody will say so
BLUE: When first they entered the throne room, they tried to be as
haughty and scornful as ever
Note that the the second utterance contains an error due to a contraction
and the third utterance was assigned to the wrong speaker.

The introduced speech separation step cannot reliably handle the additional
complexity of overlapping utterances. Nevertheless, there are examples where
speech separation and the other pipeline steps work well. Figure 5.10 shows an
excerpt from file 222 of the Conversation with Overlap dataset. There are two

51

5. Evaluation

errors in this excerpt, one utterance is assigned to the wrong speaker and ”I will”
was transcribed as ”I’ll”. Note that since the utterances in the dataset are sampled,
they have no semantic coherence between each other. Nevertheless, the overlapping
words between the green and red speaker and the overlapping words between the
red and blue speaker are correctly separated, assigned to the correct speaker, and
correctly recognized despite the overlap. While the baseline methods are able to
provide the transcriptions of the overlapping words in this example, both make
mistakes in assigning them to the correct speakers. In the case of the red-to-blue
overlap, their direct Whisper transcription added the words ”when first” to the
end of the red utterance, resulting in the assignment error, but there are also cases
where some of the overlapping words are simply omitted.

Figure 5.11: An example of transcriptions of overlapping utterances from the file
EN2002c of the AMI Corpus dataset. Although not error-free, it shows
that the pipeline successfully produces transcriptions for two fully overlap-
ping utterances. Meanwhile, the baseline methods fail because they drop
words during the overlap.

As a second example, Figure 5.11 shows the transcriptions for all methods of
an excerpt from the AMI Corpus dataset file EN2002c. The orange utterance in
the reference is fully overlapping with the blue utterance. The proposed pipeline

52

5.3. Results

recoveres most words, only omitting some interjections and failing to continue with
the correct speaker during the overlap. Apart from speaker assignemnt errors,
both baseline methods only produce sequential words The first baseline method is
entirely dropping the second halve of the first utterance and the second baseline
method drops some words and assigns zero length durations to words at their
detected speaker change.

Omitting words in case of overlapping speech is a common issue with the direct
transcription from Whipser. In cases of less extreme overlap, it is common to
squeeze the timestamps of the words at the end and beginning of the overlapping
utterances to create seemingly non-overlapping transcriptions. Whisper groups
words in segments, which are similar to utterances, but often do not exactly match
the correct moment for the speaker change, which leads to the speaker assignment
error in the first example. The Whisper model is intended to transcribe speech
independend of speakers and is not incentivized during training to accustom sepa-
ration of words by their speaker. Additionally, the training data may not include
many examples of overlapping speech or interjections, as these may not be desired
in trnascriptions for general use cases. Therefore, the Whisper transcription on its
own or as the basis for further processing steps is due to its design and training
not able to fully to solve the challange of speech recognition of overlapping speech.

Overall, the proposed pipeline is able to provide transcriptions with speaker
information for single and multi-speaker scenarios, although it loses some accuracy
compared to approaches that focus only on single-speaker speech. The diarization
step sometimes fails to capture short utterances such as interjections. In addition,
speaker recognition can be unreliable when a speaker’s voice changes and struggles
with overlapping speech. The latency does not yet reach the human level of less
than one second, partly due to increased processing time for longer utterances and
partly due to selected models and parameters of the pipeline. Two performance
issues have been identified that, if optimized, would allow for pipeline parameters
with shorter artificial latencies. Similarly, selecting shorter utterances would not
only result in shorter processing times for the speech separation and recognition
steps, but would also improve the overall word-level latency.

53

6. Discussion

After evaluating the performance of the proposed pipeline, this chapter discusses
the results. First, our results are compared to those of existing methods and
put into the context of robotics tasks. Then, shortcomings and future work are
discussed.

For the first method, since the diarization component for WhisperX was added
after the publication of the paper and no additional data was published, a direct
comparison is not possible. For the second method by Lyu et al. [13], WER and
WDER results as well as latency measurements are available. They also provide
WER and WDER results for the first method, which they also use as a baseline.

They test the methods on an unpublished dataset with two and three speakers
alternating. They do not report on the severity of overlapping speech, or whether
their data contains overlapping speech at all. They only state that Whisper,
which is used in their method, “can accurately segment the speech of each speaker,
even when they are speaking simultaneously” [13], which is contradictory to our
results in section 5.3.2, which show words assigned to incorrect segments or omitted
altogether. The closest data from our evaluation is the Conversation dataset, where
four speakers speak without intentional overlap.

The reported WER results are between 16% and 26% for all combinations of
two and three speakers and both methods [13], which is much higher than what we
observed during our evaluation on the Conversation dataset, which was between
3% and 5%. The authors state that they did not focus on WER, and argue that
the high WER is due to the fact that they used a smaller Whisper model to achieve
lower latency and only used minimal text normalization in the evaluation.

For the WDER, they report results between 3% and 12% for the two and
three speaker scenarios, with their method outperforming the baseline for the two
speaker scenario as a significant improvement. On the other hand, when evaluat-
ing the WDER over the cumulative word count, they show that the initial error
rate is as high as 25%, but settles down to 14% after a while, which is higher than
their previously reported error. Our proposed pipeline has a WDER of about 15%
on the four-speaker Conversation dataset with at least 23% WDER on our base-
line implementations, which is closer to the second result mentioned. The most
likely reason for these differences in evaluation results is the different data used for

55

6. Discussion

evaluation, as there are also large differences observed between the Conversation
and AMI Corpus datasets.

For latency, they report the average length of their audio buffer before the audio
belonging to the oldest transcribed segment in the buffer is processed to be 5.11
seconds, and the computational latency to be 0.13 seconds. As noted in section 3.2,
they perform speech recognition on the audio buffer at each time step, which may
contain multiple segments of Whisper transcriptions. Only when the number of
segments exceeds a threshold of three or more, the oldest segment is processed to
identify the speaker. Assuming that these segments are roughly equal in length,
the processed segment is on average 1.7 seconds long and has an average artificial
latency of 3.4 seconds in the remaining unprocessed buffer.

Compared to the proposed pipeline, this means that their method produces
shorter utterances but higher artificial latency. Although the proposed pipeline
has a much higher computational latency, averaging 0.8 seconds for transcribed
utterances, the resulting utterance-level latency of 1.4 seconds is still lower due to
the lower artificial latency of 0.6 seconds. The minimum word-level latency of the
proposed pipeline is lower, at least for short utterances, but the average word-level
latency is higher due to the overall longer utterances.

While their method is constrained by the already optimized computational time
of Whisper inference and the fact that they already use a smaller and therefore
faster model than we do, the proposed pipeline can reduce latency by selecting
pipeline parameters that produce shorter utterances through increasing the di-
arization resolution. This may have a negative impact on the ability to detect
low-confidence utterances and on the quality of speaker embeddings, since too
short utterances may not contain enough information to represent the speaker.
On the other hand, it would drastically reduce word-level latency by skipping
time that is otherwise mostly spent waiting for the utterance to be processed.
Shorter utterances also have the advantage that some models require less memory
for inference, and inference time can be reduced.

6.1. Limitations

In the evaluation, the proposed pipeline was tested in a simulated mode and three
simplifications were made. First, the audio was provided directly to the pipeline,
which in a real scenario must first be captured by a microphone, then buffered, and
then provided to the pipeline. Similarly, the latency evaluation only considers the
processing of the pipeline itself, but for interaction with a human, the processing of
a downstream task such as inference on a large language model and text-to-speech

56

6.2. Future Work

would also contribute to the response time of the system. While the latency of
recording and buffering the audio can be implemented with negligible amounts of
latency, additional processing time margins for pre- and post-processing must be
considered for real-world applications.

Second, noise suppression was not included in the proposed pipeline and its
evaluation. Noise suppression is a common pre-processing step in robotics and
could be added before or with the loudness normalization. The datasets used
are largely noise-free, but in real-world scenarios, noise from the robot and the
environment is likely to be present.

Third, there were no other programs running in the background for other robotic
tasks during the evaluation. This means that the resources listed in section 5.2
were fully allocated to the proposed pipeline. In a real scenario, computational
resources need to be shared with other foundation models on a regular basis. For
CPU utilization, this is not a problem because the pipeline is largely sequential
and can be run on a single core. A limiting factor is the GPU memory used by
the speech separation model, so that only even shorter overlapping utterances can
be processed. Distributed computing would be one solution, but this may have an
impact on latencies within the system.

6.2. Future Work

For seamless human interaction, the response time, the latency of the pipeline and
other systems to output the response, must be less than one second or, at best,
close to the average pause length of 275 ms [4] of natural conversations. This
will require further optimizations, including efficient implementation of parts of
the pipeline such as audio pre-processing to adjust loudness. Another solution
might be to use smaller and faster models, sacrificing quality for reduced latency.
This is a difficult tradeoff. For example, there are speech separation models that
run faster or use less memory, but instead of truly separating speech, they only
attenuate the different speakers, which means that speech recognition may pick
up some of the attenuated words.

Part of the latency in the pipeline comes from the step size, which can be
reduced, but at some point the processing time for each step is greater than the
step size, resulting in a permanent backlog. Backlog can be reduced or avoided by
deferring non-immediately needed processing, such as data cleanup, to later steps,
using parallelization to perform streaming speaker diarization independently of
speech separation and recognition, or dynamically increasing the step size. Offline
methods usually take advantage of batching to reduce processing time, which is

57

6. Discussion

difficult to achieve in an online system because there is usually only one time step
of data available, but in the case of backlog, multiple time steps could be batched
at once.

As the evaluation has shown, the errors in one step of the pipeline often lead
to errors in the downstream tasks. Therefore, it is important to reduce the indi-
vidual errors for each step, but also to make the pipeline robust to errors. The
baseline method Whisper with speaker lookup reduces the dependency by perform-
ing diarization and speech separation independently. However, it still depends on
precise timestamps for both steps, which introduces errors. A common approach
in machine learning is to build multi-task models. Not all steps can be combined
in an end-to-end model, for example speaker recognition requires some memory
component of all previously seen speaker characteristics to track the global depen-
dencies between utterances. PixIT [52] is another model based on the advances
of pyannote, which combines the segmentation model and speech separation to
produce both outputs simultaneously, but at the time of development the speech
separation showed the problems of too weakly attenuated words mentioned above.

In general, the pipeline can be further improved by updating the foundation
models used when alternatives become available. New models may be of bet-
ter quality, faster, or require less memory. Alternatively, models can be trained or
fine-tuned to better meet the requirements of the real-time, multi-speaker, overlap-
ping speech recognition task. For example, speech separation models are typically
trained by mixing multiple speakers into a single mixture, then applying the sep-
aration model and comparing the output to the original individual signals with a
signal-to-noise ratio metric. An additional loss function could be introduced based
on the speech recognition results on the separated outputs. This would penalize
the separation model for leaving words from other speakers in the separated out-
put and force the separation model to focus on components in the audio signal
that are important for successful speech recognition.

While the previously discussed methods directly process the input audio and pro-
vide diarization and transcription results, there are also post-processing approaches
to improve the speaker assignments of other methods. DiarizationLM [53], which
also provided the implementation for some of the metrics, is a system that prompts
large language models with the existing diarized transcript in text form with the
task of correcting words or word positions that appear incorrect. It is designed
to correct common errors in the unreliable segmentation of utterances by Whis-
per, and therefore may be of less use to systems that do not rely on Whisper
segmentation. However, it may be useful for correcting speaker assignments when
utterances are inadvertently split due to changes in the speaker’s voice.

58

7. Summary

In this thesis, a pipeline is proposed for joint speaker diarization and speech recog-
nition in real-time environments using multiple foundation models. Unlike existing
methods that use transcription-first approaches, the pipeline uses a diarization-
first approach. Instead of adding speaker information as a post-processing step,
the pipeline has access to speaker information and overlapping speech prior to the
speech recognition step. This architecture allows the pipeline to perform additional
pre-processing in the form of speech separation before the audio is transcribed. In
addition, the costly inference of large speech separation or speech recognition mod-
els can be skipped if no speech overlap or silence is detected. Because the pipeline
uses pre-trained foundation models and builds on their respective advances, both
in research and in large-scale training, it can be conveniently improved with new
state-of-the-art models as they become available.

In an evaluation, the proposed pipeline is compared to baseline methods modeled
after existing methods and tested in single-speaker, multi-speaker, and overlapping
multi-speaker settings from the LibriSpeech and AMI Corpus datasets. For the
single-speaker scenario, the pipeline produces accurate diarization and transcrip-
tion results with a cpWER of about 5%. Increasing the number of speakers still
produces accurate transcriptions, but speaker assignment errors are introduced due
to imperfect results from the segmentation and embedding models. The WDER
increases from about 2% to 15% for the four-speaker overlap-free scenario, which
is also observed for existing state-of-the-art methods.

For overlapping speech, examples are shown where the speech separation step
helps to recover the correct transcriptions, while errors in the baseline methods
are shown. Overall, however, overlapping speech dramatically increases the er-
ror rates, as some errors can either strongly influence individual pipeline steps
or propagate to the processing results of later utterances. For the multi-speaker
scenario with overlapping speech, neither the pipeline nor the baseline methods,
consistently produce accurate results with average cpWER values between 30 and
60%. Despite the fact that the proposed pipeline uses online processing and there-
fore has less information available, it still matches the performance of the existing
offline systems.

Evaluation of the pipeline’s processing time shows that it is fast enough to run in

59

7. Summary

real time. The average processing time for time steps that produce transcription
output is 0.8 seconds. Combined with the artificial latency set by the chosen
pipeline parameters, this results in an utterance-level latency of about 1.4 seconds.
The word-level latency is higher, ranging from 1 to 6 seconds in most cases, due
to the length of the utterances generated. While this falls short of human-level
responsiveness, waiting 1.4 seconds after the end of a sentence is a feasible latency
for applications in robotics and virtual assistants.

60

A. Additional Data on Clustering
and Speaker Embedding Models

Figure A.1 and Figure A.2 have been omitted in section 5.2 for the sake of brevity.
They show the evaluation results with the two alternative speaker embedding
models in the same way as Figure 5.1. These models performed significantly worse
and were therefore not selected.

0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0

20

40

60

80

Di
ar

iza
tio

n
Er

ro
r R

at
e

(in
 %

)

Comparison of clustering methods
Online Agglomerative Clustering
DBSTREAM
long utterances
short utterances

Figure A.1: A comparison of clustering methods with different clustering threshold set-
tings. The same evaluation as in Figure 5.1, but with pyannote/embedding
used as the speaker embedding model.

61

A. Additional Data on Clustering and Speaker Embedding Models

0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0

20

40

60

80

Di
ar

iza
tio

n
Er

ro
r R

at
e

(in
 %

)

Comparison of clustering methods
Online Agglomerative Clustering
DBSTREAM
long utterances
short utterances

Figure A.2: A comparison of clustering methods with different clustering threshold set-
tings. The same evaluation as in Figure 5.1, but with speechbrain/spkrec-
ecapa-voxceleb used as the speaker embedding model.

62

B. Evaluation Data

The tables below show the detailed statistics of the evaluation results sorted by
dataset. Selections of these values are displayed during the evaluation in Figure 5.7,
Figure 5.8 and Figure 5.9.

Method DER WER WDER cpWER
(in %) (in %) (in %) (in %)

µ σ µ σ µ σ µ σ

Pipeline (ours) 9.50 7.11 3.86 8.93 1.08 5.50 4.82 10.46
SileroVAD+Whisper 7.47 3.60 2.80 6.97 0.00 0.00 2.80 6.97

WhisperLookup 22.24 12.69 2.88 8.64 0.33 3.15 3.16 9.11
WhisperClustering 22.36 12.93 2.88 8.64 0.42 3.48 3.23 9.23

Table B.1: Results of various methods on the test set of the LibriSpeech [47]
dataset.

Method DER WER WDER cpWER
(in %) (in %) (in %) (in %)

µ σ µ σ µ σ µ σ

Pipeline (ours) 7.88 6.52 3.96 5.90 1.79 5.88 5.55 8.15
SileroVAD+Whisper 3.48 1.50 4.17 7.25 0.00 0.00 4.17 7.25

WhisperLookup 13.18 10.11 4.56 8.65 1.78 6.28 5.68 9.89
WhisperClustering 12.27 8.51 4.43 8.50 0.34 2.58 4.09 8.77

Table B.2: Results of various methods on the Monologue dataset sampled from
the test set of the LibriSpeech [47] dataset.

63

B. Evaluation Data

Method DER WER WDER cpWER
(in %) (in %) (in %) (in %)

µ σ µ σ µ σ µ σ

Pipeline (ours) 19.64 11.25 4.71 5.72 14.79 10.90 28.02 19.55
WhisperLookup 30.78 12.29 3.09 4.44 23.30 11.01 37.21 17.90

WhisperClustering 55.97 16.73 3.15 4.59 46.43 17.87 105.11 58.41

Table B.3: Results of various methods on the Conversation dataset sampled from
the test set of the LibriSpeech [47] dataset.

Method DER WER WDER cpWER
(in %) (in %) (in %) (in %)

µ σ µ σ µ σ µ σ

Pipeline (ours) 30.33 9.88 23.63 14.11 25.28 11.72 51.90 18.19
WhisperLookup 24.35 11.16 10.11 9.51 17.26 10.09 31.65 16.24
WhisperClust. 36.18 18.60 10.00 9.48 28.60 22.64 59.92 54.77

Table B.4: Results of various methods on the Conversation dataset with overlap-
ping segments sampled from the test set of the LibriSpeech [47] dataset.

Method DER WER WDER cpWER
(in %) (in %) (in %) (in %)

µ σ µ σ µ σ µ σ

Pipeline (ours) 38.56 12.05 45.55 7.73 22.28 9.90 54.37 9.37
WhisperLookup 40.20 8.45 42.11 5.38 12.09 4.71 46.68 7.41

WhisperClustering 46.66 11.98 42.96 7.42 16.16 9.46 49.63 10.29

Table B.5: Results of various methods on the test split of the AMI Corpus Mix-
Headset dataset [39].

64

List of Figures

2.1. A short audio signal is displayed as a waveform in the time do-
main, as the magnitude of each frequency component in the fre-
quency domain, and as a spectrogram, which combines both time
and frequency information. 4

2.2. Diarization encodings: Multi-label has one class per speaker and
can have multiple labels active at the same time. Powerset multi-
class has only one active class which signifies either no speaker, one
individual speaker, or a combination of two speakers. From [9]. . . 6

2.3. A graphical representation of the components of the Diarization
Error Rate (DER). The ground truth and diarization output are
compared based on the duartion of speech segments. The dura-
tions of falsely detected, missed speech, and speaker confusion are
compared to the total duration of the reference speech. 11

4.1. The general pipeline structure showing high-level processing steps
from the data input as a continuous audio stream to per-speaker
transcriptions. 18

4.2. Incoming buffered audio segments are concatenated to form seg-
ments of sliding windows with overlap. The parameters step size
and window length are used to configure the sliding windows. . . 19

4.3. The speaker order of successive speaker probabilities can be per-
mutated. In this case, the old blue speaker is now recognized as the
orange speaker and vice versa. The segments are matched by the
similarity of their speaker probabilities in the overlapping region. . 20

4.4. Three sets of speaker probabilities are combined for the currently
active time step to form aggregated speaker probabilities. The ac-
tive time step has a duration of step size and is delayed by lag
behind the latest audio data. For readability reasons, the probabil-
ities are shown in their multi-label representation. 22

65

List of Figures

4.5. Utterances of the three local speakers, colored according to their
status at the current time step in either already processed, newly
completed, or currently active utterances. The faded segment is
not yet processed, but should indicate that the utterance will not
be completed until the next time step. 23

4.6. An excerpt of the local speaker diarization and confidence values
from the file ES2011a of the AMI Corpus dataset [39]. Initially
ambiguous speaker probabilities are recalculated due to a low con-
fidence score, resulting in temporarily higher latency but better
diarization quality. 25

5.1. A comparison of clustering methods with different clustering thresh-
old settings. The values shown are the mean DER and the standard
deviation of the resulting local speaker annotation with pyannote
/wespeaker-voxceleb-resnet34-LM used as the speaker embed-
ding model. The x-axis offset is only a visual separation for better
readability, and the thresholds evaluated are the same for all meth-
ods. 35

5.2. Receiver Operating Characteristic (ROC) for different window
lengths showing optimal values for the diarization threshold pa-
rameter. Both too long and too short windows produce suboptimal
results. The respectively optimal threshold value x is marked on
each curve. 37

5.3. ROC curves for different values of the no_speech_prob parameter
of Whisper models. Only select models are shown for readability,
as the larger models all show high accuracy in this speech detection
test. Best results are achieved with large-v3 at a threshold of 0.11. 39

5.4. The average processing time for the pipeline steps is displayed.
The results are grouped according to whether an utterance was
completed during the computation of a time step. For steps with
a completed utterance, the inference time of the speech separation
and recognition models dominates the computation. 41

5.5. The average processing time for pipeline steps during the stream-
ing speech diarization is displayed. The results are again grouped
according to whether an utterance was completed during the com-
putation of a time step. 42

66

List of Figures

5.6. Left: Length of the pipeline backlog during the processing of
EN2002a of the AMI corpus test set. Right: Word-level laten-
cies of transcribed words. The latency is influenced by the backlog
from a previous time step, the length of the detected utterances, as
well as the artificial and computational latency of the pipeline. . . 44

5.7. Evaluation results for single-speaker datasets are shown for the
proposed pipeline and a baseline method. The metrics show similar
values between both methods. 47

5.8. Evaluation results are shown for the proposed pipeline on the gener-
ated multi-speaker no-speech-overlap dataset Conversation. While
maintaining a relatively low WER, speaker assignment errors are
increased, resulting in an increased error rate in the multi-speaker
WER metric. 48

5.9. Evaluation results for multi-speaker datasets with overlapping speech
are shown for the proposed pipeline and two baseline methods. The
additional complexity of overlapping speech leads to an increased
error compared to the non-overlapping datasets. No method pro-
vides good multi-speaker transcriptions with error rates between 30
to 60%. 50

5.10. An example of the proposed pipeline successfully transcribing over-
lapping speech from the Conversation with Overlap dataset file 222.
The words of the overlapping utterance are still correctly recognized
and assigned to the correct speaker. BLUE: And as soon as I’ve
had my coffee and oatmeal ORANGE: I’ll (I will) take him to the
room of the great knife and patch him ORANGE: Why should
one not explore everything and study everything GREEN: What I
say is altogether on your own account RED: In short, he becomes a
prominent figure in London society RED: And if he is not careful,
somebody will say so BLUE: When first they entered the throne
room, they tried to be as haughty and scornful as ever Note that
the the second utterance contains an error due to a contraction and
the third utterance was assigned to the wrong speaker. 51

5.11. An example of transcriptions of overlapping utterances from the
file EN2002c of the AMI Corpus dataset. Although not error-free,
it shows that the pipeline successfully produces transcriptions for
two fully overlapping utterances. Meanwhile, the baseline methods
fail because they drop words during the overlap. 52

67

List of Figures

A.1. A comparison of clustering methods with different clustering thresh-
old settings. The same evaluation as in Figure 5.1, but with pyannote
/embedding used as the speaker embedding model. 61

A.2. A comparison of clustering methods with different clustering thresh-
old settings. The same evaluation as in Figure 5.1, but with speechbrain
/spkrec-ecapa-voxceleb used as the speaker embedding model. . 62

68

List of Tables

5.1. First part of the overview of development and test sets of the
datasets used for the parameter selection and evaluation. The aster-
isk (*) for the last two rows indicates that the dataset was sampled
with overlapping segments. 32

5.2. Second part of the overview of development and test sets of the
datasets used for the parameter selection and evaluation. The aster-
isk (*) for the last two rows indicates that the dataset was sampled
with overlapping segments. 32

5.3. description . 45

B.1. Results of various methods on the test set of the LibriSpeech [47]
dataset. 63

B.2. Results of various methods on the Monologue dataset sampled from
the test set of the LibriSpeech [47] dataset. 63

B.3. Results of various methods on the Conversation dataset sampled
from the test set of the LibriSpeech [47] dataset. 64

B.4. Results of various methods on the Conversation dataset with over-
lapping segments sampled from the test set of the LibriSpeech [47]
dataset. 64

B.5. Results of various methods on the test split of the AMI Corpus
MixHeadset dataset [39]. 64

69

Bibliography
[1] Justin Hart, Alexander Moriarty, Katarzyna Pasternak, Johannes Kummert,

Alina Hawkin, Vanessa Hassouna, Juan Diego Pena Narvaez, Leroy Ruege-
mer, Leander von Seelstrang, Peter Van Dooren, Juan Jose Garcia, Akinobu
Mitzutani, Yuqian Jiang, Tatsuya Matsushima, and Riccardo Polvara. Robo-
Cup@Home 2024: Rules and regulations. 2024. url: https://github.com
/RoboCupAtHome/RuleBook/releases/tag/2024.1.

[2] R. Stiefelhagen, C. Fugen, R. Gieselmann, H. Holzapfel, K. Nickel, and A.
Waibel. “Natural human-robot interaction using speech, head pose and ges-
tures.” In: IEEE International Conference on Intelligent Robots and Systems
(IROS). Vol. 3. 2004, pp. 2422–2427.

[3] Adelbert Bronkhorst. “The cocktail party phenomenon: A review of re-
search on speech intelligibility in multiple-talker conditions.” In: Acta Acus-
tica united with Acustica 86 (2000), pp. 117–128.

[4] Stephen C. Levinson and Francisco Torreira. “Timing in turn-taking and its
implications for processing models of language.” In: Frontiers in Psychology
6 (2015). issn: 1664-1078.

[5] Raphael Memmesheimer, Jan Nogga, Bastian Pätzold, Evgenii Kruzhkov,
Simon Bultmann, Michael Schreiber, Jonas Bode, Bertan Karacora, Juhui
Park, Alena Savinykh, and Sven Behnke. “RoboCup@Home 2024 OPL win-
ner NimbRo: Anthropomorphic service robots using foundation models for
perception and planning.” In: RoboCup 2024: Robot World Cup XXVII.
Springer, 2025. Forthcoming.

[6] Alec Radford, JongWook Kim, Tao Xu, Greg Brockman, Christine McLeavey,
and Ilya Sutskever. “Robust speech recognition via large-scale weak supervi-
sion.” In: International Conference on Machine Learning (ICML). JMLR.org,
2023.

[7] Max Bain, Jaesung Huh, Tengda Han, and Andrew Zisserman. “WhisperX:
Time-accurate speech transcription of long-form audio.” In: Interspeech. 2023,
pp. 4489–4493.

[8] Hervé Bredin. “pyannote.audio 2.1 speaker diarization pipeline: Principle,
benchmark, and recipe.” In: Interspeech. 2023.

[9] Alexis Plaquet and Hervé Bredin. “Powerset multi-class cross entropy loss
for neural speaker diarization.” In: Interspeech. 2023, pp. 3222–3226.

71

https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1
https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1

Bibliography

[10] NVIDIA Corporation. NVIDIA NeMo framework developer docs – speaker
diarization. 2024. url: https://docs.nvidia.com/nemo-framework/use
r-guide/latest/nemotoolkit/asr/speaker_diarization/intro.html
(visited on 07/10/2024).

[11] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and San-
jeev Khudanpur. “X-Vectors: Robust DNN embeddings for speaker recog-
nition.” In: IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2018, pp. 5329–5333.

[12] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. “ECAPA-
TDNN: Emphasized channel attention, propagation and aggregation in
TDNN based speaker verification.” In: Interspeech. Ed. by Helen Meng, Bo
Xu, and Thomas Fang Zheng. ISCA, 2020, pp. 3830–3834.

[13] Ke-Ming Lyu, Ren-yuan Lyu, and Hsien-Tsung Chang. “Real-time multilin-
gual speech recognition and speaker diarization system based on Whisper
segmentation.” In: PeerJ Computer Science 10 (2024), e1973.

[14] Juan Manuel Coria, Hervé Bredin, Sahar Ghannay, and Sophie Rosset. “Over-
lap-aware low-latency online speaker diarization based on end-to-end local
segmentation.” In: IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU) (2021), pp. 1139–1146.

[15] Henri J. Nussbaumer. “The fast Fourier transform.” In: Fast Fourier Trans-
form and Convolution Algorithms. Springer, 1981, pp. 80–111. isbn: 978-3-
662-00551-4.

[16] S. Davis and P. Mermelstein. “Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences.” In: IEEE
Transactions on Acoustics, Speech, and Signal Processing (TSP) 28.4 (1980),
pp. 357–366.

[17] C.E. Shannon. “Communication in the presence of noise.” In: Proceedings of
the IRE 37.1 (1949), pp. 10–21.

[18] Brian B. Monson, Eric J. Hunter, Andrew J. Lotto, and Brad H. Story.
“The perceptual significance of high-frequency energy in the human voice.”
In: Frontiers in Psychology 5 (2014). issn: 1664-1078.

[19] S.E. Tranter and D.A. Reynolds. “An overview of automatic speaker di-
arization systems.” In: IEEE Transactions on Audio, Speech, and Language
Processing (TASLPRO) 14.5 (2006), pp. 1557–1565.

[20] Yusuke Fujita, Naoyuki Kanda, Shota Horiguchi, Kenji Nagamatsu, and
Shinji Watanabe. “End-to-end neural speaker diarization with permutation-
free objectives.” In: Interspeech. 2019.

72

https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/asr/speaker_diarization/intro.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/asr/speaker_diarization/intro.html

Bibliography

[21] Najim Dehak, Patrick J. Kenny, Réda Dehak, Pierre Dumouchel, and Pierre
Ouellet. “Front-end factor analysis for speaker verification.” In: IEEE Trans-
actions on Audio, Speech, and Language Processing (TASLPRO) 19.4 (2011),
pp. 788–798.

[22] Michael Hahsler and Matthew Bolaños. “Clustering data streams based on
shared density between micro-clusters.” In: IEEE Transactions on Knowledge
and Data Engineering 28 (2016), pp. 1449–1461.

[23] D.R. Reddy. “Speech recognition by machine: A review.” In: Proceedings of
the IEEE 64.4 (1976), pp. 501–531.

[24] Mirco Ravanelli and Yoshua Bengio. “Speaker recognition from raw wave-
form with SincNet.” In: IEEE Spoken Language Technology Workshop (SLT)
(2018), pp. 1021–1028.

[25] Jonathan Fiscus, Jerome Ajot, Martial Michel, and John Garofolo. “The rich
transcription 2006 spring meeting recognition evaluation.” In: 2006, pp. 309–
322. isbn: 978-3-540-32549-9.

[26] Laurent El Shafey, Hagen Soltau, and Izhak Shafran. “Joint speech recog-
nition and speaker diarization via sequence transduction.” In: Interspeech.
2019.

[27] Shinji Watanabe, Michael Mandel, Jon Barker, Emmanuel Vincent, Ashish
Arora, Xuankai Chang, Sanjeev Khudanpur, Vimal Manohar, Daniel Povey,
Desh Raj, David Snyder, Aswin Shanmugam Subramanian, Jan Trmal, Bar
Ben Yair, Christoph Boeddeker, Zhaoheng Ni, Yusuke Fujita, Shota Horiguchi,
Naoyuki Kanda, Takuya Yoshioka, and Neville Ryant. “CHiME-6 challenge:
Tackling multispeaker speech recognition for unsegmented recordings.” In:
International Workshop on Speech Processing in Everyday Environments.
2020, pp. 1–7.

[28] Hervé Bredin. GitHub repository of pyannote.audio. 2025. url: https://g
ithub.com/pyannote/pyannote-audio (visited on 02/20/2025).

[29] Hervé Bredin and Antoine Laurent. “End-to-end speaker segmentation for
overlap-aware resegmentation.” In: Interspeech. 2021, pp. 3111–3115.

[30] Hongji Wang, Chengdong Liang, Shuai Wang, Zhengyang Chen, Binbin
Zhang, Xu Xiang, Yanlei Deng, and Yanmin Qian. “WeSpeaker: A research
and production oriented speaker embedding learning toolkit.” In: IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2023, pp. 1–5.

[31] Hossein Zeinali, Shuai Wang, Anna Silnova, Pavel Matejka, and Oldrich
Plchot. BUT system description to VoxCeleb Speaker Recognition Challenge
2019. 2019. arXiv: 1910.12592 [eess.AS].

73

https://github.com/pyannote/pyannote-audio
https://github.com/pyannote/pyannote-audio
https://arxiv.org/abs/1910.12592

Bibliography

[32] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition.” In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015), pp. 770–778.

[33] Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe, Samuele
Cornell, Loren Lugosch, Cem Subakan, Nauman Dawalatabad, Abdelwahab
Heba, Jianyuan Zhong, Ju-Chieh Chou, Sung-Lin Yeh, Szu-Wei Fu, Chien-
Feng Liao, Elena Rastorgueva, François Grondin, William Aris, Hwidong
Na, Yan Gao, Renato De Mori, and Yoshua Bengio. SpeechBrain: A general-
purpose speech toolkit. 2021. arXiv: 2106.04624 [eess.AS].

[34] Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan
Yang, and Philip Torr. “Res2Net: A new multi-scale backbone architec-
ture.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 43.2 (2021), pp. 652–662. issn: 1939-3539.

[35] Shengkui Zhao, Yukun Ma, Chongjia Ni, Chong Zhang, Hao Wang, Trung
Nguyen, Kun Zhou, Jia Yip, Dianwen Ng, and Bin Ma. “MossFormer2:
Combining transformer and RNN-free recurrent network for enhanced time-
domain monaural speech separation.” In: 2024, pp. 10356–10360.

[36] Max Bain, Jaesung Huh, Tengda Han, and Andrew Zisserman. GitHub repos-
itory of WhisperX. 2025. url: https://github.com/m-bain/whisperX/
(visited on 02/20/2025).

[37] Harold W. Kuhn. “The Hungarian method for the assignment problem.” In:
Naval Research Logistics (NRL) 52 (1955).

[38] F.J. Harris. “On the use of windows for harmonic analysis with the discrete
Fourier transform.” In: Proceedings of the IEEE 66.1 (1978), pp. 51–83.

[39] Steve Renals, Thomas Hain, and Herve Bourlard. “Recognition and under-
standing of meetings the AMI and AMIDA projects.” In: IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU). 2007, pp. 238–
247.

[40] OpenAI et al. GPT-4 technical report. 2023. arXiv: 2303.08774 [cs.CL].
[41] OpenAI. Hello GPT-4o. 2024. url: https://openai.com/index/hello-g

pt-4o/ (visited on 02/20/2025).
[42] SYSTRAN. GitHub repository of faster-whisper. 2025. url: https://gith

ub.com/SYSTRAN/faster-whisper/ (visited on 02/20/2025).
[43] Hugging Face, Inc. Hugging Face website. 2025. url: https://huggingfac

e.co/ (visited on 02/20/2025).
[44] Alibaba Cloud. Model Scope website. 2025. url: https://modelscope.cn/

(visited on 02/20/2025).

74

https://arxiv.org/abs/2106.04624
https://github.com/m-bain/whisperX/
https://arxiv.org/abs/2303.08774
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://github.com/SYSTRAN/faster-whisper/
https://github.com/SYSTRAN/faster-whisper/
https://huggingface.co/
https://huggingface.co/
https://modelscope.cn/

Bibliography

[45] Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Geoffrey Bolmier,
Raphael Sourty, Robin Vaysse, Adil Zouitine, Heitor Murilo Gomes, Jesse
Read, Talel Abdessalem, and Albert Bifet. “River: Machine learning for
streaming data in Python.” In: Journal of Machine Learning Research (JMLR)
22.1 (2021). issn: 1532-4435.

[46] Google. GitHub repository of DiarizationLM. 2025. url: https://githu
b.com/google/speaker-id/tree/master/DiarizationLM/ (visited on
02/20/2025).

[47] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur.
“LibriSpeech: An ASR corpus based on public domain audio books.” In:
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2015, pp. 5206–5210.

[48] LibriVox: Free public domain audiobooks. 2025. url: https://librivox.o
rg/ (visited on 02/20/2025).

[49] Corentin Jemine. GitHub repository LibriSpeech Alignments. 2025. url: h
ttps://github.com/CorentinJ/librispeech-alignments/ (visited on
02/20/2025).

[50] Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael Wagner, and
Morgan Sonderegger. “Montreal Forced Aligner: Trainable text-speech align-
ment using Kaldi.” In: Interspeech. 2017, pp. 498–502.

[51] Silero Team. Silero VAD: pre-trained enterprise-grade voice activity detector
(VAD), number detector and language classifier. 2024. url: https://gith
ub.com/snakers4/silero-vad (visited on 02/20/2025).

[52] Joonas Kalda, Clément Pagés, Ricard Marxer, Tanel Alumäe, and Hervé
Bredin. “PixIT: Joint training of speaker diarization and speech separation
from real-world multi-speaker recordings.” In: Odyssey. 2024.

[53] Quan Wang, Yiling Huang, Guanlong Zhao, Evan Clark, Wei Xia, and Hank
Liao. “DiarizationLM: Speaker diarization post-processing with large lan-
guage models.” In: Interspeech. 2024, pp. 3754–3758.

75

https://github.com/google/speaker-id/tree/master/DiarizationLM/
https://github.com/google/speaker-id/tree/master/DiarizationLM/
https://librivox.org/
https://librivox.org/
https://github.com/CorentinJ/librispeech-alignments/
https://github.com/CorentinJ/librispeech-alignments/
https://github.com/snakers4/silero-vad
https://github.com/snakers4/silero-vad

	Introduction
	Theory
	Audio Signals
	Speech Processing Tasks
	Machine Learning Methods
	Sliding Windows
	Metrics

	Related Work
	Single Task Approaches
	Integrated Diarization and Speech Recognition

	Method
	Overview
	Streaming Speaker Diarization
	Speaker Probabilities
	Speaker Permutation
	Probability Aggregation
	Diarization
	Confidence Decision

	Speech Separation
	Speaker Recognition
	Speech Recognition
	Implementation

	Evaluation
	Datasets
	Evaluation Setup
	Results
	Computational Performance Analysis
	Diarization and Transcription Quality Analysis

	Discussion
	Limitations
	Future Work

	Summary
	Appendices
	Additional Data on Clustering and Speaker Embedding Models
	Evaluation Data

