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Abstract
This thesis introduces a novel approach to model-based reinforcement learning
that leverages object-centric representations to enhance sample efficiency, perfor-
mance, and interpretability in visual control tasks. We extend an Object-Centric
Video Prediction (OCVP) framework to function in an action-conditioned manner
and integrate it with the Dreamer algorithm, developing the first object-centric
model-based reinforcement learning method capable of solving continuous con-
trol tasks using only visual input. Our approach learns a structured world model
that predicts environmental dynamics in terms of individual objects, allowing for
more granular and interpretable scene representations. To effectively utilize these
object-centric representations within the reinforcement learning framework, we
develop specialized modules that enable reasoning over object-based state descrip-
tions.

Extensive experiments on a suite of simulated robotic manipulation tasks demon-
strate the effectiveness of our approach. Our object-centric model consistently
outperforms both a non-object-centric baseline with significantly more parameters
and the state-of-the-art DreamerV3 algorithm, particularly in tasks requiring rela-
tional reasoning between objects. The method exhibits improved sample efficiency
and rapid learning, highlighting its potential for applications where data collection
is costly or time-consuming. Furthermore, we show that our object-centric models
are capable of adjusting to the changing state-distribution characteristic of many
non-trivial reinforcement learning problems, overcoming a key limitation of prior
object-centric reinforcement learning methods.

Our work demonstrates that learning object-centric representations from pixels
is a viable paradigm for model-based reinforcement learning, opening up promising
avenues for developing more efficient and capable reinforcement learning agents
that can understand and interact with the world in ways that more closely resemble
human cognition.
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1. Introduction
Reinforcement learning (RL) has demonstrated remarkable success in solving com-
plex control problems across diverse domains. From mastering strategic games like
chess and Go (Silver, Hubert, et al. 2018) to navigating dynamic environments in
video games (Hafner, T. Lillicrap, Norouzi, et al. 2020; Hafner, Pasukonis, et al.
2023; Mnih, Kavukcuoglu, Silver, Graves, et al. 2013; Mnih, Kavukcuoglu, Silver,
Rusu, et al. 2015) and executing intricate robotic manipulation tasks (Mosbach
and Behnke 2024; Pavlichenko and Behnke 2023), RL has shown its potential to
revolutionize how machines learn and adapt. However, despite these impressive
achievements, current RL approaches often face significant limitations that hinder
their widespread application in real-world scenarios.

One of the primary challenges in RL is the need for vast amounts of training
data. Many successful RL applications have relied on millions of interactions with
the environment to achieve high performance. This data-intensive nature poses a
substantial barrier in domains where data collection is expensive, time-consuming,
or potentially dangerous, such as in robotics or autonomous driving. Additionally,
many current RL methods are often confined to narrow, specific domains, strug-
gling to generalize their learned behaviors to new tasks or environments without
extensive retraining.

These limitations raise a fundamental question in the field of artificial intel-
ligence and robotics: how can we develop RL agents that learn efficiently and
generalize effectively to new tasks without the need for extensive retraining? Ad-
dressing this question is crucial for advancing RL beyond constrained laboratory
settings and into real-world applications where adaptability and sample efficiency
are paramount.

Recent advancements have highlighted the potential of model-based approaches
to address these challenges (Hafner, T. Lillicrap, J. Ba, et al. 2019; Hafner, T.
Lillicrap, Fischer, et al. 2019b; Hafner, T. Lillicrap, Norouzi, et al. 2020; Hafner,
Pasukonis, et al. 2023). By learning a world model that predicts the consequences
of actions, model-based RL offers a structured approach to overcome limitations
inherent in model-free methods. This allows for both reduction of costly interac-
tions with the environment and explicit reasoning about action consequences.

However, while model-based RL offers significant benefits, it also introduces new
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1. Introduction

challenges, particularly when dealing with high-dimensional state spaces such as
visual inputs. Traditional approaches to modeling environment dynamics often
struggle with the complexity and variability inherent in visual scenes, especially
those involving multiple objects and their relationships.

This is where object-centric representations (Ferraro et al. 2023; Haramati,
Daniel, and Tamar 2024; Jiang et al. 2019; Kipf et al. 2021; Locatello et al. 2020;
Yoon et al. 2023; Zadaianchuk, Seitzer, and Martius 2020) come into play, offering
a promising solution to further enhance model-based RL. The key insight driving
this research is that understanding a scene in terms of its constituent objects and
their interactions can provide a powerful inductive bias for learning and reason-
ing. Instead of treating the environment as a monolithic entity, an object-centric
approach decomposes the scene into distinct objects, each with its own properties
and dynamics.

Despite these potential benefits, the combination of object-centric representa-
tions and model-based RL remains underexplored, likely due to the complexity
of integrating two challenging learning problems: 1) Learning meaningful ob-
ject representations from raw sensory input and using these to model complex
action-conditioned environment dynamics, and 2) Using the object-centric dy-
namics model in a reinforcement learning process to derive optimal behavior.

To the best of our knowledge, no prior method has successfully learned an object-
centric world model solely from pixels and utilized it effectively in model-based RL
for continuous control tasks. This gap in the literature is testament to the intricate
challenges inherent to building a tractable and efficient method for this problem
and presents an exciting opportunity for innovation, which motivated this thesis.

To address this gap in the literature, this thesis introduces a novel method
that extends the Object-Centric Video Prediction (OCVP) framework of (Villar-
Corrales, Wahdan, and Behnke 2023) to operate in an action-conditioned man-
ner. We then build a model-based reinforcement learning framework, akin to the
Dreamer algorithm (Hafner, T. Lillicrap, J. Ba, et al. 2019; Hafner, T. Lillicrap,
Norouzi, et al. 2020; Hafner, Pasukonis, et al. 2023), that employs this action-
conditioned OCVP model as its dynamics model, resulting in the first object-
centric model-based reinforcement learning algorithm capable of solving continu-
ous control tasks solely from pixels.

Our approach leverages the insight that the structure derived from object-centric
representations is mutually beneficial for both predicting future states and learning
optimal action selection. This synergy enhances the agent’s ability to reason about
object properties and their interactions, leading to more efficient learning and
better generalization.

To validate our method, we conducted extensive experiments on simulated
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robotic manipulation tasks. These experiments were designed to showcase the al-
gorithm’s ability to reason about object properties and interactions, demonstrating
its effectiveness in complex, visually-rich environments.

The contributions of this thesis are threefold:

1. We extend the OCVP framework developed by (Villar-Corrales, Wahdan,
and Behnke 2023) to function in an action-conditioned manner, enabling its
use in reinforcement learning contexts.

2. We adapt the Dreamer algorithm (Hafner, T. Lillicrap, J. Ba, et al. 2019;
Hafner, T. Lillicrap, Norouzi, et al. 2020; Hafner, Pasukonis, et al. 2023)
to utilize our action-conditioned OCVP model as its dynamics model, de-
veloping to the best of our knowledge the first object-centric model-based
reinforcement learning algorithms for continuous control tasks from visual
input alone.

3. We provide comprehensive testing and comparison of our new method on
simulated robotic object manipulation tasks, demonstrating its improved
interpretability in decision-making, superior ability to reason about object
properties and interactions, and capability to adjust its object-centric model
to a continuously evolving state-distribution.

The remainder of this thesis is organized as follows: Chapter 2 provides the
fundamental concepts necessary for understanding our approach, including vi-
sual continuous control, reinforcement learning, and the transformer architecture.
Chapter 3 reviews related work in model-based reinforcement learning and object-
centric approaches, providing context for our contributions. Chapter 4 presents
our methodology in detail, explaining the process of building an object-centric
world model and its integration into a model-based RL framework. Chapter 5
describes our experimental setup, including the design of our robotic manipula-
tion tasks and the baselines we compare against. We present and discuss our
results, providing both quantitative comparisons and qualitative analyses. Chap-
ter 6 concludes with a discussion of the implications of our work, its limitations,
and potential directions for future research.

Through this work, we aim to contribute to the development of more efficient,
generalizable, and interpretable reinforcement learning agents for complex visual
control tasks, particularly in scenarios involving multiple objects and their inter-
actions.
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2. Fundamentals

This chapter provides an overview of the key concepts and techniques that form the
foundation of our object-centric model-based reinforcement learning approach. We
begin by discussing visual continuous control and the partially observable Markov
decision process (POMDP) framework. We then review the fundamentals of rein-
forcement learning, including Q-learning and policy gradient methods. Finally, we
introduce the transformer architecture, which plays a crucial role in our method
for processing object-centric representations. Understanding these fundamental
concepts is essential for grasping the motivation behind and implementation of
our proposed approach.

2.1. Visual Continuous Control
Visual continuous control describes a group of problems where an agent chooses
outputs in a continuous actions space based on visual inputs. This configuration
of input and output spaces makes visual continuous control tasks highly relevant
for robotics.

Visual data, such as images or videos, serve as a versatile representation of
diverse environments. Limiting the input to vision is practical due to the richness
of information cameras can provide and their widespread availability (Levine et al.
2016).

Continuous control refers to the process of making decisions in an environment
where actions are not discrete but can take any value within a continuous range.
Unlike discrete control, where actions are selected from a finite set, continuous
control involves selecting actions from an infinite set of possible values. This type
of control is particularly relevant in robotics, where precise and smooth movements
are often required. For example, controlling the joint angles of a robotic arm or
the speed and direction of a mobile robot involves continuous action spaces (T. P.
Lillicrap et al. 2015).

In the context of robotics, visual continuous control is crucial because it al-
lows robots to operate in dynamic and unstructured environments. For example,
robotic manipulation tasks often require precise control based on visual feedback
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2. Fundamentals

to handle objects of varying shapes, sizes, and orientations. Similarly, autonomous
navigation relies on visual inputs to perceive obstacles, recognize landmarks, and
make path-planning decisions.

However, visual continuous control presents several challenges. One major chal-
lenge is processing high-dimensional visual data, which requires significant compu-
tational resources and sophisticated algorithms to extract relevant features. Ad-
ditionally, these tasks often involve partial observability, where the agent cannot
directly perceive the entire state of the environment and must infer it from limited
visual inputs (Kaelbling, Littman, and Cassandra 1998).

2.1.1. Partially Observable Markov Decision Process (POMDP)

A Partially Observable Markov Decision Process (POMDP)(Kaelbling, Littman,
and Cassandra 1998) is a mathematical framework used to model decision-making
problems where the agent has incomplete information about the state of the envi-
ronment, as is the case in most visual continuous control tasks. Unlike a Markov
Decision Process (MDP), where the agent has full observability of the state, a
POMDP accounts for scenarios where the agent only has access to partial obser-
vations, leading to uncertainty about the true state.

A POMDP is defined by a tuple (S,A, T,R,Ω, O, γ), where: S represents the set
of states in the environment; A denotes the set of actions available to the agent;
T : S×A×S → [0, 1] is the state transition function, which defines the probability
of transitioning from one state to another given a specific action; R : S×A→ R is
the reward function, which specifies the immediate reward received after taking an
action in a given state; Ω is the set of possible observations the agent can receive;
O : S × A × Ω → [0, 1] is the observation function, which defines the probability
of receiving a particular observation given a state and action; γ ∈ [0, 1] is the
discount factor, which represents the importance of future rewards compared to
immediate rewards.

In a POMDP, the agent does not directly observe the state s ∈ S. Instead, it
receives an observation o ∈ Ω, which provides partial information about the state
(see Figure 2.1).

Solving a POMDP involves finding a policy π : Ω → A that maximizes the
expected cumulative reward:

E

[
∞∑
t=0

γtrt

]
(2.1)
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2.2. Reinforcement Learning (RL)

Figure 2.1: Components and information flow of a POMDP.

2.2. Reinforcement Learning (RL)

Reinforcement Learning (RL) is a machine learning paradigm where an agent
learns to make decisions by interacting with its environment. Unlike supervised
and unsupervised learning, RL involves learning from the consequences of actions,
rather than from a static dataset.

In supervised learning, the algorithm is trained on a labeled dataset, where each
input is paired with the correct output. The objective is to learn a mapping from
inputs to outputs that generalizes well to unseen data. Common applications in-
clude classification and regression tasks. In unsupervised learning, the algorithm
is provided with an unlabeled dataset and seeks to discover the underlying struc-
ture or distribution of the data. Techniques such as clustering and dimensionality
reduction fall under this category (Mohri, Rostamizadeh, and Talwalkar 2018;
Sutton and Barto 2018).

Reinforcement learning, in contrast, deals with sequential decision-making prob-
lems. The agent interacts with the environment in discrete time steps. At each
time step, the agent observes the current state of the environment, selects an ac-
tion based on its policy, and receives a reward as feedback. The environment then
transitions to a new state, and the process repeats. The agent’s goal is to learn
a policy that maximizes the expected cumulative reward over time (Kaelbling,
Littman, and Moore 1996).

7



2. Fundamentals

A key distinction of RL is its emphasis on exploration and exploitation. Ex-
ploration involves trying new actions to discover their effects, while exploitation
leverages known actions to maximize reward. Balancing these two aspects is crit-
ical for effective learning. Various strategies, such as ϵ-greedy and softmax action
selection, are used to manage this trade-off (Sutton and Barto 2018).

In summary, the RL framework consists of two core components: the agent and
the environment. The agent is the learner or decision maker, while the environ-
ment is the external system with which the agent interacts. The environment is
characterized by its state space, which represents all possible configurations, and
its action space, which defines the set of all possible moves the agent can make. At
each time step, the agent observes the current state, selects an action, and receives
a reward as feedback from the environment. The goal of RL is to learn a policy,
which is a strategy for selecting actions, that maximizes the expected cumulative
reward over time. To achieve this, RL algorithms often employ techniques such as
estimating value functions, which predict the expected future rewards for states
or state-action pairs.

2.2.1. Q-Learning
Q-learning is a fundamental algorithm in the field of model-free off-policy rein-
forcement learning. Developed by (Watkins 1989), it aims to find the optimal
action-selection policy for any given finite Markov decision process (MDP) by
learning the value of actions, represented as Q-values. These Q-values estimate
the expected return (i.e., sum of discounted future rewards) of taking a given
action in a particular state and following the optimal policy thereafter.

The core idea behind Q-learning is to iteratively update the Q-values based on
the Bellman equation (Bellman 1957). The Bellman equation, which is used in
Q-learning, provides a recursive decomposition that expresses the value of a state-
action pair as the sum of the immediate reward and the discounted value of the
following state. Mathematically, this is represented as:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (2.2)

Here, s and a denote the current state and action, respectively, r is the immediate
reward received after taking action a in state s, s′ is the subsequent state, α is the
learning rate, and γ is the discount factor which weights the importance of future
rewards.

A key contribution of Q-learning is its convergence proof, published in (Watkins
and Dayan 1992). Under the conditions that all state-action pairs continue to be
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updated and the learning rate decays appropriately, Q-Learning is proven to con-
verge to the optimal Q-values with probability 1. Despite this theoretical appeal,
it also comes with a significant limitation: as a tabular method, it is only practical
for problems with discrete action and state spaces. When applied to environments
with large or continuous state spaces, the table of Q-values becomes excessively
large, rendering the method computationally infeasible.

This limitation of Q-learning has led to various enhancements and innovations,
one of the most significant being the development of Deep Q-Networks (DQNs)
(Mnih, Kavukcuoglu, Silver, Graves, et al. 2013; Mnih, Kavukcuoglu, Silver, Rusu,
et al. 2015).

Deep Q-Network (DQN)

The Deep Q-Network (DQN) represents a significant advancement in the field
of reinforcement learning, as it was the first deep learning model to successfully
learn control policies directly from high-dimensional sensory input. Introduced by
(Mnih, Kavukcuoglu, Silver, Graves, et al. 2013; Mnih, Kavukcuoglu, Silver, Rusu,
et al. 2015), DQN uses a convolutional neural network (CNN) to approximate the
action-value function (Q-function) from raw pixel data, thereby addressing the
scalability issues inherent in traditional Q-learning.

DQN was tested on a suite of 49 Atari 2600 games (M. G. Bellemare et al.
2013), demonstrating remarkable performance by outperforming the best existing
reinforcement learning methods on 43 games and performing at a level comparable
to that of a professional human games tester across the entire set. The core
innovation of DQN is its ability to process high-dimensional visual inputs using
CNNs, leveraging techniques previously successful in computer vision tasks.

Two key techniques also strongly contributed to the success of DQN: experi-
ence replay and the use of a target network. Experience replay involves storing
the agent’s experiences (state, action, reward, next state) in a replay buffer and
sampling mini-batches of experiences to update the Q-network. This approach
breaks the correlation between consecutive experiences and smooths out learning
by reusing past experiences. By sampling from a diverse set of past experiences,
the agent can learn more effectively, as it reduces the risk of the model becoming
biased by recent transitions. This technique also increases data efficiency by al-
lowing multiple updates from the same experience, which is particularly important
when collecting data is expensive or time-consuming.

The target network, essentially a copy of the Q-network, is used to generate the
target Q-values for the update step. This target network is updated less frequently
than the Q-network, providing a stable reference point for learning. This stability
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helps mitigate the risk of oscillations and divergence during training, which can
occur when the Q-values are directly computed from the same network that is
being updated. By using a fixed target for several updates, the learning process
becomes more robust and less prone to the feedback loops that can destabilize
learning.

DQN formulates its policy implicitly by choosing the action with the maximum
Q-value in each state. While this maximization is trivial for discrete action spaces,
searching for the optimal action in continuous spaces can quickly become infeasible.
Methods that directly express a parametrized policy that maps from states to
action can handle this domain more naturally.

2.2.2. Policy Gradient Methods

Policy gradient methods (Sutton and Barto 2018; Sutton, McAllester, et al. 1999)
represent a class of reinforcement learning algorithms that directly optimize the
policy, rather than estimating value functions to implicitly search for an optimal
policy. Unlike value-based methods like Q-learning and its extensions, policy gra-
dient methods maintain and improve a parameterized policy that maps states to
actions.

The fundamental idea behind policy gradient methods is to adjust the param-
eters of the policy in a direction that maximizes expected cumulative rewards.
The policy is typically represented by a neural network, parameterized by θ, that
outputs the probability distribution over actions for a given state. The objective
is to find the parameters θ that maximize the expected return J(θ), defined as:

J(θ) = Eτ∼πθ

[ T∑
t=0

γtrt

]
(2.3)

where τ denotes a trajectory (sequence of states, actions, and rewards), πθ is the
policy parameterized by θ, rt is the reward at time step t, and γ is the discount
factor.

The policy gradient theorem provides a way to compute the gradient of the
expected return with respect to the policy parameters. This gradient can then be
used to update the policy parameters via gradient ascent. The update rule for the
policy parameters is given by:

θ ← θ + α∇θJ(θ) (2.4)

where α is the learning rate.
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A key advantage of policy gradient methods is their applicability to continuous
action spaces. They do not require discretizing the action space, which can lead to
the curse of dimensionality. Instead, they can handle high-dimensional and con-
tinuous action spaces more efficiently. Additionally, policy gradient methods can
naturally incorporate stochastic policies, which can be beneficial for exploration
in complex environments.

However, a significant challenge with policy gradient methods is the high vari-
ance in gradient estimates, which can make learning unstable and slow. Actor-
Critic methods (Konda and Tsitsiklis 1999) address this issue by combining policy-
based and value-based approaches. In these methods, the “actor” learns and im-
proves the policy for selecting actions, while the “critic” estimates the value func-
tion to evaluate the actor’s decisions. This hybrid approach helps stabilize learning
and improves efficiency by reducing the variance of the gradient estimates.

Deep Deterministic Policy Gradient (DDPG)

Deep Deterministic Policy Gradient (DDPG) is an actor-critic algorithm designed
to operate over continuous action spaces. Developed by (T. P. Lillicrap et al. 2015),
DDPG extends the Deterministic Policy Gradient (DPG) algorithm (Silver, Lever,
et al. 2014) by leveraging deep learning techniques to enable more efficient learning
in high-dimensional environments.

DDPG combines elements from both value-based and policy-based reinforcement
learning methods. The core idea is to use a deterministic policy, represented by an
actor network, which maps states directly to specific actions. This actor network
is trained to maximize the expected return by following the gradient of the Q-
function, which is estimated by a critic network. The critic network, parameterized
by θQ, learns to approximate the action-value function Q(s, a) by minimizing the
loss function:

L(θQ) = E(s,a,r,s′)

[(
r + γQ(s′, µ(s′|θµ)|θQ)−Q(s, a|θQ)

)2] (2.5)

Here, µ(s|θµ) represents the actor network, and the term r + γQ(s′, µ(s′|θµ)|θQ)
serves as the target for the Q-value.

To stabilize the learning process, DDPG employs two key techniques, which were
already discussed in the section on DQN: experience replay and target networks.
Like introduced in DQN, target networks are copies of the actor and critic networks
that are updated slowly to provide consistent targets for the Q-value updates. But
unlike DQN, the weights of the target networks θQ′ and θµ

′ are updated using a
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soft update mechanism:

θQ
′ ← τθQ + (1− τ)θQ′ (2.6)

θµ
′ ← τθµ + (1− τ)θµ′ (2.7)

where τ ≪ 1 is a small constant. This method ensures that the target networks
evolve smoothly, reducing the risk of divergence and instability during training.

DDPG has demonstrated strong performance on a variety of simulated physics
tasks, including cartpole swing-up, robotic manipulation, and legged locomotion.

Soft Actor-Critic (SAC)

Soft Actor-Critic (SAC) is an off-policy actor-critic algorithm designed to address
the challenges of sample efficiency and stability in deep reinforcement learning,
particularly for continuous action spaces. Developed by (Haarnoja et al. 2018),
SAC combines the benefits of entropy maximization (Ziebart 2010) with off-policy
learning.

The core innovation of SAC lies in its use of the maximum entropy framework,
which augments the standard reinforcement learning objective with an entropy
term. This approach encourages the agent to explore more widely by favoring
policies that maximize both expected return and entropy. The resulting objective
can be expressed as:

J(π) =
T∑
t=0

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))] (2.8)

where H(π(·|st)) represents the entropy of the policy π at state st, and α is a
temperature parameter that controls the trade-off between reward maximization
and entropy maximization. This entropy term incentivizes the agent to act as
randomly as possible while still achieving high rewards, leading to improved ex-
ploration and robustness against model errors.

SAC has demonstrated state-of-the-art performance on various continuous con-
trol benchmark tasks, such as those in the OpenAI gym benchmark suite (Brock-
man et al. 2016) and the rllab implementation of the complex Humanoid task
(Duan et al. 2016), which involves a high-dimensional action space. Compared to
other off-policy algorithms like DDPG, SAC is more stable and less sensitive to
hyperparameter settings, making it easier to apply to a wide range of tasks.
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2.3. Transformer
The Transformer architecture, introduced by (Vaswani et al. 2017), represents a
major advancement in the field of deep learning, particularly for natural language
processing (NLP). Unlike recurrent neural networks (RNNs) (Rumelhart, Hinton,
and Williams 1986) and long short-term memory networks (LSTMs) (Hochre-
iter and Schmidhuber 1997), which process data sequentially, Transformers are
designed to handle input data in parallel, significantly improving computational
efficiency and enabling the processing of much larger datasets.

Figure 2.2: Transformer architecture (Vaswani et al. 2017).

The classic Transformer architecture (see Figure 2.2) is composed of an encoder-
decoder structure. Both the encoder and decoder are built using stacks of identical
layers. The encoder’s primary function is to process the input sequence, i.e.,
generate a continuous representation for each symbol in the input sequence, while
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the decoder uses these representations to produce the output sequence of symbols.
Each encoder layer consists of two main components: a multi-head self-attention

mechanism and a position-wise fully connected feed-forward network. The decoder
layers are similar to the encoder layers but include an additional multi-head at-
tention mechanism that performs attention over the encoder’s output. This allows
the decoder to access the encoded input sequence while generating the output
sequence.

2.3.1. Key Components of Transformer Architecture
The Transformer architecture is built upon several key components. These com-
ponents include multi-head attention, positional encoding, feed-forward networks,
and the use of layer normalization and residual connections.

Attention

The attention mechanism (see Figure 2.3) is at the heart of the Transformer ar-
chitecture. It allows the model to weigh the importance of different tokens in a
sequence relative to each other, regardless of their positions. This is achieved by
computing attention scores for each token with respect to all other tokens in the
sequence. The attention mechanism is defined by the equation:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.9)

where Q, K, and V represent the query, key, and value matrices, respectively,
and dk is the dimension of the key vectors. This mechanism enables the model
to capture long-range dependencies and contextual relationships more effectively
than traditional RNNs or LSTMs within the input sequence.

Multi-Head Attention

Multi-head attention (see Figure 2.4) is an extension of the attention mechanism
that enhances the model’s ability to focus on different aspects of the relationships
in the input sequence simultaneously. Instead of computing a single set of attention
scores, the multi-head attention mechanism divides the input into multiple heads,
each of which computes its own set of attention scores. These scores are then
concatenated and linearly transformed to produce the final output. The formula
for multi-head attention is given by:

MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headh)WO (2.10)
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Figure 2.3: Scaled Dot-Product Attention (Vaswani et al. 2017).

where headi = Attention(QWQ
i , KW

K
i , V W

V
i ), and WQ

i , WK
i , W V

i , and WO
i are

learned projection matrices.

Positional Encoding

Since Transformers do not inherently consider the order of tokens, positional en-
coding is used to inject sequence information into the model. Positional encodings
are added to the input embeddings to provide information about the positions of
tokens in the sequence. These encodings are derived from sine and cosine func-
tions of different frequencies, allowing the model to distinguish between different
positions. The formula for positional encoding is:

PE(pos,2i) = sin
(

pos

100002i/dmodel

)
(2.11)

PE(pos,2i+1) = cos
(

pos

100002i/dmodel

)
(2.12)

where pos is the position and i is the dimension. This encoding ensures that each
position has a unique representation that can be learned by the model.

Feed-Forward Networks

Each layer of the Transformer contains a position-wise fully connected feed-forward
network. These networks consist of two linear transformations with a ReLU ac-
tivation in between. The feed-forward network operates independently on each
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Figure 2.4: Multi-Head Attention (Vaswani et al. 2017).

position and provides non-linearity. The formula for the feed-forward network is:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.13)

where W1, W2, b1, and b2 are learned parameters. This component contributes to
the model’s ability to process and transform the input representations effectively.

Layer Normalization and Residual Connections

Layer normalization (J. L. Ba, Kiros, and Hinton 2016) and residual connections
(He et al. 2016) are employed within each encoder and decoder layer to stabilize and
accelerate training. Layer normalization normalizes the input across the features,
helping to maintain a stable distribution of activations. Residual connections, on
the other hand, add the input of each sub-layer to its output, enabling the gradient
to flow directly through the network. This helps to mitigate the vanishing gradient
problem and allows for deeper architectures. The formula for a residual connection
is:

Output = LayerNorm(x+ Sublayer(x)) (2.14)
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where Sublayer(x) represents the output of the multi-head attention or feed-
forward network.

2.3.2. Vision Transformer (ViT)
The Vision Transformer (ViT) represents a significant advancement in applying
Transformer models to computer vision tasks. Introduced by (Dosovitskiy et al.
2020), ViT leverages the self-attention mechanisms of Transformers, originally
developed for natural language processing, to process images. This approach marks
a departure from the traditional convolutional neural networks (CNNs) that have
dominated the field of computer vision.

Figure 2.5: Vision Transformer (ViT) architecture (Dosovitskiy et al. 2020).

The Vision Transformer (see Figure 2.5) adapts the standard Transformer ar-
chitecture to handle image data. Instead of processing a sequence of words, ViT
divides an image into a sequence of fixed-size, non-overlapping patches. Each
patch is treated as a token, similar to how words are treated in NLP applications.
Typically, an image is divided into N patches, each of size 16×16 pixels, resulting
in a sequence of N patches, where N is determined by the image size and patch
size.

Each patch is then linearly embedded into a fixed-dimension vector, forming
the input to the Transformer. To retain positional information, since the order
of patches is crucial for understanding the spatial structure of images, positional
embeddings are added to the patch embeddings.
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The embedded patches, along with their positional encodings, are fed into a
standard Transformer encoder. The encoder consists of multiple layers of multi-
head self-attention and feed-forward neural networks, identical to those used in
NLP Transformers.

The output of the Transformer encoder is a sequence of vectors, one for each
patch, that collectively represent the image. A special classification token ([class])
is typically appended to the sequence of patch embeddings before being fed into
the Transformer. The final representation corresponding to this [class] token is
used for image classification tasks, as it aggregates information from all patches.

Vision Transformers have demonstrated competitive performance on several
benchmark datasets, often surpassing traditional CNNs, especially when trained
on large-scale datasets. One of the key advantages of ViTs is their ability to
model long-range dependencies and global context more effectively than CNNs,
which rely on local receptive fields and hierarchical feature extraction.

In addition to classification tasks, Vision Transformers have been adapted for
various other computer vision applications, such as object detection, segmentation,
and image generation.
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This chapter provides an overview of key research areas related to our work
on object-centric model-based reinforcement learning. We begin by discussing
model-based reinforcement learning approaches, which form the foundation of our
method. We then explore object-centric learning techniques and their applica-
tions in reinforcement learning, highlighting both model-free and model-based ap-
proaches in this emerging field.

3.1. Model-based Reinforcement Learning
Model-based reinforcement learning is an approach in the realm of reinforcement
learning, where the agent explicitly learns a model of the environment. The fun-
damental idea is to use this learned model to simulate future states and rewards,
enabling the agent to plan and make decisions without directly interacting with
the real environment at every step.

Figure 3.1: Structure of a typical dynamics model used in model-based RL (Hafner, T.
Lillicrap, Fischer, et al. 2019a).
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At the core of model-based RL is the learning of a dynamics model (see Fig-
ure 3.1), which should capture different aspects of the environment depending on
the task and method. This model typically includes a transition model, which
models the transition function p(st+1|st, at). By doing this, it encapsulates the
probability distribution over the next state st+1 given the current state st and
action at. Alongside, a reward model, which models the reward function p(rt|st),
predicts the reward rt of getting to state st. In addition, it may be necessary to
include an observation model that models the observation function p(ot|st) if the
task to be solved is to be modeled as a POMDP, i.e., we only perceive the envi-
ronment through observations ot. This observation model often has an encoder-
decoder structure, where the encoder translates observations ot into latent states
st and the decoder implements the opposite direction. The latter is necessary, for
example, to be able to formulate a reconstruction loss for the transition model.

One of the primary advantages of model-based RL is improved sample efficiency.
By using the learned model to simulate interactions, the agent can gather a vast
amount of experience without needing to interact with the real environment. This
is particularly beneficial in scenarios where real-world interactions are expensive,
time-consuming, or risky. As a result, model-based RL can achieve better per-
formance with fewer real-world samples compared to model-free approaches. This
efficiency is crucial in domains such as robotics and autonomous driving, where
physical trials are costly and potentially hazardous.

Transferability is another significant benefit of model-based RL. One major di-
mension of this transferability is between different tasks or goals within the same
environment. Once an agent has learned the underlying dynamics of an environ-
ment, it can often adapt to optimize for different reward functions with minimal
retraining. This ability to reuse learned dynamics models across tasks reduces the
need for extensive data collection when pursuing new objectives. For instance, a
robot that has learned the physical dynamics of manipulating objects could quickly
adapt to new tasks like stacking, sorting, or assembling without having to relearn
the fundamental physics. Beyond task transfer, dynamics models can sometimes
be adapted to similar but distinct environments. For example, a model trained
in simulation might be fine-tuned for use in a real-world setting, enhancing the
practical utility of the learned policies.

Explainability is also enhanced in model-based RL compared to model-free ap-
proaches. Since model-based RL explicitly models the environment’s dynamics, it
provides a clearer understanding of how different actions influence future states
and rewards. This transparency aids in diagnosing and troubleshooting the agent’s
behavior, making it easier to identify the causes of failures or suboptimal perfor-
mance. Additionally, the interpretability of the learned model can be valuable in
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applications where understanding the decision-making process is crucial for safety
and compliance.

3.1.1. Deep Planning Network (PlaNet)
Deep Planning Network (PlaNet) is a model-based reinforcement learning algo-
rithm introduced by (Hafner, T. Lillicrap, Fischer, et al. 2019b). PlaNet is de-
signed to learn environment dynamics from images and to perform planning in a
compact latent space, significantly reducing the computational cost compared to
planning directly in the high-dimensional observation space.

At the core of PlaNet is the Recurrent State Space Model (RSSM), which com-
bines both deterministic and stochastic components to model the environment’s
dynamics. By modeling both deterministic and stochastic transitions, RSSM can
handle the uncertainty and partial observability inherent in many tasks. PlaNet
uses the learned RSSM for planning to select optimal actions through the Cross
Entropy Method (CEM) (Rubinstein 1997). CEM is a population-based optimiza-
tion algorithm that iteratively improves a distribution over action sequences to
maximize expected rewards. The process involves sampling a set of candidate
action sequences from a Gaussian distribution, simulating trajectories using the
RSSM to evaluate the expected rewards of each action sequence, and updating the
distribution based on the top-performing action sequences. This iterative process
allows PlaNet to efficiently search for optimal actions in the latent space

PlaNet was tested on a variety of continuous control tasks from the DeepMind
Control Suite (Tassa et al. 2018). Compared to model-free methods like A3C
(Mnih, Badia, et al. 2016) and D4PG (Barth-Maron et al. 2018), PlaNet achieves
comparable performance with substantially fewer interactions with the environ-
ment (e.g., 200 times less). However, PlaNet also faces several challenges. Despite
planning in the latent space, the computational cost of evaluating numerous action
sequences online can be high. Also, planning is done over a limited horizon, which
can sometimes lead to suboptimal action selection.

3.1.2. Dreamer
Dreamer (Hafner, T. Lillicrap, J. Ba, et al. 2019) represents a significant advance-
ment in model-based reinforcement learning, distinguishing itself from previous
approaches like PlaNet by incorporating the learned dynamics model within an
actor-critic framework. This integration enables Dreamer to use an additional
value network to account for rewards beyond the immediate planning horizon and
an actor network to compute actions more efficiently. These components allow
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Dreamer to learn long-sighted behaviors through backpropagation of gradients
through the dynamics model predictions.

The actor network in Dreamer is trained to predict good actions by backprop-
agating the gradients of rewards through sequences of predicted states, a process
that is not feasible for model-free methods. This method enables Dreamer to re-
flect how minor adjustments to its action selection influence future rewards, thus
refining the actor network to maximize rewards. To account for rewards beyond
the prediction horizon, the value network estimates the discounted future rewards
for each latent state. These rewards and values are then backpropagated to the
actor network, optimizing it to select better actions.

Dreamer differs from PlaNet in several key aspects. Whereas PlaNet searches for
the optimal action by predicting the potential reward of various action sequences,
Dreamer avoids this computationally expensive process by separating planning
and acting. Once the actor network is trained on the predicted sequences, it can
directly compute actions for interaction with the environment without additional
searching. Furthermore, Dreamer considers rewards beyond the immediate plan-
ning horizon by using the value function

In evaluations on 20 visual control tasks of the DeepMind Control Suite (Tassa
et al. 2018), Dreamer outperforms the model-free baseline D4PG (Barth-Maron
et al. 2018), achieving an average score of 823 compared to 786, while requiring 20
times fewer interactions with the environment. Additionally, Dreamer surpasses
the final performance of PlaNet across nearly all tasks.

DreamerV2 (Hafner, T. Lillicrap, Norouzi, et al. 2020) introduced several sig-
nificant improvements over its predecessor. It replaced Gaussian latents with cat-
egorical latent states using straight-through gradients, enabling better capture
of multimodal dynamics. The algorithm employed KL balancing, scaling prior
cross-entropy and posterior entropy separately in the KL loss to encourage learn-
ing an accurate temporal prior. For discrete action spaces like Atari, DreamerV2
switched to REINFORCE gradients for policy optimization. The model size was
also increased from 13 million to 22 million parameters.

Building on these advancements, DreamerV3 (Hafner, Pasukonis, et al. 2023)
incorporated additional robustness techniques. These included observation symlog
transformation, free bits for KL loss, and a 1% uniform mixture for all categorical
distributions. To handle varying reward scales across different tasks, DreamerV3
implemented percentile return normalization. The algorithm also introduced the
symexp twohot loss for reward and critic models, stabilizing the learning process.
Network architecture improvements included the use of Block GRU, RMSNorm
normalization, and SiLU activation functions. The optimizer was enhanced with
adaptive gradient clipping and LaProp. Additionally, DreamerV3 expanded the
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replay buffer capacity and added the ability to store and update latent states.
These cumulative improvements enabled DreamerV3 to achieve state-of-the-art

performance across a wide range of reinforcement learning benchmarks, demon-
strating robust learning and generalization capabilities across diverse tasks and
environments.

3.2. Object-centric Reinforcement Learning
Object-centric reinforcement learning aims to leverage structured representations
of environments in terms of distinct objects and their interactions. This approach
offers several potential benefits, including improved sample efficiency, better gen-
eralization, and more interpretable learned behaviors. In this section, we review
key developments in object-centric representation learning and its application to
reinforcement learning tasks.

3.2.1. Object-centric Representation Learning
Object-centric representation learning is a paradigm in machine learning that fo-
cuses on developing models capable of understanding and manipulating scenes
based on the discrete objects they contain (see Figure 3.2). This approach con-
trasts with traditional methods that process scenes as undifferentiated wholes.
The key benefit of object-centric representation learning is its ability to provide
more interpretable and generalizable representations by explicitly modeling the
objects within a scene and their interactions. This capability allows models to
better handle complex tasks such as scene understanding, object manipulation,
and interaction prediction, making them particularly useful for applications in
robotics and computer vision.

Object-centric methods are advantageous because they can systematically gen-
eralize to new compositions and variable numbers of objects, which is challenging
for holistic scene representation approaches. By disentangling the scene into ob-
jects, these methods enable the learning of more robust and modular representa-
tions, facilitating transfer learning and improving performance on tasks requiring
high-level reasoning and manipulation of individual entities.

Slot Attention

Slot Attention (Locatello et al. 2020) is one of the first methods with which the
learning of object centric representations could be practically implemented without
the need for specifically annotated data. It is designed to interface with perceptual
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Figure 3.2: Different representation learning paradigms.

representations, such as those generated by convolutional neural networks (CNNs),
and produces a set of task-dependent abstract representations called “slots”. Each
slot is intended to bind to a particular object or part of the input scene through
an iterative and competitive attention process.

The Slot Attention mechanism (see Algorithm 1) begins with the initialization of
slots as independent samples from a Gaussian distribution with shared, learnable
parameters. These slots serve as abstract representations that will be refined to
capture different objects or components of the input scene. Both the input feature
vectors and the slots are normalized using LayerNorm to ensure stability and
improve convergence during training.

A softmax function is applied to the dot product of transformed input features
and slots, creating a competitive process where slots compete to explain parts
of the input. This competition is crucial for the slots to specialize and bind to
specific parts of the scene. The input features are then assigned to slots based on
the attention weights, and the values are aggregated using a weighted mean. This
aggregation step ensures that each slot receives a summary of the features it is
responsible for.

The slots are updated through a recurrent update function, typically a Gated
Recurrent Unit (GRU), which integrates the aggregated features and refines the
slot representations. An optional residual MLP with ReLU activation can be used
to further enhance the slot updates. This iterative process of attention calculation,
feature aggregation, and slot updating continues until the slots converge to stable
representations of the objects or components within the scene.
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Algorithm 1 Slot Attention module (Locatello et al. 2020). The input is a set ofN
vectors of dimension Dinputs which is mapped to a set of K slots of dimension Dslots.
The slots are initialized by sampling their initial values as independent samples
from a Gaussian distribution with shared, learnable parameters µ ∈ RDslots and
σ ∈ RDslots . In experiments, the number of iterations is for example set to T = 3.

1: Input: inputs ∈ RN×Dinputs , slots ∼ N (µ, diag(σ)) ∈ RK×Dslots

2: Layer params: k, q, v: linear projections for attention; GRU; MLP; Layer-
Norm (x3)

3: inputs = LayerNorm(inputs)
4: for t = 1→ T do
5: slotsprev = slots
6: slots = LayerNorm(slots)
7: attn = Softmax

(
1√
D
k(inputs) · q(slots)T , axis = ‘slots’

)
8: updates = WeightedMean(weights = attn + ϵ, values = v(inputs))
9: slots = GRU(state = slotsprev, inputs = updates)

10: slots = slots + MLP(LayerNorm(slots))
11: end for
12: return slots

Slot Attention excels in scenarios where the goal is to discover and represent
objects without explicit supervision. For instance, it can be used in an autoencoder
framework to encode images into a set of slot representations and then decode them
back to reconstruct the original image. This process enables the model to learn
object-centric representations that capture the underlying structure of the scene.

3.2.2. Model-free Object-centric Reinforcement Learning
Model-free object-centric reinforcement learning methods integrate object-centric
representations into traditional model-free RL algorithms. These approaches aim
to exploit the structure provided by object-centric representations without explic-
itly modeling environment dynamics. We discuss several notable works in this
area, examining their strengths and limitations in handling complex visual envi-
ronments and object interactions.

SMORL

SMORL (Self-supervised Multi-object Reinforcement Learning) as introduced by
(Zadaianchuk, Seitzer, and Martius 2020) combines SCALOR (Jiang et al. 2019),
an object-centric encoder, with a goal-conditioned reinforcement learning approach.
To effectively utilize the set of representations generated by SCALOR, SMORL
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introduces a specialized goal-conditioned attention mechanism.
The SMORL pipeline begins with pre-training SCALOR on data collected from

a random policy. Subsequently, a goal-conditioned policy is trained to achieve
randomly sampled goal configurations. During evaluation, the system receives
a goal observation, which is encoded by SCALOR to extract the desired goal
configuration of objects. The policy then attempts to sequentially position objects
into their goal configurations by cycling through the encoded goals.

SMORL was evaluated on two robotic manipulation tasks: Visual Push and
Visual Rearrange. In Visual Push, the objective is to move objects from fixed
starting positions to random target positions. Visual Rearrange presents a more
challenging scenario, requiring the rearrangement of multiple objects from random
starting positions to random target configurations. Visual reinforcement learning
experiments were conducted with both single and dual object scenarios.

Performance-wise, SMORL achieved comparable results to the best baselines
in the Visual Push task and outperformed them in the more complex Visual Re-
arrange task. However, it’s worth noting that SMORL’s performance fell short
of that achieved by SAC (Soft Actor-Critic) (Haarnoja et al. 2018) which was
provided with ground truth object configurations. The authors attribute this per-
formance gap to SMORL’s limitations in handling occlusions and imperfections in
SCALOR-generated representations.

Interestingly, SMORL demonstrated some generalization capabilities across dif-
ferent numbers of objects. For instance, a model trained on the two-object Visual
Rearrange task performed comparably on the single-object variant to a model
specifically trained for that scenario.

While SMORL offers an innovative approach to multi-object reinforcement learn-
ing, it does have certain limitations. The method assumes that objects can be se-
quentially arranged into their goal configurations and requires observations of the
goal configuration. Additionally, it struggles with occlusion handling. Further-
more, the evaluation was limited to relatively simple robotic manipulation tasks,
leaving room for investigation of more complex scenarios in future work.

Pre-training Object-centric Representations for Reinforcement Learning

(Yoon et al. 2023) conducted a systematic investigation into the effectiveness
of pre-training object-centric representations (OCRs) for reinforcement learning
tasks. The study introduced a benchmark comprising various object-centric tasks,
including object interaction and relational reasoning, designed with visually simple
2D scenes and a more complex 3D robotic reaching task.

The authors found that OCR pre-training showed performance improvements
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in relational reasoning tasks compared to other representation types, but did not
consistently outperform other methods in tasks that don’t require reasoning about
object relationships. OCR pre-training demonstrated improved sample efficiency
in tasks where understanding object relationships is crucial. In out-of-distribution
generalization tests, OCR pre-training showed more robust performance than
ground truth state representations for unseen object colors.

The study emphasized the significance of model architecture, revealing that
transformer-based pooling layers were crucial in effectively utilizing object-centric
representations, particularly in tasks requiring relational reasoning. The effective-
ness of OCR pre-training was maintained even in the visually more complex 3D
robotic reaching task, where perfect object segmentation was not achievable.

However, the work has several limitations. The simplicity of the environments
used, particularly the 2D tasks with unicolored objects on black backgrounds,
raises questions about the generalizability of the findings to more complex sce-
narios. As the benefits of OCR pre-training appear to be task-specific and not
universally applicable to all object-centric scenarios, the limited complexity of the
tasks makes it difficult to assess how the observed sample efficiency would translate
to more challenging environments.

Furthermore, the authors note in the conclusion, the study is lacking environ-
ments with partial observability, where objects can be occluded. This is a common
challenge in more complex, realistic tasks, and its absence limits the applicability
of the findings to many more realistic scenarios. While the 3D robotic reaching
task provides some evidence of applicability to more realistic scenarios, this was
only demonstrated on a single task and still did not really address the issue of
occlusion. More diverse and complex environments, including those with partial
observability, would be needed to fully validate the claims and understand the
potential of OCR pre-training in practical reinforcement learning applications.

Entity Interaction Transformer (EIT)

The Entity Interaction Transformer (EIT), introduced by (Haramati, Daniel, and
Tamar 2024), represents a novel approach to goal-conditioned reinforcement learn-
ing from pixel inputs. At its core, EIT utilizes Deep Latent Particles (DLP)
(Daniel and Tamar 2022) to generate object-centric representations from visual
inputs. These representations are then processed by a transformer architecture,
which enables the model to reason about relationships between entities in the
scene.

EIT was tested on a suite of simulated tabletop robotic object manipulation
environments where the goal was to push cubes into target configurations. The
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EIT method was compared with a baseline method that uses unstructured repre-
sentations and with SMORL. EIT performs better than or equivalently to the best
performing baseline in each task. Additionally, the performance of EIT on tasks
requiring complex object interactions is significantly better than the performance
of SMORL, demonstrating its ability to reason about relationships between mul-
tiple entities. The authors also report strong generalization capabilities, with EIT
showing the ability to generalize zero-shot to tasks involving up to 6 objects when
trained on only 3 objects.

However, the method is not without limitations. EIT assumes full observability
of the environment, which may limit its applicability in more realistic scenarios
with partial observability. The evaluation of EIT has been primarily limited to a
single type of environment, raising questions about its performance in more diverse
settings. Furthermore, as noted by the authors, EIT requires a pretrained DLP
model. While pretraining on data collected using a random policy worked well
for the domains tested, more complex tasks may necessitate more sophisticated
pretraining approaches or an online method that integrates DLP training with
policy learning.

3.2.3. Model-based Object-centric Reinforcement Learning
Model-based object-centric reinforcement learning is a very new and largely unex-
plored field that combines the benefits of model-based RL with structured object
representations. This emerging area aims to learn actionable world models that
capture object dynamics and interactions, potentially enabling more efficient plan-
ning and decision-making. Despite the limited research in this domain, we have
identified an interesting and quite recent approach that merits discussion. In
the following, we present this method, examining its novel contributions to this
nascent field and considering its implications for future research in model-based
object-centric RL.

FOCUS

FOCUS, introduced by (Ferraro et al. 2023), presents an approach to model-
based reinforcement learning that incorporates an object-centric world model. The
method builds upon the DreamerV2 algorithm (Hafner, T. Lillicrap, Norouzi, et
al. 2020), replacing its standard world model with an object-centric variant.

The world model in FOCUS shares structural similarities with the Recurrent
State Space Model (RSSM) used in PlaNet (Hafner, T. Lillicrap, Fischer, et al.
2019b) and Dreamer (Hafner, T. Lillicrap, J. Ba, et al. 2019). A key modification
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is in the decoder component, which extracts a latent representation for each object
from the latent RSSM state, then decodes each object into a mask and an image
reconstruction, including RGB and depth information where applicable.

Training of this object-centric world model involves an additional reconstruction
loss, computed on the masked reconstructions and the masks themselves. This
approach requires object-specific masks for supervision. In real-world experiments,
where such masks are not inherently available, the authors utilized SAM-masks
(Segment Anything Model) (Kirillov et al. 2023) to provide the necessary object-
specific supervision.

FOCUS introduces an exploration strategy based on a maximum entropy for-
mulation of the latent object representations. This approach aims to encourage
exploration of the environment in an object-centric manner. The method was eval-
uated on both simulated and real-world robotic manipulation tasks. The authors
report that FOCUS performed comparably to or better than the baselines tested,
including DreamerV2, across the experimental tasks. The results also indicated
strong exploration performance.

However, FOCUS has certain limitations and assumptions that are important
to consider. It requires object-specific masks for training the world model, which
may not always be readily available or easy to generate in all environments. The
method also relies on proprioceptive and depth information in addition to visual
data, which may limit its applicability in scenarios where such information is not
accessible. While FOCUS uses object-centric representations in its world model
and exploration strategy, it still relies on the singular latent state of the RSSM for
reward prediction, value estimation, and action selection.

In comparison, our proposed method aims to address some of these limitations.
Our approach learns object-centric representations in a fully unsupervised manner
from visual input alone, without requiring segmentation masks for supervision.
We do not assume access to proprioceptive or depth information, instead learning
all necessary representations solely from visual input. Our method utilizes object-
centric representations more extensively, incorporating them into reward and value
prediction, as well as the action selection process. We model object interactions
and their state transitions explicitly in the transition model, with each object
represented by its own latent representation.
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4. Method
In this chapter, we introduce our novel method that performs model-based re-
inforcement learning using an object-centric world model. Our approach centers
on two key innovations: First, we develop a structured action-conditioned world
model that predicts environmental dynamics in terms of individual entities or ob-
jects. This allows for a more granular and interpretable representation of the scene.
Second, we design reinforcement learning models capable of effectively reasoning
over these object-centric representations to solve control problems. To provide a
clear overview of our method, Algorithm 2 presents the core steps of our algorithm.

4.1. Dynamics Model Learning
A significant aspect of our work is the introduction of an object-centric dynamics
model to model-based RL. This approach offers distinct advantages: it enhances
the prediction of environmental dynamics by enabling the model to more explicitly
learn interactions between objects, and it facilitates the learning of behaviors that
rely on understanding the relationships between objects.

4.1.1. Slot Attention for Video (SAVi)
To achieve an object-centric representation of the environment, we adopt a prelim-
inary step of pre-training, following an approach similar to those used by (Hara-
mati, Daniel, and Tamar 2024; Villar-Corrales, Wahdan, and Behnke 2023; Yoon
et al. 2023; Zadaianchuk, Seitzer, and Martius 2020). This pre-training step is de-
signed to establish a robust object-centric representation before proceeding to the
main training phase. We utilize the Slot Attention for Video (SAVi) method, as
introduced by (Kipf et al. 2021), which builds upon the Slot Attention mechanism
proposed by (Locatello et al. 2020). SAVi effectively extends the Slot Attention
framework to handle video inputs by employing a predictor-corrector framework
that iteratively refines object representations across frames.

In the predictor step, the model generates an initial estimate Ẑt+1 for the slots at
the next time step t+1, based on the slots outputted by the corrector Zt from the
current time step t. This prediction is obtained by applying a transformer to the
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Algorithm 2 Overview of Training Procedure
Require: Number of object-centric autoencoder pretraining episodes Np, number

of seed episodes Ns, number of behavior learning episodes Nb, update steps
per behavior learning episode G, object-centric autoencoder fine-tuning ratio
f

1: ▷ Generate pretraining dataset with random actions:
2: Initialize environment env and pretraining dataset Dp

3: for episode ep = 1 to Np do
4: Observe initial observation o0 = env.reset() and store it in Dp

5: for timestep t = 0 to max_timestep - 1 do
6: Sample random action at from action space A(env)
7: Execute action at in env and observe ot+1

8: Store ot+1 in Dp

9: end for
10: end for
11: ▷ Pretraining of the object-centric autoencoder:
12: Randomly initialize the object-centric autoencoder Zθ (e.g., SAVi)
13: Pretrain Zθ on Dp using a reconstruction loss
14: ▷ Main training:
15: Randomly initialize models: Transition Model Pθ, Reward Model Rθ, Action

Model Aθ, Value Model Vθ
16: Initialize experience replay buffer D with Ns random seed episodes
17: for episode e = 1 to Nb do
18: for update step g = 1 to G do
19: Sample mini-batch of data sequences from D
20: Update models Pθ, Rθ, Aθ, Vθ using sampled mini-batch
21: if (f · g · e) mod 1 = 0 then
22: Update Zθ on sampled mini-batch
23: end if
24: end for
25: Observe initial observation o0 = env.reset() and store it in D
26: for timestep t = 0 to max_timestep - 1 do
27: Sample action at ∼ Aθ(ot)
28: Execute action at in env and observe ot+1, reward rt
29: Store (ot+1,at, rt) in D
30: end for
31: end for
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4.1. Dynamics Model Learning

current slots to predict the temporal dynamics and account for object interactions
through self-attention.

In the corrector step, the predicted slots Ẑt+1 are refined using information
from the current frame. The frame ot is first processed by a convolutional neural
network (CNN) to extract spatial features ht. The refinement is done using Slot
Attention, where the predicted slots Ẑt+1 interact with the encoded features ht to
update the slot representations.

The slots Zt = {z1
t , . . . , z

N
t } can be decoded independently into RGB (ônt ) and

mask predictions (m̂n
t ). To obtain the combined reconstructed frame ôt, the masks

are normalized across the slot dimension via softmax, multiplied with the RGB
predictions, and then added together:

ôt =
N∑
n=1

mn
t ⊙ ônt , mn

t = softmax
N

(m̂n
t ), m̂n

t , ô
n
t = dec(znt ) (4.1)

In our implementation, we closely follow the SAVi framework as described by (Kipf
et al. 2021), including the use of learnable slot initializations. This approach, where
slots are initialized as a fixed set of learnable vectors, provides a consistent starting
point for the attention mechanism across different video sequences, contributing
to stable and accurate object representations in our experiments.

We pre-train SAVi on a dataset generated using randomly selected actions in
the environment. The model is trained using a reconstruction loss, calculated as
the squared difference between the reconstructed frame ôt and the ground truth
frame ot:

LSAVi =
1

T

T∑
t=1

∥ôt − ot∥22 (4.2)

Unlike most other approaches that use a fixed pre-trained object-centric encoder,
we make the design choice to further fine-tune SAVi during the main reinforcement
learning training loop. We update SAVi’s parameters at a lower frequency than
the other components, using a fraction f of the gradient steps. This fine-tuning
allows SAVi to potentially adapt to environments that differ significantly between
random and learned behavior. For example, in manipulation tasks, a trained
policy may frequently lift objects above the table, while random actions rarely
produce such configurations. By fine-tuning, we enable SAVi to maintain accurate
object representations across the full range of states encountered during training
and execution of the learned policy.
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4.1.2. Action Conditioned Object Centric Video Prediction

For our state transition model, we adapt the approach presented by (Villar-
Corrales, Wahdan, and Behnke 2023). Specifically, we employ a modified version
of their OCVP-Seq module, which demonstrated superior performance in their
experiments.

The method proposed by (Villar-Corrales, Wahdan, and Behnke 2023) builds
upon the Slot Attention for Video (SAVi) framework (Kipf et al. 2021) to achieve
object-centric video prediction. SAVi is used as a scene parsing module to decom-
pose input video frames into a set of object representations, referred to as slots.
These slots capture the properties and states of individual objects in the scene.
The key idea of their approach is to learn a predictor module that can model the
temporal dynamics and interactions of these object slots, enabling the prediction
of future object states and, consequently, future video frames. This object-centric
approach allows for more structured and interpretable predictions compared to
traditional frame-level video prediction methods.

The OCVP-Seq module, as introduced by (Villar-Corrales, Wahdan, and Behnke
2023), is designed to decouple the processing of temporal dynamics and object in-
teractions. It employs two specialized multi-head self-attention mechanisms: tem-
poral attention and relational attention. Temporal attention updates each object
slot by aggregating information from that same object up to the current time step,
while relational attention models multi-object interactions by jointly processing
all slots from the same time step. These attention mechanisms are applied se-
quentially, allowing for iterative refinement of the slots with both temporal and
relational information.

Our key modification to OCVP-Seq lies in incorporating action information
into the prediction process. While the original model only considered observa-
tions {o0, . . . ,oC} in the form of their latent slot representations {Z0, . . . ,ZC} =
{{z1

0, . . . , z
N
0 }, . . . , {z1

C , . . . , z
N
C }}, our adapted model also takes into account the

selected actions {a0, . . . ,aC} when predicting future frames (e.g., ôC+1).

To accommodate this change with minimal architectural modifications, we map
the actions (emba) into the token space of the predictor and append them to the
respective slots (also mapped into the token space by embz) of the corresponding
time step (see Figure 4.1). This results in the following transformation of the
predictor function:
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encSAVi decSAVi decSAVi

... ......... ... ...

... ......

Figure 4.1: The action-conditioned object-centric transition model.

ôC+1 = decSAVi
(
Pθ({embz(z

1
0), . . . , embz(z

N
0 )}, emba(a0), . . . ,

{embz(z
1
C), . . . , embz(z

N
C )}, emba(aC))

) (4.3)

= decSAVi
(
Pθ({tok_z1

0, . . . , tok_zN0 , tok_a0}, . . . ,
{tok_z1

C , . . . , tok_zNC , tok_aC})
) (4.4)

In this new formulation, the embedded actions essentially function as an addi-
tional slot token for each time step, and are treated as such in both relational and
temporal attention mechanisms. The blue colored terms in the equation represent
the newly added action embeddings (emba(at)) and their corresponding tokens
(tok_at). These action tokens are appended to the slot tokens for each time step,
allowing the predictor to incorporate action information directly into its process-
ing. It’s worth noting that while the transformer encoder processes these additional
action tokens, their output is not used in predicting the future observation and is
discarded.

To enable multi-step prediction, we can provide the predictor with additional
future actions {aC+1, . . . ,aC+T}. Concurrently, predictions from previous time
steps (in the form of their slot predictions) are fed back into the predictor, making
it autoregressive as introduced by (Villar-Corrales, Wahdan, and Behnke 2023).

For training, we adopt the loss function proposed by (Villar-Corrales, Wahdan,
and Behnke 2023). This loss function comprises two components: one that ensures
the predicted future frames closely match the actual future frames (LdynI

), and
another that enforces similarity between the slot predictions (from which the pre-
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dicted future frames are rendered) and the slot encodings of SAVi for the future
frames (LdynO

). The total loss for the predictor is defined as:

Ldyn = LdynI
+ LdynO

(4.5)

where LdynI
is the image prediction loss:

LdynI
=

1

T

T∑
t=1

∥ôt+C − ot+C∥22 (4.6)

and LdynO
is the object slot prediction loss:

LdynO
=

1

T ·N

T∑
t=1

N∑
n=1

∥ẑnt+C − znt+C∥22 (4.7)

Here, T is the number of predicted frames, C is the number of context frames, N
is the number of object slots, ôt+C and ot+C are the predicted and ground truth
frames respectively, and ẑnt+C and znt+C are predicted and reconstructed SAVi
object slots.

Unlike SAVi, which is pre-trained, our predictor model (serving as the transi-
tions model in our method) is trained during the main training loop on sequences
randomly sampled from the replay buffer.

4.2. Reinforcement Learning
In this section, we detail how the learned slot representations and the prediction
model are integrated into our reinforcement learning framework. Our approach
builds upon the Dreamer algorithm (Hafner, T. Lillicrap, J. Ba, et al. 2019; Hafner,
T. Lillicrap, Norouzi, et al. 2020; Hafner, Pasukonis, et al. 2023), employing an
actor-critic architecture for model-based reinforcement learning.

To implement this framework, we introduce three key components: a reward,
value, and action model. Each of these models takes the slot history as input
and performs a regression task, with the action model potentially producing a
multidimensional output.

A central challenge in this approach is effectively processing the slot sets from
individual time steps to generate the required output. Given that this task is
common to all three models, we have developed a unified architecture, termed
the slot processing module. Importantly, each of the reward, value, and action
models incorporates its own instance of this slot processing module, allowing for
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4.2. Reinforcement Learning

specialized processing while maintaining a consistent approach to handling slot
representations.

In the following subsections, we first introduce the slot processing module, which
forms the architectural backbone of our reinforcement learning models. We then
describe in detail the reward model, value model, and action model, explaining
how each utilizes its own instance of the slot processing module to perform its
specific function within the actor-critic framework.

4.2.1. Slot Processing Module
The slot processing module is a core component designed to process the sets of
slot representations generated by the SAVi encoder. This module aggregates in-
formation across multiple time steps to produce outputs, which are subsequently
used by model heads to predict rewards, values, or actions in the reinforcement
learning framework.

The primary motivation behind the slot processing module is to address chal-
lenges like occlusions and complex temporal dependencies that arise when learning
from visual inputs in dynamic environments. By relying on all past time steps’ slot
representations, the module can maintain a more comprehensive understanding of
the environment.

Inspired by the Vision Transformer (ViT) (Dosovitskiy et al. 2020), which effec-
tively handles sets of inputs treated as tokens to produce a singular output, and
the slot pooling method introduced in (Yoon et al. 2023) the slot processing mod-
ule utilizes a transformer encoder architecture. The goal is to relate and compare
object properties represented in the slots across different time steps efficiently. A
visualization of the slot processing module can be found in Figure 4.2.

The module takes as input a sequence of slot representations Z ∈ RT×N×D,
where T is the number of time steps, N is the number of slots per time step, and D
is the slot dimension. For processing, these slots are treated as tokens and passed
through a transformer encoder. Additionally, a learnable output token OUT is
introduced for each time step t, which is responsible for producing the final output
for that time step. Unlike the singular class token in the Vision Transformer, we use
multiple output tokens corresponding to each time step, ensuring that the module
can predict outputs for each time step when needed (e.g., reward prediction).

The transformer encoder receives the slot tokens and the output token as inputs.
The attention mechanism within the transformer allows each token, including the
output token, to attend to all other tokens from their time step and previous time
steps which is ensured by masking the attention weights, enabling the module to
capture relationships between objects represented by the slots. Additionally, we
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Figure 4.2: The slot processing module. Including a visualization of the attention weight
biases and masking in the self attention blocks.
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4.2. Reinforcement Learning

made sure through masking that tokens belonging to time step t cannot directly
interact with output tokens (and register tokens, which will be explained next) of
time steps m < t.

Inspired by the findings of (Darcet et al. 2023), the module also incorporates L
learnable register tokens REGl for each time step t, which are basically treated like
additional output tokens per time step. These tokens serve to offload intermediate
computations from the output tokens and help the module focus on relevant slots
while ignoring background or irrelevant slots. The output of these register tokens
is not directly used, but assists in refining the final output generated by the output
tokens.

To encode the position information, we employ Attention with Linear Biases
(ALiBi) (Press, Smith, and Lewis 2021) instead of classical absolute position en-
coding. ALiBi introduces linear biases directly into the attention scores, effectively
encoding the recency of tokens, which is crucial when dealing with varying sequence
lengths. This approach also helps the module generalize to longer sequences than
those seen during training.

The linear bias in ALiBi for a token at position i attending to a token at position
j is given by:

Biasi,j = −α|i− j| (4.8)

where α is a manually set parameter that controls the slope of the bias. The
slope parameter differs for each attention head to ensure that each attention head
potentially is able to focus on different time spans. This bias is shared among all
tokens (slots, output, and register tokens) within a single time step.

The attention mechanism used in our transformer encoder layers is mathemat-
ically described as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

+ Mask + Bias
)
V (4.9)

where Q, K, and V represent the query, key, and value matrices derived from
the input tokens, dk is their dimensionality and the Mask is added to ensure that
tokens attend only to other tokens as described above.

Figure 4.2 illustrates the combined effects of ALiBi and our masking approach
on the attention weight calculations. The intensity of cell shading in the masked
attention block corresponds to the magnitude of the bias introduced by ALiBi:
darker cells indicate a higher bias, resulting in stronger attention between the cor-
responding tokens. Conversely, white cells represent masked areas where attention
between tokens is prohibited, resulting in attention weights of zero. The block-like
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structure observed in the figure arises from the uniform ALiBi bias assignment to
slots and additional tokens (output and register tokens) within the same time step.
Some of these blocks appear incomplete, with sections removed in the area of the
additional tokens. This truncation demonstrates that these tokens are prevented
from attending to their counterparts in previous time steps.

The final output ht for each time step t is generated from the corresponding
output token after passing through the transformer encoder. This output is then
used by subsequent model heads to predict rewards, values, or actions.

This architecture allows our module to process variable-length sequences of slots,
capturing both local and global dependencies across time steps. The additional
register tokens provide the module with auxiliary memory, offering flexibility in
how it processes and stores information across the temporal dimension.

By design, this slot processing module can handle potential occlusions or tem-
porary loss of information in individual frames — a common challenge in visual
reinforcement learning. The ability to aggregate information across multiple time
steps allows the module to maintain a more robust understanding of the environ-
ment, even when individual observations may be incomplete or noisy.

4.2.2. Reward Model

The reward model is an integral component of the world model, working along-
side the SAVi encoder and the transition model to predict rewards from a given
sequence of slot representations. This model plays a crucial role in the actor-
critic framework, as it enables the value and action models to learn from rewards
generated by the world model rather than actual environment rewards.

Architecture

The reward model’s architecture is built upon a slot processing module instance.
This module processes the sequence of slot representations, {Z0,Z1, . . . ,ZT}, de-
rived from the observations through the SAVi encoder. The processed representa-
tions, {hr0,hr1, . . . ,hrT}, are then passed through a Multi-Layer Perceptron (MLP)
head to predict the rewards.

Reward Prediction

Instead of directly predicting a scalar reward value, the MLP head outputs logits
for a softmax distribution over K exponentially spaced bins bi ∈ B. The bins are
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defined as:

bi = symexp
(

2i

K − 1
− 1

)
·M, i ∈ 0, 1, ..., K − 1 (4.10)

where M is a scalar that determines the maximum absolute bin value, and symexp
(Webber 2012) is defined as:

symexp(x) = sign(x)(exp(|x|)− 1) (4.11)

The predicted reward r̂t is then computed as the expectation over these bins:

r̂t = softmax(fθ(hrt ))TB (4.12)

where fθ(hrt ) represents the MLP head’s output logits for the reward prediction
corresponding to time step t.

This approach allows the model to efficiently represent a wide range of reward
values while maintaining precision for both small and large rewards.

Two-Hot Encoding

For training, the true reward rt is first transformed using the symmetric logarithm
(symlog) function, and this transformed value is then encoded using a two-hot
encoding strategy (Marc G. Bellemare, Dabney, and Munos 2017; Schrittwieser
et al. 2020). The symlog function is defined as:

symlog(x) = sign(x) log(|x|+ 1) (4.13)

This transformation helps to compress the range of reward values, allowing for
better handling of both small and large magnitudes.

The symlog-transformed reward symlog(rt) is then distributed across the two
nearest bins in the exponentially spaced set. If symlog(rt) falls between bins bk
and bk+1, it is encoded as:

twohot(symlog(rt))i =


bk+1−symlog(rt)

bk+1−bk
if i = k

symlog(rt)−bk
bk+1−bk

if i = k + 1

0 otherwise
(4.14)

Unlike one-hot encoding, this encoding also allows any possible intermediate value
between two bin centers to be represented precisely.
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Loss Function

The model is trained by minimizing the negative log-likelihood of the two-hot
encoded reward distribution under the predicted distribution. The loss function
for the reward model, Lreward, is defined as:

Lreward = − 1

T + 1

T∑
t=0

twohot(rt) log softmax(fθ(hrt )) (4.15)

This loss function decouples the scale of gradients from the scale of the predicted
values, allowing for more stable training across diverse reward scales. The strategy
for training the reward model (including symexp/symlog and two-hot encoding)
has been adopted from (Hafner, Pasukonis, et al. 2023).

Like the transition model, the reward model is trained during the main training
loop on sequences that are randomly drawn from the replay buffer.

4.2.3. Actor-Critic Framework

Our approach builds upon the foundational training framework of the Dreamer
algorithm (Hafner, T. Lillicrap, J. Ba, et al. 2019; Hafner, T. Lillicrap, Norouzi, et
al. 2020; Hafner, Pasukonis, et al. 2023) to learn optimal behavior from our object-
centric world model, comprising the SAVi encoder, object-centric transition model,
and reward model.

The core of this method lies in the use of “latent imagination” for behavior
learning (see Figure 4.3). The process, detailed in Algorithm 3, involves training
both the actor (action model) and the critic (value model) exclusively through
interactions with the world model in the latent space of object slots.

Each component of the world model is fully differentiable. This allows us to em-
ploy gradient-based optimization techniques, enabling the action model to learn
how small adjustments in action selection influence expected future rewards. Con-
sequently, the model can be trained to maximize these predicted rewards through
backpropagation.

Algorithm 3 outlines the latent imagination process, demonstrating how we
sample from the replay buffer, generate imagined trajectories, and update our
models. This process leverages the compact and structured latent space of object-
centric representations, to efficiently predict future states and rewards based on
actions selected by the actor. The critic is trained to give the actor feedback on
his behavior so that he learns to select actions that reflect far-sighted behavior.
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encSAVi

Figure 4.3: Learn behavior through latent imagination.

Algorithm 3 Object-Centric Actor-Critic Learning via Latent Imagination
Require: World model Wθ = {Zθ, Pθ, Rθ} (SAVi encoder, object-centric transi-

tion model, reward model), actor Aϕ, critic Vψ, replay buffer D, imagination
horizon H, learning rates αϕ, αψ

1: for each training iteration do
2: Sample observation from replay buffer: o0 ∼ D
3: Encode observation: Z0 = Zθ(o0)
4: Initialize imagined trajectory: Ẑ0 = Z0

5: for h = 0 to H − 1 do
6: Sample action: ah ∼ Aϕ(Ẑ0:h)

7: Predict next state: Ẑh+1 = Pθ(Ẑ0:h,a0:h)
8: end for
9: Predict rewards: r̂1:H = Rθ(Ẑ0:H)1:H

10: Predict values: v̂1:H = Vψ(Ẑ0:H)1:H
11: Compute value estimates V λ

0:H−1 based on r̂1:H and v̂1:H
12: Update actor: ϕ← ϕ− αϕ∇ϕLactor(V

λ
0:H−1)

13: Update critic: ψ ← ψ − αψ∇ψLcritic(V
λ
0:H−1)

14: end for
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Value Model

The value model serves as the critic component in the actor-critic framework, which
is needed for estimating expected long-term rewards. Its architecture mirrors that
of the reward model, consisting of a slot processing module followed by a Multi-
Layer Perceptron (MLP) head.

Unlike the reward model, which predicts immediate rewards, the value model
estimates the sum of discounted future rewards. As there is no ground truth data
for this, value estimates V λ

0:H−1 are formed from predicted rewards r̂1:H and values
v̂1:H , which serve as target values for the value model training:

V λ
h = r̂h+1 + γ

(
(1− λ)v̂h+1 + λV λ

h+1

)
V λ
H = v̂H (4.16)

Here, γ is the discount factor, H is the imagination horizon and λ is a mixing
parameter to trade off bias and variance in the training of the value model (Sutton
and Barto 2018).

The value model is trained to predict these value estimates using a categorical
distribution over exponentially spaced bins, similar to the reward model. The loss
function for the value model is:

Lvalue = −
1

H

H−1∑
h=0

twohot(V λ
h )

T log softmax(fψ(hvh)) (4.17)

where fψ(hvh) represents the output logits of the value model’s MLP head for the
processed state representation hvh.

To enhance training stability, since the value model is trained on targets that
depend on its own predictions, we maintain a target network, whose parameters are
an exponential moving average (EMA) of the parameters of the value model. The
value predictions of this target network serve in addition to the computed value
estimates as training targets for the value model. This technique was introduced
by (Hafner, Pasukonis, et al. 2023) but is similar to ideas by (Mnih, Kavukcuoglu,
Silver, Rusu, et al. 2015). The target network parameters are updated as

ψtarget ← τψvalue + (1− τ)ψtarget, (4.18)

where τ is a small constant. We have decided to set τ to a value of 0.02 in our
experiments.
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Action Model

The action model, serving as the actor component in the framework, shares a sim-
ilar architectural foundation with the reward and value models. It incorporates a
slot processing module followed by a Multi-Layer Perceptron (MLP) head. How-
ever, unlike its counterparts that predict scalar values, the action model’s MLP
head is designed to output parameters for an action distribution.

Specifically, the MLP head predicts a mean µat and a standard deviation σat

to parameterize a normal distribution N (µat , σat |Z0:t) over possible actions. This
distributional approach to action selection offers several advantages, particularly
in terms of exploration. During training, actions can be sampled from this distri-
bution, implementing an adaptive exploration strategy that modulates the degree
of exploration based on the current state. This is especially beneficial in environ-
ments where certain states require more cautious exploration to avoid potentially
catastrophic outcomes.

To encourage exploration while maintaining good performance, we employ en-
tropy regularization (Haarnoja et al. 2018; Williams and Peng 1991) in the actor’s
loss function. This approach adds the entropy of the predicted action distribution
to the loss, incentivizing the model to maintain a degree of randomness in its pol-
icy without sacrificing expected returns. The resulting loss function for the actor
is formulated as:

Lactor = −
H−1∑
h=0

V λ
h

max(1, scaleV )
+ ηH(N (µah

, σat |Z0:h)) (4.19)

where V λ
h represents the value estimate at step h, H is the entropy of the action

distribution, and η is a hyperparameter controlling the strength of the entropy
regularization.

To adapt to varying scales of value estimates across different environments, we
use a normalization factor scaleV which was introduced by (Hafner, Pasukonis,
et al. 2023). This factor is computed using an exponential moving average (EMA)
of the difference between the 95th and 5th percentiles of the value estimates:

scaleV = EMA
(
Per(V λ

h , 95)− Per(V λ
h , 5), 0.99

)
(4.20)

This adaptive scaling ensures that the actor’s learning remains stable across a wide
range of environments with potentially different reward scales and dynamics.

45



4. Method

4.2.4. Implementation Details
In this section, we detail the explicit model configuration of the model components
we discussed in the previous sections.

World Model Components

The SAVi encoder consists of a convolutional neural network (CNN) with four
layers, each having 32 channels and a kernel size of 5. The encoder processes
64×64 RGB images without downsampling. The slot attention mechanism uses a
variable number of slots (typically between 2 and 10 depending on the experiment),
each with a dimension of 128. The decoder mirrors the encoder structure but with
64 channels per layer and includes upsampling to reconstruct the original image
size. We use 3 slot attention iterations for the first frame and 1 for subsequent
frames in the slot attention process of SAVi. SAVi employs Layer Normalization
(J. L. Ba, Kiros, and Hinton 2016) and ReLU activation functions.

SAVi also includes a predictor module, implemented as a transformer block with
4 attention heads and an MLP size of 256. This predictor is used to generate initial
slot estimates for subsequent frames based on the slots from the previous frame.

The SAVi model is pretrained using the Adam (Kingma 2014) optimizer on ap-
proximately one million frames for 400,000 gradient steps. During pretraining, we
use a batch size of 64 and an initial learning rate of 1e-4. We employ learning rate
warmup for the first 2,500 gradient steps, followed by cosine annealing (Loshchilov
and Hutter 2016) for the remaining steps. Gradient clipping with a maximum
norm of 0.05 is applied during training.

The object-centric transitions model, based on the OCVP-Seq architecture, is
implemented as a transformer encoder (with temporal and relational attention).
It uses 4 layers, each with 8 attention heads for both types of attention. The
token dimension is set to 256, and the hidden dimension in the feed-forward layers
is 512. The model incorporates residual connections. Like SAVi, it uses Layer
Normalization and ReLU activations. The transitions model employs absolute
positional encoding.

Reinforcement Learning Components

The reward model, value model, and action model all utilize a slot processing
module as their backbone. This module is implemented as a transformer encoder
with 4 layers, 8 attention heads, a token dimension of 256, and a hidden dimension
in the feed-forward layers of 512. Each model includes 4 learnable register tokens
to enhance information processing. These models use RMSNorm (Zhang and Sen-
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nrich 2019) for normalization and SiLU (Hendrycks and Gimpel 2016) activation
functions. For positional encoding, these models use Attention with Linear Biases
(ALiBi).

For the reward and value models, we use a categorical distribution with 255
bins, spanning the range from -20 to 20. The action model outputs the mean and
standard deviation for a Normal distribution, which is then transformed to bound
the actions within the environment’s action range.

Training Procedure

We also use the Adam optimizer for the main training phase. Different learning
rates are used for various components: 1e-4 for both the transition and reward
models, and 3e-5 for the SAVi encoder, the action and value models. To stabilize
training, we employ gradient clipping with different maximum norms: 0.05 for
the SAVi model, 3.0 for the transition model, and 10.0 for the reward, value, and
action models.

For all components in the main training phase, we also use learning rate warmup
for the first 2,500 gradient steps.

Additionally, we implement the exponential moving average (EMA) for the tar-
get value network with a decay rate of 0.98. We use an imagination horizon of 15
steps for behavior learning. The λ-parameter is set to 0.95.
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5. Experiments
To evaluate the effectiveness of our object-centric model-based reinforcement learn-
ing approach, we conducted a series of experiments on simulated robotic manip-
ulation tasks. This chapter describes our experimental setup, including the envi-
ronments we designed, the baselines we compared against, and both quantitative
and qualitative analyses of our results. We begin by detailing the suite of robotic
tasks, then present our evaluation methodology and findings, demonstrating the
advantages of our approach in terms of sample efficiency, performance, and inter-
pretability.

5.1. Environments
To test our model, we developed a suite of robotic manipulation tasks based on the
framework introduced by (R. Li et al. 2020). These environments are simulated
using MuJoCo (Todorov, Erez, and Tassa 2012). The basic structure across all
environments consists of a robot arm mounted on a base, positioned near a table
where the manipulation tasks take place.

We designed three categories of tasks: Reach, Push, and Pick-and-Place. Each
category has two variants: Specific and Distinct. The Specific variant requires
the robot to interact with a target object of a particular color, while the Distinct
variant challenges the robot to identify and manipulate the object that is visually
distinct from the others. This latter variant is particularly interesting as it re-
quires the agent to compare object properties, testing its ability to reason about
relationships between entities in the scene

In all environments, the robot is controlled by a 4-dimensional action vector
a = [ax, ay, az, agrip] ∈ [−1, 1]4, where the first three components represent the
desired movement direction of the end effector, and the fourth component controls
the gripper. In Reach and Push tasks, agrip is ignored. In these tasks, the gripper
is fixed in the closed configuration, as it is not required to solve the tasks.

For all tasks, we define the following constants:

• t1 = 20 and t2 = 10: Temperature parameters that determine the steepness
of the reward function.
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• dsuccess = 0.05: The distance threshold (in meters) for considering a task
successful.

5.1.1. Reach Environments
In Reach tasks, the robot arm must touch a spherical target while being distracted
by other targets. The positions of the targets are generated randomly. Figures 5.1
and 5.2 illustrate these environments.

(a) Four distractor targets (b) Two distractor targets

Figure 5.1: Reach Specific environment

Reach Specific

The goal is to reach the red sphere among differently colored distractor spheres.
The number (between zero and four) and color of the distractor targets is deter-
mined randomly. The reward is calculated as:

r = exp(−t1 · ∥pe − ptarget∥2) (5.1)

where pe is the position of the end effector and ptarget is the position of the target
sphere.

Reach Distinct

The robot must touch the sphere that is a different color from the others. The
reward function is the same as in Reach Specific, but the target is the uniquely
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(a) Four distractor targets (b) Two distractor targets

Figure 5.2: Reach Distinct environment

colored sphere. The number of distractors here is at least two to make the task
solvable. Success at the end of the episode in both variants is defined as:

success =
{
1 if ∥pe − ptarget∥2 < dsuccess

0 otherwise
(5.2)

5.1.2. Push Environments

Push tasks require the robot to slide a cube to a target location (red sphere). The
positions of the cubes and the target are generated randomly on the table. Figures
5.3 and 5.4 show these environments.

Push Specific

The agent must push the green cube to the red target area among differently
colored distractor cubes. The number (between zero and three) and color of the
distractors cubes is determined randomly. The reward is:

r = 0.9 · exp(−t1 · ∥pcube − ptarget∥2) + 0.1 · exp(−t2 · ∥pe − pcube∥2) (5.3)

where pcube is the position of the green cube.
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(a) Three distractor cubes (b) One distractor block

Figure 5.3: Push Specific environment

(a) Three distractor cubes (b) Two distractor block

Figure 5.4: Push Distinct environment
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Push Distinct

The goal is to push the uniquely colored cube to the target area. The number of
distractor cubes here is again at least two to make the task solvable. The reward
function is the same as in Push Specific, but pcube refers to the position of the
distinctly colored cube. Success (at the end of the episode) for both variants is
defined as:

success =
{
1 if ∥pcube − ptarget∥2 < dsuccess

0 otherwise
(5.4)

5.1.3. Pick and Place Environments

Pick-and-Place tasks require placing a cube at a target location. The difference
to the Push tasks is that the target (red ball) is in the air in 50 percent of cases
(decided randomly during episode generation). It is therefore possible in these
tasks for the gripper jaws to be opened in order to grab and lift cubes. The
number and color of the cubes is determined as in the Push environments. Figures
5.5 and 5.6 depict these environments.

(a) Three distractor cubes (b) One distractor block

Figure 5.5: Pick-and-Place Specific environment
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(a) Three distractor cubes (b) Two distractor block

Figure 5.6: Pick-and-Place Distinct environment

Pick-and-Place Specific

The robot must place the green cube on the red target area among differently
colored distractor cubes. The reward function is identical to the Push tasks.

Pick-and-Place Distinct

The agent must identify and place the uniquely colored cube on the target area.
The reward function is the same as in Pick-and-Place Specific, with pcube referring
to the position of the distinctly colored cube. The success criterion for both
variants is the same as in the Push tasks.

In Reach environments, episodes terminate after 50 steps and in Push and Pick-
and-Place environments after 100 steps. Colors for objects are sampled from a
predefined set of 16 colors when needed. In our environments, targets are mass-
less spheres whereas the objects to be manipulated are cubes which have a mass
associated with them.

5.2. Evaluation
This section presents a comprehensive evaluation of our proposed method against
two baselines: DreamerV3, representing the state-of-the-art in model-based rein-
forcement learning, and a variant of our model without object-centric represen-
tations. We first describe the baseline methods we compare our model against.
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We then present quantitative results, including learning curves, final performance
comparisons, and an analysis of sample efficiency. Finally, we provide qualitative
insights into our model’s behavior through visualizations of learned representations
and attention mechanisms.

5.2.1. Baselines
To evaluate the effectiveness of our object-centric model-based reinforcement learn-
ing approach, we compare it against two baseline methods across the environments
described in Section 5.1.

The first baseline is DreamerV3, the latest iteration of the Dreamer algorithm
family developed by (Hafner, Pasukonis, et al. 2023). DreamerV3 represents the
state-of-the-art in model-based reinforcement learning and can even be regarded
as one of the most powerful reinforcement learning algorithms available. To ensure
a fair comparison, we use the DreamerV3 variant with approximately 12 million
parameters, matching the total parameter count of our proposed method. For
this baseline, we utilize the official implementation provided by the authors of
DreamerV3, adapting it to incorporate our custom environments.

The second baseline is a variant of our proposed method, designed to isolate
the impact of object-centric representations. In this variant, we replace the Slot
Attention for Video (SAVi) (Kipf et al. 2021) module with a convolutional neural
network (CNN) autoencoder, while keeping the rest of the architecture largely
unchanged. This modification results in a model that generates a single latent
vector representation per observation, as opposed to multiple object-centric slot
representations.

The CNN autoencoder used in this baseline consists of an encoder and a decoder.
The encoder comprises four convolutional layers with 64, 128, 256, and 512 chan-
nels respectively, each followed by batch normalization and a ReLU. Importantly,
each convolutional layer uses a stride of 2, resulting in downsampling at each step.
The output of the final convolutional layer is flattened and passed through a linear
layer to produce a 512-dimensional latent vector (making it five times as large as
the slots representations used in our method). The decoder mirrors this structure,
starting with a linear layer to reshape the latent vector, followed by four transposed
convolutional layers that progressively upsample the feature maps. The final layer
uses a sigmoid activation to produce the reconstructed image.

To compensate for the lack of multiple latent vectors and to ensure a fair com-
parison, we increased the capacity of this baseline model. The total parameter
count for this baseline is approximately 60 million, which is five times larger than
our proposed method and the DreamerV3 baseline (both of which have about 12

55



5. Experiments

million parameters).
This increased capacity is achieved by expanding the size of the transformer

networks in the actor, critic, and transition models. Specifically, the hidden di-
mensions in these models were increased from 512 to 1024. The token dimension
in these models was also increased from 256 to 512.

By comparing our proposed method against these two baselines, we aim to
demonstrate not only its overall performance in relation to the current state-of-
the-art, but also to quantify the specific benefits derived from its object-centric
approach to model-based reinforcement learning.

5.2.2. Quantitative Evaluation
To evaluate the performance of our method and compare it to the baselines, we
conducted extensive experiments across our suite of robot manipulation tasks.
Each method was trained twice on each task with different random seeds to account
for variability. The training hyperparameters used are detailed in Table 5.1.

Figure 5.7 presents the episode returns obtained during training for each method.
These episodes were subsequently added to the replay buffer. It’s important to
note that our method underwent pre-training for 40,000 episodes in Reach tasks
and 20,000 episodes in Push and Pick-and-Place tasks. To account for this, we
shifted the curves of our method by the corresponding number of episodes.

To visualize the episode returns effectively, we applied an exponential moving
average with a factor of 0.999 for smoothing. We then subsampled a total of
150,000 points for each training run and calculated the mean value across the two
seeds for each point. The standard deviation is represented by the shaded area in
a slightly lighter color.

Figures 5.8 and 5.9 illustrate the average return and success rate, respectively,
on 100 seeded test episodes. For these evaluations, we tested all models every
10,000 steps on the same set of 100 test episodes. Unlike the training curves, these
figures show raw data without smoothing or downsampling. Again, we present the
mean and standard deviation across the two seeds.

The final performance of the fully trained models is summarized in Figures 5.10
and 5.11, which show the average returns and success rates achieved on 1,000 test
episodes.

Notably, our object-centric model consistently outperforms the baseline that
does not use an object-centric environment representation. This demonstrates the
power of decomposing the environment into multiple objects. Even though the
baseline model has five times more parameters than our method, it fails to match
its performance, often by a significant margin.
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Table 5.1: Hyperparameters Robot Environments
Category Parameter Value

SAVi
Pretraining

Pregenerated Episodes (Np)
40k (Reach)
20k (Push/Pick-and-Place)

Number of Slots (N) 8 (Reach/Push)
10 (Pick-and-Place)

Learning Rate 1e-4
Gradient Steps 400k
LR Warmup Steps 2500
Batch Size 64
Chunk Size 10

Behaviour
Learning

Imagination Horizon (H) 15

Discount Factor (γ) 0.96 (Reach)
0.98 (Push/Pick-and-Place)

λ 0.95
Actor entropy factor (η) 3e-4
Critic EMA Decay (1− τ) 0.98

Training

SAVi Learning Rate 3e-5
Predictor Learning Rate 1e-4
Reward Learning Rate 1e-4
Actor Learning Rate (αϕ) 3e-5
Critic Learning Rate (αψ) 3e-5

Gradient Steps per Episodes (G) 1 (Reach)
2 (Push/Pick-and-Place)

Gradient Steps per Ep. (SAVi) (f) 0.1 (Reach)
0.2 (Push/Pick-and-Place)

LR Warmup Steps 2500

Batch Size 64 (RL + SAVi)
32 (Predictor)

Chunk Size 10 (SAVi)
16 (RL + Predictor)

Predictor Seed Frames (C) 1

Number of Episodes (Nb)
150k (Reach Specific)
200k (Reach Distinct)
270k (Push/Pick-and-Place)

Number of Seed Episodes (Ns) 5
Action Repeat 2

Replay Capacity (Episodes) 100k (Reach)
50k (Push/Pick-and-Place)
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Figure 5.7: Returns received on episodes during training.
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Figure 5.8: Average returns received on test episodes during training.
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Figure 5.9: Success rates achieved on test episodes during training.
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Figure 5.10: Average returns received by fully trained models.

Figure 5.11: Average success rates achieved by fully trained models.
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When compared to the state-of-the-art method DreamerV3, our model shows
competitive or superior performance, as evident in Figure 5.10. This advantage is
particularly pronounced in the Distinct tasks, suggesting that our object-centric
approach is especially beneficial for tasks requiring relational reasoning between
objects.

While our success rate (Figures 5.9 and 5.11) is occasionally lower than Dream-
erV3, it’s important to note that this metric only captures performance at the final
step and uses a binary criterion. So this criterion might give the reader a better
idea about the performance of the models, because it is easier to interpret than an
arbitrary number, like it is the case with the episode return. But in contrast, the
models are trained to maximize expected return, which provides a more nuanced
measure of performance throughout the episode.

Another key advantage of our method is its improved sample efficiency, partic-
ularly evident in Figures 5.8 and 5.7. Our method often learns rapidly, achieving
good average returns much earlier in training compared to the baselines. This
efficiency could be crucial in applications where data collection is costly or time-
consuming.

Long-Horizon Reasoning

To further test the models’ ability to retain information over longer time horizons,
we conducted an additional experiment on the Push Distinct task. After the initial
observation, all but one distractor cube were removed from the simulation, as if
the cubes have fallen off the table. We evaluated this “Disappearing Objects”
variant using the same 1,000 seeded episodes as in Figures 5.10 and 5.11. Figure
5.12 compares the results with the original task performance.

Our method showed resilience to this modification, with performance decreases
of only 8.76% in average return and 9.79% in success rate. In contrast, Dream-
erV3 experienced more significant drops of 17.05% and 27.90% respectively. The
baseline method slightly improved, likely due to the simplified decision space with
fewer objects. These results suggest that our object-centric approach better main-
tains relevant information about temporarily invisible objects, a useful capability
for long-horizon reasoning in dynamic environments.

These results collectively demonstrate the effectiveness of our object-centric ap-
proach in model-based reinforcement learning, particularly for tasks requiring un-
derstanding and manipulation of multiple objects in a scene and potentially need-
ing to reason about their properties.
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Figure 5.12: Model performance comparison on Push Distinct when all but one distractor
cube are removed after the initial observation.

5.2.3. Qualitative Evaluation
To gain deeper insights into our model’s performance and behavior, we conducted
a qualitative analysis focusing on open-loop predictions, the visualization of atten-
tion weights, and evaluation of the SAVi fine-tuning.

Open-Loop Predictions

Figures 5.13 and 5.14 illustrate open-loop prediction sequences for the Pick-and-
Place Distinct and Push Distinct environments, respectively. These visualizations
demonstrate how our trained transitions model predicts future slots and, conse-
quently, future frames based on a single context frame and an action sequence.

Figure 5.13 showcases a rollout in the Pick-and-Place Distinct environment, de-
picting a successful grasp of the target cube and its subsequent repositioning to
the target location. The SAVi model effectively decomposes the initial scene into
individual objects, a decomposition that is maintained by the transition model
throughout the prediction sequence. Both the robot’s movement and the resulting
motion of the grasped block are predicted with high accuracy, demonstrating the
model’s ability to capture complex object interactions. Furthermore, the model
successfully predicts and handles occlusions, as evidenced by the continued accu-
rate prediction of the occluded object in the slot at the bottom of the frame.

Figure 5.14 further illustrates the model’s capabilities in the Push Distinct en-
vironment. This sequence showcases the model’s capacity to predict complex

63



5. Experiments

Figure 5.13: Pick-and-Place Distinct (with 3 distractor cubes) open loop prediction roll-
out.
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Figure 5.14: Push Distinct (with 3 distractor cubes) open loop prediction rollout.
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interactions between multiple cubes across numerous frames. As the robot pushes
one block, it may collide with others, setting off a chain of interactions. Our model
successfully captures these cascading effects, predicting not just the movement of
the directly manipulated object, but also the resulting movements of other objects
in the scene.

Attention Visualization

To understand what our trained action model focuses on when selecting actions, we
analyzed the attention weights of the output token in the slot processing module
instance of the action model. Figures 5.15 and 5.16 provide visualizations of these
attention weights for short and long contexts, respectively.

Figure 5.15: Action model attention visualization on Pick-and-Place Specific (3 distrac-
tor cubes) with short context. a) shows the original observation sequence.
b) shows the reconstruction of the observations by the SAVi model. c)
shows the reconstruction where each slot reconstruction is multiplied with
its attention weight. c) visualizes the color mapped attention weights.

Figure 5.15 shows the attention weights of the output token in the action model
for the Pick-and-Place Specific task at time step 6. It should be noted that the
action model can consider the entire observation sequence in the form of the slot set
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Figure 5.16: Action model attention visualization on Push Specific (3 distractor cubes)
with long context. For descriptions on what each row shows see Figure 5.15
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sequence in order to make a decision. The visualized attention weights therefore
all refer to the output of the action model for time step 6.

The model primarily focuses on the target cube that has already been grasped
in the current frame. Despite the target being occluded in the current time step,
the model shows robustness by assigning a strong attention weight to the target’s
slot in the previous time step. Notably, distractor cubes receive very low attention
weights, indicating that the model has learned to ignore irrelevant objects for the
task at hand.

Figure 5.16 presents attention weights for a longer context in the Push Specific
environment, revealing additional insights. In this case, the shown context is even
longer than the maximum context of 15 on which the action model is trained during
latent imagination. The effect of Attention with Linear Biases (ALiBi) (Press,
Smith, and Lewis 2021) is evident, with attention weights decreasing for more
temporally distant frames. We intended this recency bias because, in principle,
the current environment configuration (in the form of the current observation)
should be most important when it comes to selecting the next action. ALiBi also
helps the model to select actions on sequences that are longer than sequences that
were observed during training.

Interestingly, the model overcomes the ALiBi-induced negative attention weight
offset to extract information about the target’s position when it becomes occluded
from time step 4 onwards. This behavior allows the model to infer that the tar-
get cube is already correctly positioned despite the occlusion, demonstrating the
model’s ability to make informed decisions based on past observations.

SAVi fine-tuning

Our experiments demonstrate the importance of fine-tuning the SAVi model dur-
ing the main reinforcement learning training, particularly in environments where
object configurations differ significantly between random and learned behaviors.
This is especially evident in the Pick-and-Place tasks, where learned policies fre-
quently lift objects above the table — a situation that is highly unlikely to occur
during random exploration.

Figures 5.17a and 5.17b illustrate the impact of SAVi fine-tuning on the Pick-
and-Place Specific and Distinct tasks, respectively. The top row in each figure
shows the true observations, the middle rows display the reconstructions and slot
representation of the target cube from the pre-trained SAVi model, and the bottom
rows shows the same for the fine-tuned SAVi model.

In the Pick-and-Place Specific task (Figure 5.17a), we observe that the pre-
trained SAVi model struggles to accurately represent the target cube when it is
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(a) Pick-and-Place Specific environment.

(b) Pick-and-Place Distinct environment.

Figure 5.17: Impact of SAVi finetuning.
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lifted off the table. The slot reconstruction (shown below the full reconstructions)
becomes distorted and loses its cubic shape. In contrast, the fine-tuned SAVi
model maintains a clear and consistent representation of the cube throughout the
lifting action.

The Pick-and-Place Distinct task (Figure 5.17b) further highlights this effect.
Here, the pre-trained model not only distorts the shape of the lifted cube but also
fails to maintain its color, blending it with the robot arm. The fine-tuned model,
however, preserves both the shape and color of the distinct cube accurately, even
when it is being manipulated in the air.

These results underscore the necessity of adapting the object-centric represen-
tation model to the full range of object configurations encountered during task
execution. Without fine-tuning, the world model may fail to accurately represent
important states, potentially leading to suboptimal policy learning. The fine-tuned
SAVi model demonstrates improved robustness and generalization, enabling more
effective learning in complex manipulation tasks where objects undergo significant
changes in position and context.
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In this thesis, we introduced a novel approach to model-based reinforcement learn-
ing that leverages object-centric representations to enhance sample efficiency, per-
formance, and interpretability in visual control tasks. By extending the Object-
Centric Video Prediction (OCVP) framework of (Villar-Corrales, Wahdan, and
Behnke 2023) to function in an action-conditioned manner and integrating it with
the Dreamer algorithm (Hafner, T. Lillicrap, J. Ba, et al. 2019; Hafner, T. Lilli-
crap, Norouzi, et al. 2020; Hafner, Pasukonis, et al. 2023), we developed, to the
best of our knowledge, the first object-centric model-based reinforcement learning
method capable of solving continuous control tasks using only visual input.

Our extensive experiments on a suite of simulated robotic manipulation tasks
demonstrated the effectiveness of our approach. The object-centric model con-
sistently outperformed both a non-object-centric baseline with significantly more
parameters and the state-of-the-art DreamerV3 algorithm, particularly in tasks
requiring relational reasoning between objects. The improved sample efficiency
and rapid learning exhibited by our method highlight its potential for applica-
tions where data collection is costly or time-consuming. Further, we showed that
object-centric models are capable of adjusting to the changing state-distribution
characteristic of many non-trivial reinforcement learning problems, thereby over-
coming one of the key limitations of prior methods. Overall, we have demonstrated
that learning object-centric representations from pixels is a viable paradigm for
model-based reinforcement learning, thereby opening up many interesting avenues
for future research.

One key area for improvement is the incorporation of stochastic state repre-
sentations, similar to those used in the Dreamer family of algorithms. Currently,
our model uses deterministic representations, which may limit its ability to cap-
ture uncertainty in the environment. By introducing stochasticity into the state
representations, we could potentially improve the model’s robustness in partially
observable or stochastic environments. This modification would allow the model
to maintain multiple hypotheses about the current state, leading to more nuanced
and flexible decision-making.

Another promising direction for future work is the development of object-centric
exploration techniques. Drawing inspiration from the FOCUS approach (Ferraro
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et al. 2023), we could design exploration strategies that specifically encourage the
agent to interact with different objects or explore novel object configurations. This
object-centric approach to exploration could be particularly beneficial in environ-
ments with a diverse range of objects, as it would naturally guide the agent to
learn about the properties and interactions of various entities in its environment.
Such a technique could significantly improve the efficiency of learning, especially
in the early stages of training when the agent has limited knowledge about its
environment.

It is worth noting that advances in the field of learning object-centric representa-
tions could directly benefit our method. As our approach uses the Slot Attention
for Video (SAVi) framework (Kipf et al. 2021) as a key component, improve-
ments in object-centric representation learning could be integrated as a drop-in
replacement for SAVi. This modularity allows our method to benefit from future
developments in object-centric learning without requiring significant architectural
changes. As research in this area progresses, we can expect to see improvements
in the quality and robustness of object representations, which could translate into
better performance and generalization capabilities for our reinforcement learning
approach.

In conclusion, this work has demonstrated the potential of combining object-
centric representations with model-based reinforcement learning for visual control
tasks. By providing a structured and interpretable way to reason about objects
and their interactions, our approach opens up new possibilities for developing more
efficient and capable reinforcement learning agents. As we continue to advance in
this direction, incorporating stochastic state representations, object-centric explo-
ration techniques, and leveraging improvements in object-centric representation
learning, we move closer to creating AI systems that can understand and interact
with the world in ways that more closely resemble human cognition.

72



A. Additional Experiments

A.1. Finger Spin (DM Control)
To evaluate the versatility of our object-centric model-based reinforcement learning
approach, we conducted preliminary experiments on environments that are not
inherently object-centric. Specifically, we chose the Finger Spin task from the
DeepMind Control Suite (Tassa et al. 2018). This selection was motivated by the
fact that the Dreamer family of algorithms (Hafner, T. Lillicrap, J. Ba, et al. 2019;
Hafner, T. Lillicrap, Norouzi, et al. 2020; Hafner, Pasukonis, et al. 2023) has been
extensively evaluated on this suite, potentially allowing for a fair comparison.

While time constraints prevented a comprehensive study, our initial results are
promising and offer insights into the capabilities and limitations of our approach.
Figure A.1 demonstrates that our action-conditioned object-centric video predic-
tion performs well on this task, accurately capturing the dynamics of the finger
and the spinning object. This suggests that our model can effectively learn and
predict the behavior of systems even when they are not explicitly designed with
multiple distinct objects.

Figure A.1: Finger Spin open loop prediction roll-out.

Furthermore, as shown in Figure A.2, our model achieved notably good returns
on the Finger Spin task. This performance indicates that our approach can suc-
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cessfully learn effective policies for control tasks that do not necessarily require
reasoning about multiple interacting objects.

Figure A.2: Finger Spin returns received on test episodes during training.

However, it is important to note that our method appears to be less sample
efficient than DreamerV3 (Hafner, Pasukonis, et al. 2023) in this context. This
observation aligns with our expectation that the advantages of our object-centric
approach may be less pronounced in tasks that do not involve complex multi-object
interactions or reasoning.

A.2. Meta-World

To further evaluate the versatility of our object-centric model-based reinforcement
learning approach, we conducted preliminary experiments on selected tasks from
the Meta-World benchmark (Yu et al. 2020). This evaluation aimed to demon-
strate the efficacy of our method in manipulating objects beyond the unicolored
cubes commonly used in related object-centric RL research (Haramati, Daniel, and
Tamar 2024; Yoon et al. 2023; Zadaianchuk, Seitzer, and Martius 2020). Meta-
World provides a diverse array of robotic manipulation tasks, offering a suitable
testbed for this kind of evaluation. Our investigation focused on two specific tasks:
Press Button and Hammer.
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A.2.1. Press Button
The Press Button task requires the agent to manipulate a robotic arm to press a
button on a box. This task tests the agent’s ability to perform precise movements
and interact with small objects in a 3D environment.

Figure A.3: Press Button open loop prediction roll-out.

Figure A.3 illustrates our model’s capability to decompose the Press Button
environment and predict its dynamics. The predictions accurately capture the
robotic arm’s movements, demonstrating some grasp of inverse kinematics, and its
interaction with the button.

Our approach achieved significant success in this task, reaching a success rate
of 91.2% over 1000 test episodes after 20,000 training episodes. An episode is
considered successful if the button is pressed at least once during the episode.
Figure A.4 illustrates the learning progress, showing an increase in returns as
training progresses.

A.2.2. Hammer
The Hammer task presents a more complex challenge, requiring the agent to grasp
a hammer and use it to drive a nail into a wall. This task tests the agent’s ability
to manipulate tools and perform multi-step actions.

Figure A.5 showcases our model’s predictions for the Hammer task. As observed
in the Press Button task, the model successfully decomposes the environment and
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Figure A.4: Press Button returns received on test episodes during training.

Figure A.5: Hammer open loop prediction roll-out.
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demonstrates an understanding of the robot arm’s inverse kinematics. Moreover,
it accurately predicts the hammer’s movement following interaction with the robot
arm.

Figure A.6: Hammer returns received on test episodes during training.

Despite accurate predictions, our approach achieved a success rate of only 0.7%
over 1000 test episodes after 50,000 training episodes on the Hammer task. Here,
success is defined as driving the nail more than 9 cm into the wall. This limited
success may be attributed to the agent learning to grip and move the hammer
towards the nail (as evidenced in Figure A.5), but failing to consistently strike
the nail. Extended training periods, which were beyond the scope of this thesis,
might address this limitation. Nevertheless, Figure A.6 indicates that the agent
continues to improve its performance over time, even if this improvement has not
yet translated to a high success rate.

These experiments demonstrate that our object-centric approach can effectively
model and predict dynamics in environments featuring diverse objects, extending
beyond the manipulation of simple unicolored cube-like objects prevalent in re-
lated work (Haramati, Daniel, and Tamar 2024; Yoon et al. 2023; Zadaianchuk,
Seitzer, and Martius 2020). This underscores that the use of unsupervised learned
object-centric representations (in our case, utilizing SAVi (Kipf et al. 2021)) does
not constrain our method to manipulating only visually simple objects such as uni-
colored cubes. Instead, it showcases the potential of our approach to generalize to
more complex, realistic manipulation tasks.
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