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Abstract— Modern unmanned aerial vehicles (UAVs) are
irreplaceable in search and rescue (SAR) missions to obtain
a situational overview or provide closeups without endangering
personnel. However, UAVs heavily rely on global navigation
satellite system (GNSS) for localization which works well in
open spaces, but the precision drastically degrades in the
vicinity of buildings. These inaccuracies hinder aggregation of
diverse data from multiple sources in a unified georeferenced
frame for SAR operators.

In contrast, CityGML models provide approximate building
shapes with accurate georeferenced poses. Besides, LiDAR
works best in the vicinity of 3D structures. Hence, we refine
coarse GNSS measurements by registering LiDAR maps against
CityGML and digital elevation map (DEM) models as a prior
for allocentric mapping. An intuitive plausibility score selects
the best hypothesis based on occupancy using a 2D height
map. Afterwards, we integrate the registration results in a
continuous-time spline-based pose graph optimizer with LiDAR
odometry and further sensing modalities to obtain globally
consistent, georeferenced trajectories and maps.

We evaluate the viability of our approach on multiple flights
captured at two distinct testing sites. Our method successfully
reduced GNSS offset errors from up-to 16m to below 0.5m

on multiple flights. Furthermore, we obtain globally consistent
maps w.r.t. prior 3D geospatial models.

I. INTRODUCTION

Georeferenced maps are essential for modern SAR mis-

sions [1], [2]. From the initial planning stage to preserv-

ing a situational overview throughout the operation, first

responders continuously compile status updates from diverse

sources. Nowadays, UAVs are well-established for aerial

overviews or imaging from difficult to reach viewpoints

without endangering people’s life [3]–[10].

Automated UAV surveys require GNSS availability not

only for integration with georeferenced maps, but also for

safe flight in free airspace. Unfortunately, the precision

drastically degrades in the vicinity of buildings due to reflec-

tions, shadowing and canyon effects [11]. This makes pure

GNSS-based localization unreliable in urban areas where

first responders need to fly in-between buildings. However,

LiDAR-based odometry provides locally precise poses in the

proximity of 3D structures, but is prone to accumulate drift

over time and lacks georeferencing. In contrast, geospatial

maps, e.g., CityGML and DEM, have accurate georeferenced

poses for approximate building shapes and ground surfaces.

The registration of LiDAR maps with geospatial models

promises to enhance localization in urban areas where GNSS

a Autonomous Intelligent Systems Group, Computer Science Institute VI
– Intelligent Systems and Robotics – and b Center for Robotics and Lamarr
Institute for Machine Learning and Artificial Intelligence, University of
Bonn, Germany; c Fraunhofer FIT, Germany; d Fraunhofer IAIS, Germany;
quenzel@ais.uni-bonn.de

a)

b) c)

Fig. 1. Geospatial maps [a)] contain approximate building shapes and
ground height. Inaccurate raw GNSS measurements impair the accuracy
of georeferenced maps [b)]. We obtain a globally consistent map [c)] by
registration against the geospatial model.

accuracy is low and LiDAR data is informative. Moreover,

joint optimization, e.g., in a pose graph, reduces drift and

provides strong priors for allocentric mapping.

To enable alignment of model and LiDAR data, CityGML

data is combined with the corresponding DEM. The LiDAR

odometry [12] processes scans to obtain local maps and

poses. After semantic segmentation [13], we retain only

walls and ground surfaces for the georeferencing. GNSS and

IMU measurements initialize the approximate UAV pose —

in general with an accuracy of few meters, resp. degrees.

In a next step, we perform a grid search on the coarse

horizontal offset and register the local map against the model

at the offsetted poses using MARS [12]. A plausibility

check determines the best matching result using an intuitive

score from ray-traced occupancy with a 2D height map.

The refined GNSS pose now georeferences the local LiDAR

map and enables reliable registration of local maps for loop-

closing.

For allocentric mapping, we directly optimize the B-spline

knots of a continuous-time trajectory [14] using a pose graph.

Odometry constraints connect scans to their local map. Addi-

tional constraints stem from relative transformation between

local maps and preintegrated IMU [15]. We use the refined

GNSS poses as anchors in our pose graph to obtain globally
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consistent trajectories and allocentric maps with accurate

georeferencing.

Our approach successfully reduces the GNSS error for the

whole trajectory and even for local maps and single scans.

In short, our contributions include:

• a refinement strategy for GNSS measurements using

LiDAR registration against georeferenced 3D models,

• an intuitive plausibility score using height-based occu-

pancy,

• an allocentric spline-based pose graph optimizer for

continuous-time trajectories.

II. RELATED WORK

In recent years, several approaches have been developed

to improve the quality of GNSS data using 3D models.

Cappelle et al. [16] match RGB images against textured

models and fuse GNSS, odometry and gyroscope in an

Unscented Kalman-Filter (UKF). Wang et al. [17] tackle

global localization on floor plans by matching corners against

vertical edges within point clouds.

Zhang et al. [18] consider an autonomous driving scenario

and combine LiDAR point clouds with GNSS. Instead of

registering their LiDAR measurements against externally

available 3D models, they make use of maps from previous

runs that have been accurately georeferenced. The regis-

tration uses a deep neural network and measurements are

directly fused within an Extended Kalman-Filter (EKF).

Lucks et al. [19] follow an approach similar to ours and

register LiDAR scans against 3D models with the goal of

mitigating the shortcomings of GNSS. As in our work, City

Geography Markup Language (CityGML) is used in combi-

nation with a DEM. A major difference is their use of point-

to-plane correspondences between raw scan and 3D model

over long segments. Additionally, the transition between

trajectory segments is interpolated to obtain a coherent map.

Instead, we use adaptive surfel maps [12] and continuously

register smaller segments if geometrical constraints allow

successful registration.

Lv et al. [20] correct a continuous-time trajectory from

a traditional pose graph of keyframes while maintaining the

initial velocity prior to optimization. However, we directly

optimize the trajectory and further include GNSS measure-

ments as well as relative pose between previously refined

local maps.

III. METHOD

Our method consists of several steps as shown in Fig. 2.

We describe each step in the following and start with the

description of the georeferenced model.

A. Georeferenced Model

Fortunately, many German state governments make geode-

tic data publicly available1. Our georeferenced model com-

bines a CityGML model with a DEM. The state of North

1https://www.citygmlwiki.org/index.php?title=

Open_Data_Initiatives_in_Germany
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Fig. 2. System overview: Our refinement aligns small LiDAR maps
against a geospatial model using GNSS for initialization. After pose graph
optimization, our system outputs a globally consistent and georeferenced
map and trajectory.

Rhine-Westphalia publishes both in 1 km2 sized tiles2. The

CityGML contains the rough shape of buildings with Level

of Detail (LoD)-2 whereas the DEM contains the grounds’

height in a grid with a 1.0m2 resolution. At first, we

convert the CityGML model into a triangular mesh3 and

subdivide the triangles [21] until their area is at most 0.1m2.

Afterwards, we retain the triangle vertices. Similarly, we

bi-linearly interpolate the DEM grid to 0.1m2 resolution

and merge it with the sampled CityGML points for further

processing.

If the CityGML model is not available or the model quality

appears insufficient after visual inspection, we extract “roof”

and cluster “contour” annotated points from Aerial Laser

Scanning (ALS). After identifying “roof” points close to the

contour, we extract the roof’s 2D α-shape without height

using CGAL [22] and sample points in a line vertically from

the roof down to the floor height.

For registration, MARS [12] derives a multi-resolution

surfel map from the point cloud. Additionally, we compute a

2D height map where each cell stores the maximum height.

This height map aids to assess the quality of the registration

result with our plausibility score (Sec. III-D). Fig. 3 depicts

the model of the Poppelsdorf Campus at the University of

Bonn.

B. Scan Preparation

Our georeferenced model only contains ground and build-

ing surfaces. However, moving people, vegetation or other

obstacles may be present in the actual LiDAR scans. Hence,

we filter out clutter and retain only ground and building

points using semantic segmentation [13], as shown in Fig. 4.

Filtered single scans P are very sparse and more difficult

to register. Thus, aggregating multiple scans into local maps

W creates more complete surfel maps. As measurements

from the same position are redundant, the UAV needs to

move more than τ m since the last accumulated scan.

C. Georeferenced Local Alignment

Given a local map and initial pose, we align its surfel

map against the model’s surfel map with the registration

2https://www.opengeodata.nrw.de/produkte/

geobasis/
3https://github.com/citygml4j/citygml-tools
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Fig. 3. Model Generation: A view [a)] on the Poppelsdorf campus at the University of Bonn for easier scene understanding. The CityGML data [b)]
contains the rough polygonal building shape, while the DEM [c)] represents the ground surfaces. We combine the subsampled polygonal CityGML [d)]
with the interpolated DEM [e)] for our model [f)]. A surfel map [g)] is derived for registration [12] and a height map [h)] for our plausibility check.
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Fig. 4. A semantically annotated LiDAR scan with vegetation (green) and
people (yellow) before [a)] and after filtering [b)].

of MARS [12] optimizing a single pose. Our initial guess

for the local map pose stems from data provided by the

UAV. A 3-axis magnetometer inside the IMU provides the

orientation, whereas the GNSS supplies the approximate

horizontal position and optionally the altitude. In proximity

to the ground, we initialize the height from the model’s

height map and the ultrasonic sensor of the UAV.

During tests, the horizontal GNSS position sometimes

differed from the actual position by as much as 16m. Such

error exceeds the convergence radius for local registration

and results in convergence to non-global local minima. We

mitigate this with a grid search on the coarse horizontal shift

and run the registration for each shifted initial pose. The grid

covers the uncertainty range, e.g., with a resolution of 2m,

such that the local convergence basins overlap. Afterwards,

a subsequent plausibility check (Sec. III-D) determines the

best local minima.

In the absence of a magnetometer, the IMU accelerometer

allows computation of roll and pitch whereas the grid search

extends to combinations of horizontal shift and yaw.

D. Plausibility Check

Each alignment from the aforementioned grid search has

to be checked for its plausibility to reject incorrect local

minima. We propose a ray tracing-based plausibility score

that operates solely on a discretized height map calculated

from the model. The basic idea is to compare measured

LiDAR rays with the corresponding projected rays in the

model at the aligned pose.

After voxel filtering the scan points, we ray-trace hor-

izontally using Bresenham’s line algorithm [23] from the

sensor position o towards the point p in the height map.

For every cell along the ray, we check that the ray hpr
is

above the height map hpm
.With the discretized ray distance

dp from o to p and the model distance dpm
from o to the

first intersection (hpm
> hpr

), we compute a ray-score cray
as follows:

cray(p) = min

(

dpm

dp
, 1

)

∈ [0, 1] . (1)

The score sray increases linearly with the measured ray

distance up until the length of the projected ray in the model.

Here, an upper limit of 1 ensures that measuring further, e.g.,

through windows, is neither penalized nor encouraged as the

LoD-2 model only contains the rough shape of the facade

and not its interior.

On its own, this would lead to incorrect results when

comparing measurements on an open field with a building

in the model. Hence, we introduce a binary hit score chit:

chit(p) =

{

1, if (hpm
> (hp + ε)) ∧ (|dpm

− dp| < ϑ) ,

0, otherwise.

(2)

Intuitively, it is implausible to measure an intersection

(hpm
> hp) if there is no obstacle in the model map. At

the same time, the endpoint should be close to the surface

(|dpm
− dp| < ϑ).

We obtain our plausibility score sW for a local map as the

mean over all scores with a linear combination of cray and

chit with weight w ∈ [0, 1]:

cp = w cray(p) + (1− w) chit(p), (3)

sW =
1

|W|

∑

P∈W

1

|P|

∑

p∈P

cp. (4)

As apparent from construction, the most plausible alignment

from Sec. III-C should have sW closest to one, which

necessitates both criteria being close to one for all points.

Additionally, we compute the covariance’s condition num-

bers from model surfel map to local surfel map and vice versa

to detect possible slippage of the translation components
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Fig. 5. Spline-based Pose Graph: We estimate a continuous-time B-spline trajectory [14] T (t) with N knots (xi, . . . ,xi+N−1 ∈ X ) being active per
scan. Raw and refined GNSS positions (Tgnss, Tref ) allow to georeference the UAV trajectory with an anchor pose Ta. Odometry constraints (eo) connect
each scan P with the previous keyframe. Preintegrated IMU measurements (e∆) with optimizable biases (ωb,αb) enforce smoothness within a scan.
Relative poses (er) between keyframes or scans enable loop closing.

during registration. Testing both directions ensures rejection

even if associations differ. If κ is below a threshold τ and

sW is above γ, we accept the refined GNSS pose Tref for

the local map.

E. Spline-based Global Trajectory Optimization

In order to obtain a globally consistent map and trajec-

tory, we build a pose graph (V, E) that represents the full

UAV path using a continuous-time B-spline TX (t) as in

MARS [12]. In contrast to CLINS [20], we do not build a

standard pose graph from some keyframes and optimize the

keyframe poses only. Instead, our graph vertices V directly

contain the B-spline knots X , the GNSS anchor pose Ta,

IMU accelerometer and gyroscope biases (αb,ωb), as shown

in Fig. 5. The allocentric pose T (t) at time t is given by:

T (t) = TaTX (t). (5)

We jointly minimize for all constraints e ∈ E the Maha-

lanobis error with distance de and covariance Σe using a

robust huber norm [24]:

argmin
V

∑

e∈E

ρhuber
(

d⊺

eΣ
−1
e de

)

. (6)

A raw or refined GNSS pose Tabs with covariance Σabs

provides an absolute constraint ea ∈ E on T (t):

da = LogSE(3)

(

T−1
absTaTX (t)

)

∈ R
6, (7)

using the logarithm map LogSE(3) [14] . Alternatively, this

may be restricted to only the position pabs:

da,p = (TapX (t)− pabs) ∈ R
3. (8)

Odometry constraints eo ∈ E connect from scan at time

ts towards the previous keyframe at tk with pose To:

do = LogSE(3)

(

T−1
o TX (tk)

−1TX (ts)
)

∈ R
6. (9)

Preintegrated IMU measurements [15] e∆ ∈ E connect

consecutive scans from TX (ts−1) to TX (ts).

Additional relative pose constraints er ∈ E with TX (t1) ≈
TX (t0)Trel stem from registration of time-wise or spatially

neighboring local maps:

dr = LogSE(3)

(

T−1
rel TX (t0)

−1TX (t1)
)

∈ R
6. (10)

Here, our refined GNSS poses Tref aid in identifying spatially

neighboring maps and initialize the relative pose Trel for

registration. We only add relative constraints if the initial

translational distance for dr is smaller than 5% of the

distance along the trajectory. This intuitively allows larger

deviations for more distant loop-closures as errors accumu-

late over time.

Prior to optimization, we initialize yaw and horizontal

2D position of the GNSS anchor pose Ta by aligning [25]

the refined GNSS positions with the corresponding spline

positions. Empirically, we found this to provide a better

initialization over longer segments than using a single pose

since the IMU orientation might be slightly incorrect.

IV. EVALUATION

We recorded multiple UAV flights on different days at

the Campus Poppelsdorf of the University of Bonn. Our

UAV [26] is a modified DJI M210v2 equipped with an Intel

NUC and an Ouster OS-0 128 LiDAR. The UAV has an

external GNSS antenna by DJI to increase separation from

the compute hardware and reduce possible interference.

Although, one can expect higher accuracy from RTK- and

D-GNSS, our UAV is not equipped with either. Nonetheless,

we recently experienced occasional offsets above 1m and up

to 4m during static positioning tests with a Holybro UM982

RTK-GNSS due to canyoning.

We align the final maps against a georeferenced terrestrial

LiDAR scanner (TLS) cloud of the campus using Cloud-

Compare4. Afterwards, we compute the RMS positional

error for the raw GNSS and refined GNSS measurements.

Additionally, we evaluate the RMS positional error after

4https://cloudcompare.org/
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Fig. 6. Top-down closeup after optimization using only raw [a)] or refined GNSS [b)]. Our refinement successfully corrected the GNSS offset and reduced
the gap between height-colored model and local map.

TABLE I

RMSE EVALUATION W.R.T. GEOREFERENCED TLS

Sequence raw
GNSS

[m]

ref.
GNSS

[m]

opt. w/
raw

GNSS
[m]

opt. w/
ref.

GNSS
[m]

11-13-36 1.896 0.039 1.808 0.033

11-17-39 0.813 0.575∗ 0.777 0.053

14-18-47 461.861† 0.295 443.965 0.062

16-38-18 2.081 0.091 2.082 0.078

16-44-52 4.296 0.145 3.618 0.106

17-24-39 17.664 0.150 1.701 0.055

∗ due to outlier, w/o: 0.057 m. † contains mostly outlier.

optimization evaluated at the LiDAR scan time. The results

are shown in Table I.

Fig. 6 highlights the difference between using raw and re-

fined GNSS for georeferencing the reconstructed point cloud.

The visible gap for raw GNSS vanishes after optimization

when using refined GNSS. Fig. 7 further emphasizes this

on sequence “16-38-18” for a larger section of the campus,

showing clear improvement in aligning building walls.

The grid search for all offsets including alignment takes

around 0.5 s using a radius of 8m and 4m step size. Hence,

the search can run in parallel during normal operation since

new local maps are only created sporadicly. Our spline-based

optimizer takes around 1.5 s for the 166 s long sequence “11-

17-39” (Fig. 6).

We recorded 3 additional sequences at the abandoned

Javelin Baracks in Elmpt, Germany during a forest fire

training exercise by the fire brigade of the district Viersen.

The ALS predominantly contains ground, plant, tree top

and roof measurements with hardly any walls at a point

density of ≈ 4 to 10 points per m2 and an accuracy below

30 cm. In contrast to the previously used TLS, the ALS

cloud exhibits too little overlap with our measurements to

reliably constrain a reference alignment in lateral direction

with sufficient accuracy. As a result, we showcase our results

in Fig. 8 and report the positional RMS distance for raw and

refined GNSS w.r.t. our estimated correction. On average,

our pipeline corrected the raw GNSS between 2.40m and

3.06m per sequence, whereas most refined GNSS positions

are off by less than 10 cm.

V. CONCLUSION

We presented a novel approach to register local LiDAR

maps against geospatial data to reduce GNSS offsets. A

ray-tracing based score allows to select plausible refined

GNSS poses. Our new spline-based global trajectory opti-

mizer delivers globally consistent allocentric 3D maps. Our

experiments showcased the effectiveness of our approach and

successfully reduced the GNSS offset from multiple meters

to below 0.5m.
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[19] L. Lucks, L. Klingbeil, L. Plümer, and Y. Dehbi, “Improving trajec-
tory estimation using 3D city models and kinematic point clouds,”
Transactions in GIS, vol. 25, no. 1, pp. 238–260, 2021.

[20] J. Lv, K. Hu, J. Xu, Y. Liu, X. Ma, and X. Zuo, “CLINS:
Continuous-Time Trajectory Estimation for LiDAR-Inertial System,”
in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2021, pp. 6657–6663.
[21] S. Seeger, K. Hormann, G. Häusler, and G. Greiner, “A sub-
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