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Abstract— Horticultural tasks such as pruning and selective
harvesting are labor intensive and horticultural staff are hard
to find. Automating these tasks is challenging due to the semi-
structured greenhouse workspaces, changing environmental
conditions such as lighting, dense plant growth with many
occlusions, and the need for gentle manipulation of non-rigid
plant organs. In this work, we present the three-armed system
HortiBot, with two arms for manipulation and a third arm as an
articulated head for active perception using stereo cameras. Its
perception system detects not only peppers, but also peduncles
and stems in real time, and performs online data association
to build a world model of pepper plants. Collision-aware
online trajectory generation allows all three arms to safely
track their respective targets for observation, grasping, and
cutting. We integrated perception and manipulation to perform
selective harvesting of peppers and evaluated the system in lab
experiments. Using active perception coupled with end-effector
force torque sensing for compliant manipulation, HortiBot
achieves high success rates in our indoor pepper plant mock-up.

I. INTRODUCTION

Horticultural tasks such as pruning, thinning, pollination,
and selective harvesting are labor-intensive and need to be
carried out several times a season [1]. In contrast to the
mechanization of large-scale grain and cereal farms, the
automation of precision horticulture requires robots. Robotic
manipulation in horticulture presents several challenges due
to semi-structured greenhouse workspaces, variations in envi-
ronmental conditions such as lighting, complex and irregular
plant structures, varying plant organ sizes and shapes, dense
plant growth with many occlusions and obstacles, and the
need for gentle manipulation of non-rigid plant organs [2].

While there is an extensive body of work focusing on
fruit detection and localization, research on the full robotic
harvesting pipeline is limited [3]. Most selective harvesting
systems use specialized hardware for manipulators and end-
effectors [1]. In a recent review, Rajendran et al. [4] suggest
equipping selective harvesting robots with cooperative active
and interactive perception for improved fruit detection and
force sensing-enabled two-arm manipulation capabilities—
to match humans in handling complex fruit clusters. With
humanoids having potential to become general-purpose au-
tonomous workers adapting to different tasks [5], we aim
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Fig. 1: HortiBot: A three-arm system with active perception and
dual-arm manipulation for robotic horticulture. The right arm is
used for grasping, the left arm performs cutting, and the central
arm moves stereo cameras for mapping and online observation.

to close the research gap in horticulture manipulation by
proposing a non-specialized solution. HortiBot is a three-
arm system for active perception and dual-arm manipulation
in horticulture. The highly flexible robot is built from off-
the-shelf components for multiple horticultural tasks. Unlike
most other works that focus on only vision, control, or
motion planning, we present a fully integrated system. Our
contributions include:
• work space analysis and design of a three-arm system

with stereo cameras and force-torque sensors,
• visual perception of sweet pepper plants combining fruit

instance mapping with a novel peduncle detection ap-
proach and stem detection,

• online active perception during manipulation for refining
of targeted pepper and peduncle localization,

• dual-arm manipulation using parameterized motion primi-
tives and collision-aware online trajectory generation, and

• a thorough evaluation of the selective harvesting capabil-
ities in lab experiments using real sweet peppers.

II. RELATED WORK

With advancements in robotics and deep learning methods,
different aspects of horticulture have been automated using
robotic systems such as pollination [6] and dormant prun-
ing [7]. Of the many tasks in the horticultural industry, se-
lective harvesting is the one most often addressed by robotic
solutions [3]. The typical phases of selective harvesting are
fruit detection and localization, end-effector motion plan-
ning, fruit attachment to the end-effector, fruit detachment
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from the plant, and transport to a storage container. The
surveys compiled over the years [1]–[4] show that while
substantial progress has been made in fruit detection and
robotic hardware customization, the harvesting systems are
still not ready for commercialization due to low success rates
and high cycle times.

Whereas most attempts at autonomous harvesting have
focused on citrus fruits or apples due to sparse foliage and
easier localization, there have been only three reported at-
tempts on the development of a full pipeline for sweet pepper
harvesting: CROPS [8], Harvey [9], and SWEEPER [10].
Sweet peppers are among the most difficult crops to au-
tonomously harvest due to variation in shape and size, and
severe occlusions by leaves leading to failures in both pepper
and peduncle localization [8].

In CROPS [8], the focus of the research was on end-
effector design, with color-based pepper detection and time
of flight measurement for 3D localization. Bac et al. [8]
also developed a stem-dependent grasp pose calculation.
However, neither sweet pepper pose estimation nor peduncle
localization was the focus of this work, which led to low
success rates and high cycle times.

In Harvey [9], a sweet pepper pose estimation and grasping
algorithm [11] together with MiniInception [12], a mixture of
lightweight CNN approach for peduncle segmentation, was
deployed to improve the harvesting performance. However,
the peduncle localization accuracy is still limited with an F1-
score of 0.502 and led to detachment failures. Furthermore,
Harvey used a customized end-effector with a suction cup
and did not focus on motion planning for crop damage
avoidance, or active perception.

Arad et al. [10] focused on finding the best fit crop
conditions and on testing & validation of SWEEPER in a
commercial glasshouse. Semantic segmentation-based fruit
and stem detection were deployed on a 6-DoF industrial
robot arm with a customized end-effector, which caught
the fruit after harvesting. Due to the lack of peduncle
localization, cutting failures were reported.

To the best of our knowledge, HortiBot is the first attempt
at selective harvesting in general, and sweet peppers in
particular, that focuses on all the aspects of harvesting:
fruit detection and peduncle localization, active percep-
tion, environment-aware motion planning and force sensing-
enabled adaptive manipulation. HortiBot is a general-purpose
system that can also be used for other horticulture operations
such as leaf pruning and pollination.

III. HARDWARE SETUP AND SYSTEM OVERVIEW

While we focus on selective harvesting in this work,
HortiBot is intended for autonomous operation of different
horticulture operations such as leaf pruning, pollination,
and crop monitoring. This necessitates the use of dual-arm
manipulation. Additionally, an articulated head is necessary
to enable the manipulation system to perceive in the presence
of occlusions due to leaves and other plant organs during task
completion. The effectiveness of using a camera mounted
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Fig. 2: HortiBot hardware setup.

on an arm for visual tele-manipulation has already been
demonstrated [13], [14].

A. Hardware Setup

HortiBot consists of two 7-DoF UFactory xArm7 and
one 6-DoF UFactory Lite6 equipped with sensors and end-
effectors to autonomously perform greenhouse applications
such as selective harvesting in an adaptive manner (see
Fig. 2). The system is mounted on the PATHoBot plat-
form [15], designed to operate in commercial glasshouse
environments using the available structure. It navigates on
pipe-rails between individual crop rows and uses a scissor-
lift to bring HortiBot to the desired height (up to 3 m).

Both UFactory xArm7s are equipped with an OnRobot
HEX-E force-torque sensor. The right arm has a pneumatic
four-finger soft gripper referred to as Grasper. The pneu-
matic pump and two air valves are controlled using the digital
outputs of the xArm controller. The left arm is equipped
with a custom designed 1-DoF scissor, referred to as Cutter.
The Lite6 carries two stereo cameras: a ZED2i stereo camera
with deep learning based depth inferencing for medium range
sensing, and a RealSense D405 for short range sensing,
referred to as Observer. The Zed2i with a wide angle field
of view of 110 ° has better performance in sunlight with its
stereo based depth sensing and polarized lenses.

All three arms are connected to a common emergency-
stop button for safe operation. All necessary components
including the control PC (Zotac ZBox with core i7-13700H,
32GB RAM and RTX4070 mobile GPU) running ROS-
Noetic on Ubuntu 20.04, are mounted on a wooden platform
which can be fitted onto the PATHoBot platform easily.

B. System Overview

We use an adaptive autonomous behavior approach to
perform selective harvesting. Fig. 3 shows a brief overview of
the different phases of the autonomous harvesting workflow.
We carry out an initial mapping of the sweet peppers as
described in Sec. IV to create a world model of the pepper
plants. Using this model, we select the fruits based on their
reachability. Thereafter, we activate the online fruit following
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Fig. 3: Workflow for autonomous selective pepper harvesting.
Colors depict different actions: Perception (see Sec. IV), Logic
(see Sec. V-C), manipulation using Motion Primitives (see Sec. V-
A), and Online Trajectory Generation (see Sec. V-B).

while simultaneously approaching the fruit with the Grasper
and the Cutter. Once, we grasp the fruit, we pull it and
then refine the Cutter pose based on the updated peduncle
localization from the Observer as described in Sec. V. We
adaptively adjust the cutter position based on force feedback
and cut the peduncle after which the Grasper transports it
to the storage container and places it there. Except for the
initial mapping, the cycle is repeated until no fruits remain.

C. Workspace Analysis

The limited space in the glasshouse crop rows, and arm
specifications (workspace and kinematics) must be taken
into account when designing the platform. The goal is to
maximize the common workspace between the two manip-
ulation arms while reducing the potential for collisions. We
sampled 840 different arm mounting poses for both arms
with different x- and y-positions and roll and pitch angles and
tested each by counting collision-free IK-solutions reaching
270 sampled fruit poses. For each sample, the grasp and cut
end-effector pose is calculated for the corresponding arm.
The fruit poses have been sampled to be comparable to
real poses in glasshouses and are shown in Fig. 4. Over
90% of the sampled fruits are reachable with both arms
in the selected configuration. Repositioning the PATHoBot
platform allows to access the remaining fruits.

Fig. 4: Workspace analysis: Reachable (green) and non-reachable
(yellow) fruit poses for both manipulation arms in the selected arm
configuration.

D. Calibration

Some transformations must be calibrated before the system
can be used with the required accuracy. We perform a
classical hand-eye calibration approach to estimate the trans-
formations between Grasper’s and Cutter’s mounting poses,
Grasper’s and Observer’s mounting poses and the camera
mounting pose, similar to [16]. Custom 3D printed magnetic
ArUco markers can be attached to the Grasper’s and Cutter’s
last link with known transformations. We collect about
2,000 samples with different arm configurations, extract pixel
location in the images using the ArUco marker detection
of the OpenCV library and computed the projected marker
location into the image plane using forward-kinematics.
Finally we minimize the squared error function over all
samples, yielding the optimized transformations with a mean
reprojection error of 2.8 pixels over the recorded samples.

In addition to the hand-eye calibration, the force-torque
sensors need to be calibrated. We collect 45 force-torque
measurements from different sensor poses and use a standard
least squares solver to determine the optimal parameters
for the end-effector mass, the 3D center of mass with
respect to the sensor frame, and the force and torque bias.
The calibration procedure is performed once after hardware
changes or when the sensor bias drift becomes too large.
Currently, sensor drift is not compensated online, instead we
use the relative change over a short time horizon.

IV. PERCEPTION AND WORLD MODELING

A dynamic world model of the pepper plants is necessary
for successful autonomous harvesting. To this end, perception
of pepper plant organs is carried out in two stages as shown
in Fig. 6. In the initial mapping stage, the manipulation arms
are in stowed position and the Observer records the pepper
plant detections at different poses to create a world model
of the pepper plants with sweet pepper fruits, associated
peduncles and nearby stems. The manipulation system uses
this pepper plant model to determine the reachable fruits and
selects them serially for harvesting. During the manipulation
phase, the Observer performs online fruit following (Sec. IV-
D) for dynamic fruit and peduncle localization to account for
perturbations in the fruit locations owing to the manipulation
arms touching parts of the plants.

A. Plant Organ Detection

For creating a world model of pepper plants, we need
to detect and localize the pepper fruits, peduncles and
stems. We adopted a multi-pronged approach for detecting
these plant organs. We combined the synthetic capsicum
dataset [17], Kaggle sweet pepper dataset [18], and BUP20
dataset [19], to create an extensive dataset resulting in more
than 130,000 instances of sweet pepper. Since the synthetic
dataset provides only semantic segmentation annotations, the
detection of instances utilized OpenCV’s [20] contour finding
and refinement to generate instance segmentation masks for
sweet peppers and peduncles.

Reliable peduncle detection is necessary for the Cutter
to find the cutting point. However, detecting peduncles in



Fig. 5: Cropped peduncle detection. Pepper and cropped peduncle
detection applied on the fruits in the Campus Klein Altendorf
glasshouse pepper plants. As can been seen, there are multiple
peppers with peduncles not easily identifiable in the full image. The
image on the right shows the cropped image obtained by inflating
the pepper’s bounding box and the resultant pepper and peduncle
detected.

the full image is a challenging task as the mean Average
Precision mAP@50 was only 0.435, for a model trained
on the aforementioned dataset using the full images. Hence,
we developed a new approach for peduncle detection using
cropped images. From the original dataset, we created an
additional dataset containing cropped images of size 96x96
pixels centered around the sweet peppers, annotated with
pepper fruit and peduncle masks. The cropped peduncle
dataset contained more than 50,000 instances of peduncles
and more than 100,000 instances of sweet peppers. The re-
sults of the cropped peduncle detection method are presented
in Sec. VI-A.

During run-time, the sweet pepper instance segmentation
model is used to detect peppers in the full image. For each
pepper detected, a cropped image is created by inflating the
bounding box by 50 % as shown in Fig. 5. The cropped
peduncle instance segmentation model is applied on this
cropped image, and the peduncle mask and bounding box, if
any detected, are transferred to the full image. The peduncle
detections are annotated with the associated fruit instance
id for subsequent merging in the 3D domain. YOLOv8’s
tracking mode was utilized to enable tracking of the sweet
peppers and their associated peduncles across images.

During our initial trials, the Grasper used to accidentally
grasp the stems, especially when the peppers were located
behind the stems. Hence, it was imperative to detect and
localize stems to enable the manipulation system to select a
grasp that avoids grasping the stem during the fruit grasping.
We trained DeeplabV3Plus-Pytorch’s [21] semantic segmen-
tation model on the synthetic capsicum dataset for semantic
stem detections. At run-time, using contour detections, the
semantic masks of the stems were converted to a YOLOv8
consistent instance detection format.

B. 3D Mapping

Instead of an iterative search, detect, and harvest approach
for every pepper, which leads to higher cycle times, the
Observer performs an initial mapping of the pepper plants
using a fixed number of poses that span across the reachable
fruit locations (Sec. III-C). This also enables the fruits to be
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Fig. 6: Perception pipeline Hardware , Initial Mapping ,
Common . Stem detection and 3D mapping is done only during

the initial mapping phase. Pepper and peduncle detection are
carried out during initial mapping (Sec. IV-B) and fruit following
(Sec. IV-D).

viewed from different observations poses leading to better
shape estimation. At each observation pose, the depth seg-
ments and pepper masks are combined to form the instance id
and semantic id annotated point cloud segments. We adapted
Voxblox++ [22] to integrate the pepper cloud segments based
on YOLOv8’s tracked instance id, as well as geometric
overlap, to form an instance aware surface map of the sweet
pepper fruits.

We also implemented an instance layer based extraction
of point clouds from the Voxblox++ map to obtain the
merged yet partial sweet pepper shapes formed after the
initial mapping. The Observer then performs superellipsoid
fitting [23] to estimate the completed shape, fruit pose and
fruit dimensions from the partial sweet pepper shapes. To
mitigate the problem of over-segmentation in the 3D domain
due to YOLOv8 losing the instance id tracking on account
of occlusions, it then performs 3D overlap detection using
the completed shapes’ poses and dimensions. When the
overlap exceeds a certain threshold, the fruit with the smaller
proportion of observed surface, computed as in our previous
work [24], is discarded.

C. Pepper Plant Modeling
It is not sufficient to detect and localize peppers, peduncles

and stems separately. They must also be associated with each
other to form a usable world model that the manipulation
system can utilize.

Once the 3D mapping motion is completed, merging
and association of the detections at each Observer pose is
performed to build the pepper plant model. As peduncle and
stem point cloud segments have a relatively low number
of points, their integration using Voxblox++ is not reliable.
The Observer identifies and tracks peduncles (fruit stalks)
and stems concurrently, while it performs the next mapping
motion. It maintains a separate set of peduncles and stem
segments to which the existing detections are added or
merged.

Once the completed shapes are estimated, the Observer
attaches the peduncles to the completed pepper shapes. It
extracts each peduncle’s bottom and top points as fruit point
and stem point, after removing any outliers. If the peduncle’s
bottom point is close enough(≤1 cm) to the top center of the
pepper, it associates the peduncle to the pepper. If multiple



peduncle segments belong to the same pepper, it merges them
and recalculates the peduncle endpoints accordingly.

For stem localization, the Observer rejects stems that
are too short. It then estimates the stem’s 3D line using
PCL’s [25] 3D RANSAC model. New stem detections are
compared with existing ones, and if they align well, they are
merged in a greedy manner, and the 3D line parameters are
recalculated. If it finds a stem close to a pepper (within 5 cm
in the x-y plane), it considers the pepper to be attached to
that stem.

The Observer feeds the entire plant model consisting of
the peppers with associated peduncles and stems to the
manipulation system for selective fruit harvesting.

D. Online Fruit Following and Pose Update

Once the manipulation system selects a fruit for harvesting
(see Sec. III-B), it transmits the selected fruit id to the Ob-
server for fruit following. The online perception comprises
two concurrent threads: one, running at 5 Hz, computes the
viewpose and sets goals for the online trajectory generation
method detailed in Sec. V-B. The other, running at 10 Hz,
updates the fruit’s pose estimate using instantaneous sweet
pepper and peduncle detections for grasp and cut pose
refinement.

During the grasping phase, the Observer fixates on the
selected fruit by moving to the corresponding viewpose. The
viewpose position pvp is calculated in the local trolley frame
where the x axis is aligned along the platform length, y axis
pointing towards the fruits and z axis vertically aligned. We
need the Observer arm to be above the Cutter i.e. pzvp to
allow it easy access for peduncle cutting. At the same time,
the Observer arm needs pxvp to be away from the vertical
plane of the bases of the manipulation arms, whereas pyvp
needs to maintain at least 35 cm from the fruit center for
improved localization. pvp is computed using the fruit center
pf as follows:

pxvp = 0.8 ∗ (pxf − pxh) + pxh (1)
pyvp = pyf − 0.35 (2)
pzvp = pzf + lzf + 0.15 (3)

where lf and ph represents the fruit bounding box di-
mensions, and the position of the base of the head arm
respectively. The normalized direction vector dirvp for the
orientation of the viewpose is computed as follows:

dirvp =
pf − pvp
∥pf − pvp∥

(4)

dirvp and pvp are combined to form the SE3 viewpose.
During the cutting phase, the Observer moves 5 cm closer
to the fruit while moving 2cm higher as well for peduncle
fixation.

During the grasping phase, for the online pepper pose
update, the Observer gets the currently detected pepper cloud
segments, smooths them using a moving least squares filter
and subsequently performs shape estimation. In this phase,
we bias the fitting on the currently detected peppers to be
closer to the initial fruit center and fruit dimensions, under
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the assumption that the initial mapping estimates are better
due to the multi-view merging.

If the center of a currently detected pepper’s completed
shape is less than 1 cm away from the initial mapping
estimate, we greedily assign this detection and its completed
shape to be the current estimate of the fruit. However, if the
center of the completed shape is more than 1 cm but less than
3 cm, then the fruit is added to a list of potential candidates
for the current estimate and we choose the one nearest to the
original estimate. Using complementary filtering, we filter
the current estimates for the fruit centers as follows:

pfiltf = α · pcurrf + (1− α) · pprevf (5)

where pcurrf and pprevf , pfiltf , represent the current, previous
and filtered estimates of the fruit center.

Once the fruit is grasped, the Observer switches to online
peduncle localization only. The cropped peduncle detection
method relies on the grasped pepper being detected in the
full image. However, due to occlusions by the gripper, the
pepper detection fails frequently which leads to downstream
failures in the peduncle detection. Hence, the Observer uses
the gripper tool center point (TCP) pose to construct a 3D
bounding box using the fruit center pf and fruit dimensions
lf as follows:

xbound =pxf ± lxf ybound =pyf ± lyf (6)

zbottombound =pzf ztopbound =pzf + lzf + 0.05 (7)

The 3D bounding box points are converted to 2D points
on the image using the camera parameters. The region of
interest for peduncle detection is computed as the minimum
and maximum of the 2D points. The peduncle detected in
the RoI is converted to cloud segment and added to a buffer
with length 4 and maximum age of 0.5 s. The valid frames
of the buffer are merged and smoothed to obtain the updated
fruit and stem points.

V. DUAL-ARM MANIPULATION

Autonomous horticultural operations require adaptive ma-
nipulation capabilities to robustly handle different plant ar-
rangements and cope with dynamic changes such as moving
a fruit while grasping it.
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Fig. 8: Grasp direction (shown by the gripper model) for the fruit
(green circle) is selected to be opposite of the corresponding stem
(brown circle) without exceeding an angular deviation (yellow lines)
from the vector v connecting the arm mounting point and the fruit
center (light blue line). If no corresponding stems are detected, v
is used as the grasp direction.

Our dual-arm manipulation method controls two xArm7s,
a soft gripper, and a custom cutter based on observations
provided by the perception pipeline (see Sec. IV) and force-
torque sensors attached to each arm (see Fig. 7). The required
motions vary in execution length and the goal pose update
frequency, i.e. long motions (>0.5 sec) with a goal pose
known before motion execution (for example approaching
the fruit) and motions with a dynamic goal poses such
as grasping and cutting the fruit, which have a non-zero
start velocity. We use two different motion generation and
execution methods, Parameterized Motion Primitives (PMP)
and Online Motion Generation (OTG) to handle these re-
quirements, which are described in the following.

A. Parameterized Motion Primitives (PMP)

All motions with a fixed goal pose (specified offline or
online), are generated using Parameterized Motion Primi-
tives (PMP). A PMP consist of one or multiple keyframes
each specifying one or multiple kinematic chains to be
manipulated. The target configuration can be defined in
Cartesian or joint space per chain and the generated motion
linearly interpolates between the start and each keyframe
goal configuration. We use nimbro ik [26] to generate joint
space configurations for Cartesian goal poses which uses
a selectively damped least squares (SDLS) solver [27] and
allows to define cost-functions which are optimized in the
null-space. In this setup, we penalize the elbow crossing a
vertical plane towards the system’s center to reduce potential
collisions. Self-collisions are checked along the trajectory
and reported before motion execution. PMPs are either
predefined offline for static motions such as placing the fruit
in the container, or are parametrized online using sensor data
for example when approaching the fruit.

B. Online Trajectory Generation (OTG)

Since every trajectory generated using PMP assumes zero
start velocity, online replanning is not feasible. Instead,
we switch the xArm control mode to OTG, which allows
online replanning to follow a 6D end-effector goal pose
considering the current robot state including current joint
velocities and velocity and acceleration limits. However, this
control mode does not provide any kind of (self-) collision
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Fig. 9: Cut pose (shown by the cutter model) is computed using the
peduncle point cloud. Green and red spheres indicate the highest
and lowest peduncle points. Magenta points show the filtered
peduncle cloud using a box filter centered at the blue sphere. The
cut position (yellow sphere) is the centroid of the filtered cloud.

checks. Therefore, we added collision checking on top of
the OTG control mode. We compute the minimal distance
distc between any two links at the current robot state and
distn for an extrapolated state assuming constant velocity
using MoveIt [28]. Next, we compute α{c,n} which is used
to reduce the motion velocity when approaching a collision:

α{c,n} =
dist{c,n} − 0.5

3.0− 0.5
(8)

and ensure that, α{c,n} ∈ [0, 1]. If alphan ≤ alphac,
i.e., the robot is approaching a self-collision, we reduce the
current motion velocity exponentially with the scalar β ∈
[0, 1] which is defined as follows:

β =
25αn − 1

25 − 1
(9)

This prevents the arm from self-colliding and but does not
prevent the arm to move away from collisions.

In addition, the OTG controller reports the current status.
The control-loop runs with 30 Hz which is sufficient for our
application. We run three instances of this controller, one
for each xArm7, and the Observer in case of online fruit
following (see Sec. IV-D).

C. Adaptive Manipulation

Autonomous selective and adaptive harvesting requires a
system which acts based on various sensor measurements.
We calculate grasp and cut poses based on the online
perception results and adjust manipulation trajectories using
force-torque measurements.

The grasp direction is always orthogonal to the fruit’s
main axis (which is mostly vertical). The grasp direction
is computed based on the fruit position and stem detection
(see Fig. 8). Let v⃗ ∈ R2 be the vector between the Gripper’s
mounting center and the fruit center projected onto the x-y
plane. We use v⃗ as the grasping direction if no stem detection
is available for the selected fruit.

If stem detections are available, the fruit is grasped such,
that the stem is avoided as much as possible. Let β be the
angle between v⃗ and the selected grasp direction. We select
the grasp direction opposite of the stem, with the condition



Fig. 10: Mask PR curve and F1 curve for peduncle detection in
cropped image.

β ≤ 20◦. This avoids the stem (as much as possible) while
creating feasible arm configurations.

We use the peduncle point cloud PC to calculate the
optimal cut pose (see Fig. 9). Let p⃗ be the vector connecting
the highest and lowest point of PC (in the vertical axis)
and let M be the midpoint of p⃗. We filter PC using a box
filter which is centered at M and aligned in the direction of
p⃗. The centroid of the filtered PC is used as the cutting
position. The cutting orientation is fixed relative to the
Cutter’s mounting pose, similar to the grasp orientation. We
use a fixed cut position above the fruit in case of missing
peduncle detections and ensure a minimum distance between
grasp and cut pose to avoid self-collisions.

We update the grasp and cut pose with 100 Hz using the
latest perception results and generate new arm trajectories
using OTG (see Sec. V-B). In addition, we detect reaching the
fruit or peduncle while grasping and cutting by monitoring
the force measurements relative to the start of the motions.
The current motion is stopped if the observed forces exceed
a predefined threshold.

VI. RESULTS

We evaluated two major aspects of our approach, namely
peduncle detection and the adaptive autonomous selective
harvesting performance. In the latter, we evaluate the success
rate and execution time for different phases of the approach.

A. Peduncle Detection

While sweet pepper detection is a fairly mature research
area, peduncle detection still has a lot of scope for im-
provement, with the MiniInception [12] approach reporting
an F1 score of 0.313 and 0.564 for unfiltered and filtered
data, respectively. Our method demonstrates a far superior
performance with a mean average precision mAP@50 of
0.741 for peduncle segmentation as can be seen in Fig. 10.
Similarly, the F1 score for peduncle detection is significantly
better at 0.781.

The mean processing time for both pepper and peduncle
detection and localization is 100 ms, which enables the
system to perform these tasks in real time.

B. Experimental Harvesting Setup

We created an indoor mock-up of sweet pepper plants
using real sweet peppers, artificial leaves and thin pipes as

Fig. 11: Experimental harvesting setup.

TABLE I: Experimental Results.

Trial Success Time

Grasp Cut Place Overall [m:s]

1 4/4 3/4 3/3 3/4 1:45
2 4/4 3/4 3/3 3/4 1:47
3 4/4 3/4 3/3 3/4 1:49
4 4/4 4/4 3/4 3/4 1:49
5 4/4 4/4 4/4 4/4 1:49
6 4/4 4/4 4/4 4/4 1:48

Total 24/24 21/24 20/21 20/24

stems (see Fig. 11). 3D printed holders were used to attach
the leaves and peduncles to the stems. We conducted six
trials with 4 fruits to be harvested in every trial. The fruits
were distributed among 3 stems. We used red (21), yellow (1)
and orange (2) sweet peppers with sufficiently long peduncle
for mounting reasons. The fruits were located roughly 0.5 m
away from the HortiBot platform, similar to the glasshouse
rows. The initial mapping was carried out using 5 observation
poses. We did not use the D405 camera as it is needed only
for close range sensing in the glasshouse.

C. Harvesting Trials Results

We evaluated the full system pipeline by analyzing the
execution time (recorded automatically) and the success rate
(recorded manually) for each phase.1 The overall success
rate for the entire harvesting cycle is 83.33% with 20 out
of a total of 24 fruits harvested successfully, as can been
seen in Tab. I. HortiBot was able to successfully grasp all
fruits without using any expensive grasp detection approach.
The flexible pneumatic gripper perfectly adapted to the fruit
shape. This validates our approach to use shape completion
based grasp pose estimation with force sensing enabled
compliant grasping. The cutting phase had a lower success
rate of 87.5% with 21 out of 24 peduncles cut. The three
failures were due to peduncle localization errors with depth
registration issues. While peduncle detection in the RGB
image was successful in all the cases, the depth rendering
was poor due to the thin structures. While transporting the
fruit, we had one failure in trial 4 due to an imperfect grasp
resulting in the fruit slipping out of the gripper.

1https://www.ais.uni-bonn.de/videos/IROS_2024_Lenz/
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Fig. 12: Mean execution time and standard error for different phases
of the harvesting cycle over six trials with four fruits each. Note,
mapping is performed once per trial, all other phases once per fruit.

The execution time for harvesting is another key factor for
determining the performance of the system. The overall mean
time needed for each trial was 1 min 48 s, thus leading to an
average time of 26.95 s per fruit including the failure cases.
As can been seen in Fig. 12, the initial mapping needed
11.98 s on an average for a total of 5 poses with all the
fruits successfully detected in all the trials. Using PMP, the
approach phase required an average of only 3.54 s per fruit
for the Grasper and the Cutter to reach their respective pre-
grasp and pre-cut poses. The grasp phase required 4.76 s
per fruit including opening and closing the gripper, and
pre-grasp to grasp pose OTG motion. However, it was the
peduncle cutting that required the longest time with each fruit
needing around 10.95 s. This was due to the noisy peduncle
localization update which caused the OTG cut motion to
continue refining the cut pose until it found a stable pose.
The transport of fruits was relatively fast with the place phase
needing only 4.7 s per fruit.

VII. SUMMARY

In this work, we presented HortiBot, a fully integrated
system that focuses on all aspects of robotic harvesting.
With an articulated head for active perception, and force-
sensing enabled bi-manual manipulation, HortiBot can carry
out different horticulture tasks. We developed a novel pedun-
cle detection method that has significantly better detection
accuracy, leading to 87.5% success in peduncle cutting.
We also developed a novel collision-aware online trajectory
generation method that is able to perform pose tracking
at 30 Hz frequency. Using force-sensing based compliant
grasping and cutting, we achieved an overall success rate
of 83.33% and a cycle time of 27 s per fruit on an indoor
mock-up of pepper plants, which outperforms state-of-the-
art selective harvesting robots. We plan to deploy HortiBot
mounted on the PATHoBot [15] for sweet pepper harvesting
in glasshouse scenarios in the future.

REFERENCES

[1] C. W. Bac, E. J. Van Henten, J. Hemming, and Y. Edan, “Harvesting
robots for high-value crops: State-of-the-art review and challenges
ahead,” Journal of Field Robotics (JFR), vol. 31, no. 6, 2014.

[2] G. Kootstra, X. Wang, P. M. Blok, J. Hemming, and E. Van Henten,
“Selective harvesting robotics: current research, trends, and future
directions,” Current Robotics Reports, vol. 2, pp. 95–104, 2021.

[3] H. Zhou, X. Wang, W. Au, H. Kang, and C. Chen, “Intelligent robots
for fruit harvesting: Recent developments and future challenges,”
Precision Agriculture, vol. 23, no. 5, 2022.

[4] V. Rajendran, B. Debnath, S. Mghames, W. Mandil, S. Parsa, S. Par-
sons, and A. Ghalamzan-E, “Towards autonomous selective harvesting:
A review of robot perception, robot design, motion planning and
control,” Journal of Field Robotics (JFR), 2023.

[5] Y. Tong, H. Liu, and Z. Zhang, “Advancements in humanoid robots:
A comprehensive review and future prospects,” IEEE/CAA Journal of
Automatica Sinica, vol. 11, no. 2, 2024.

[6] K. Li, Y. Huo, Y. Liu, Y. Shi, Z. He, and Y. Cui, “Design of a
lightweight robotic arm for kiwifruit pollination,” Computers and
Electronics in Agriculture, vol. 198, 2022.

[7] A. You, N. Parayil, J. G. Krishna, U. Bhattarai, R. Sapkota, D. Ahmed,
M. Whiting, M. Karkee, C. M. Grimm, and J. R. Davidson, “Semi-
autonomous precision pruning of upright fruiting offshoot orchard
systems: An integrated approach,” IEEE Robotics and Automation
Magazine (RAM), 2023.

[8] C. W. Bac, J. Hemming, B. Van Tuijl, R. Barth, E. Wais, and E. J.
van Henten, “Performance evaluation of a harvesting robot for sweet
pepper,” Journal of Field Robotics (JFR), vol. 34, no. 6, 2017.

[9] C. Lehnert, C. McCool, I. Sa, and T. Perez, “Performance improve-
ments of a sweet pepper harvesting robot in protected cropping
environments,” Journal of Field Robotics (JFR), vol. 37, no. 7, 2020.

[10] B. Arad, J. Balendonck, R. Barth, O. Ben-Shahar, Y. Edan, T. Hell-
ström, J. Hemming, P. Kurtser, O. Ringdahl, T. Tielen, et al., “Devel-
opment of a sweet pepper harvesting robot,” Journal of Field Robotics
(JFR), vol. 37, no. 6, 2020.

[11] C. Lehnert, I. Sa, C. McCool, B. Upcroft, and T. Perez, “Sweet pepper
pose detection and grasping for automated crop harvesting,” in IEEE
Intl. Conf. on Robotics & Automation (ICRA). IEEE, 2016.

[12] C. McCool, T. Perez, and B. Upcroft, “Mixtures of lightweight deep
convolutional neural networks: Applied to agricultural robotics,” IEEE
Robotics and Automation Letters (RA-L), vol. 2, no. 3, 2017.

[13] D. Rakita, B. Mutlu, and M. Gleicher, “An autonomous dynamic
camera method for effective remote teleoperation,” in ACM/IEEE
Intl. Conf. on Human-Robot Interaction (HRI), 2018.

[14] C. Lenz, M. Schwarz, A. Rochow, B. Pätzold, R. Memmesheimer,
M. Schreiber, and S. Behnke, “NimbRo wins ana avatar xprize
immersive telepresence competition: Human-centric evaluation and
lessons learned,” International Journal of Social Robotics, 2023.

[15] C. Smitt, M. Halstead, T. Zaenker, M. Bennewitz, and C. McCool,
“Pathobot: A robot for glasshouse crop phenotyping and intervention,”
in IEEE Intl. Conf. on Robotics & Automation (ICRA). IEEE, 2021.

[16] M. Schwarz and S. Behnke, “Low-latency immersive 6d televisualiza-
tion with spherical rendering,” in IEEE-RAS Intl. Conf. on Humanoid
Robots. IEEE, 2021.

[17] R. Barth, “Synthetic and empirical capsicum annuum image dataset,”
2016.

[18] L. E. Montoya Cavero, “Sweet pepper recognition and peduncle pose
estimation,” 2021.

[19] M. Halstead, S. Denman, F. Clinton, and C. McCool, “Fruit detection
in the wild: The impact of varying conditions and cultivar,” in Digital
Image Computing: Techniques and Applications (DICTA), 2020.

[20] G. Bradski, A. Kaehler, et al., “Opencv,” Dr. Dobb’s journal of
software tools, vol. 3, no. 2, 2000.

[21] L.-C. Florian and S. H. Adam, “Rethinking atrous convolution for
semantic image segmentation,” in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), vol. 6, 2017.

[22] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Sieg-
wart, and J. Nieto, “Volumetric Instance-Aware Semantic Mapping and
3D Object Discovery,” IEEE Robotics and Automation Letters (RA-L),
vol. 4, no. 3, July 2019.

[23] S. Marangoz, T. Zaenker, R. Menon, and M. Bennewitz, “Fruit
mapping with shape completion for autonomous crop monitoring,”
in IEEE Intl. Conf. on Automation Science and Engineering (CASE).
IEEE, 2022.

[24] R. Menon, T. Zaenker, N. Dengler, and M. Bennewitz, “NBV-SC:
Next best view planning based on shape completion for fruit mapping
and reconstruction,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2023.

[25] R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),”
in IEEE Intl. Conf. on Robotics & Automation (ICRA). IEEE, 2011.

[26] M. Schwarz, A. Milan, C. Lenz, A. Munoz, A. S. Periyasamy,
M. Schreiber, S. Schüller, and S. Behnke, “NimbRo picking: Versatile
part handling for warehouse automation,” in IEEE Intl. Conf. on
Robotics & Automation (ICRA). IEEE, 2017.

[27] S. R. Buss and J.-S. Kim, “Selectively damped least squares for inverse
kinematics,” Journal of Graphics tools, vol. 10, no. 3, 2005.

[28] D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the barrier
to entry of complex robotic software: a moveit! case study,” Journal
of Software Engineering for Robotics, 2014.




