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Abstract— Building models responsive to input prompts
represents a transformative shift in machine learning. This
paradigm holds significant potential for robotics problems,
such as targeted manipulation amidst clutter. In this work,
we present a novel approach to combine promptable foun-
dation models with reinforcement learning (RL), enabling
robots to perform dexterous manipulation tasks in a prompt-
responsive manner. Existing methods struggle to link high-level
commands with fine-grained dexterous control. We address
this gap with a memory-augmented student-teacher learn-
ing framework. We use the Segment-Anything 2 (SAM 2)
model as a perception backbone to infer an object of in-
terest from user prompts. While detections are imperfect,
their temporal sequence provides rich information for im-
plicit state estimation by memory-augmented models. Our ap-
proach successfully learns prompt-responsive policies, demon-
strated in picking objects from cluttered scenes. Videos and
code are available at https://maltemosbach.github.
io/promptable_object_manipulation/

I. INTRODUCTION

Foundation Models (FMs) such as GPT-4 [1] and Segment
Anything [2] represent a paradigm shift in the field of
artificial intelligence. Trained on broad web-scale datasets,
these models excel in generating contextually nuanced out-
puts across a diverse array of tasks [3]. This capability is
typically implemented through prompt engineering, where
human understandable inputs are used to prompt the model
for a valid response to the task at hand [2], [4]. Thus, simple
instructions can be used to condition a model to perform a
myriad of downstream tasks.

Being able to control the behavior of dexterous robots
in a similar manner is a long-standing goal [5], yet existing
approaches mainly leverage FMs for high-level planning [5]–
[7].. While this approach has yielded impressive capabilities
in terms of developing versatile agents, it falls short in repli-
cating the intricate, low-level dexterity required for complex
manipulation tasks, such as dexterous grasping from clutter.
It remains unclear how such approaches can scale to match
the intuitive dexterity humans exhibit — often relying on
tacit, hard-to-describe skills. [8].

In contrast, reinforcement learning (RL) bypasses the need
for explicit, high-level instructions, opting instead to learn
behaviors through trial-and-error. Recent works demonstrate
that RL is capable of learning fine motor behaviors compa-
rable to human dexterity [9]–[12], yet the learned policies
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Fig. 1: We present a student-teacher framework that enables
learning interactive, prompt-responsive policies for object-
retreival from cluttered scenes (Figure inspired by [13]).

tend to be task-specific and lack the adaptability of prompt-
conditioned models.

Consider the scenario of a warehouse robot tasked with
fulfilling an order by picking specific items from cluttered
bins. Retraining for each new object or providing explicit
models for every item to grasp is neither practical nor
scalable. Instead, we aim to operate such a system using
abstract, human-understandable instructions, like a packing
list of items to retrieve. However, existing methods fail to
integrate intuitive, language-guided instructions with the low-
level control needed for dexterous manipulation.

To bridge this gap, we propose a novel approach that
integrates the broad, open-vocabulary capabilities of vision
foundation models (VFMs) with the precise motor control
developed through RL. Specifically, we leverage the Segment
Anything 2 (SAM 2) model as a perception backbone to
segment objects of interest based on user prompts. While the
representations generated by SAM 2 are inherently imperfect
– prone to issues like occlusions or unstable segmentations –
the sequence of outputs over an episode is highly informative
and allows for an implicit estimation of the true object state.

This type of implicit inference of an underlying state
from impaired perception via memory-augmented agents has
recently been shown to be a powerful tool in navigation of
simulated agents [14] and quadruped robots [15]. While prior
works utilized synthetic simulations of imperfect perception,
allowing them to train RL agents with high performance,
having the SAM 2 model in the RL training loop pushes
the compute requirements beyond what is currently feasible.
Instead, we factor out learning how to act and learning
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to infer the underlying state of an object of interest via a
student-teacher formulation. After a teacher policy has been
trained to master the task from privileged, simulator-state in-
formation, we distill its knowledge to a memory-augmented
student policy that operates based on imperfect outputs from
our VFM. This distillation process forces the student to
implicitly learn the true state of the object to imitate the
teacher’s actions, even when faced with incomplete or faulty
perception data. We explore both LSTMs and Transformers
as sequence processing modules, to understand the impact
of history-awareness on the student’s performance.

Our key insight is that while SAM 2 does not allow for
reconstructions of Markovian, ground-truth states directly
that are needed to deploy a privileged policy, learning to
match the teacher’s actions forces the student to implicitly
learn the associations between the detection sequence and
the current state of the object of interest.

Our results demonstrate that this approach successfully
learns dexterous, prompt-responsive policies capable of gen-
erating complex, targeted manipulation in cluttered environ-
ments. Further, the observation-space of the student policy
allows for zero-shot real-robot transfer. By harnessing the
synergy between high-level instruction and low-level robot
action, transforming the warehouse robot into a system that
picks out recyclable cans from trash or selectively removes
rotten fruits from a box of produce can be achieved simply
through conditioning on human-understandable prompts.
In summary, we address the following research questions:

1) Can VFMs be used as perception backbones for
prompt-responsive manipulation policies? Yes, we find
that the proposed method yields agents that are highly
effective at grasping a wide variety of objects on the
basis of human-understandable prompts.

2) What are the necessary mechanisms for this approach?
The two core mechanisms are first, keeping the FM
out of the RL loop via student-teacher learning, and
second, using history-aware architectures to implicitly
infer underlying states from imperfect detections.

3) Does this method transfer to real-robot systems? Yes,
we demonstrate that the strong performance of the poli-
cies in simulation transfers to our real-robot system.

II. RELATED WORK

A. Learning-based Robotic Grasping

Reliable robotic grasping has been a prominent challenge
in robotics for decades [16]. The control aspect of this
problem has been formulated mainly as either (1) a problem
of grasp-pose prediction or (2) as closed-loop continuous
control.

Grasp-pose prediction is typically solved through super-
vised learning, where a model is trained to predict the best
grasp pose for a given object. Redmon and Angelova [17] in-
troduced a deep learning approach to predict grasp positions
on objects using convolutional neural networks.

The latter group of continuous-control approaches typ-
ically utilize reinforcement learning. Levine et al. [18]

demonstrated the use of deep RL for end-to-end training
of robotic grasping policies. More recently, Kalashnikov et
al. [19] developed QT-Opt, a scalable RL algorithm that
significantly improves grasping performance. Mosbach et
al. [20] utilize the Segment-Anything model for prompt-
based robotic grasping. However, they consider only tabletop
grasping and rely on unobstructed tracking of the object
throughout the episode. Our approach eliminates this require-
ment, allowing target objects to go out of view, be occluded,
or be misdetected by the model.

B. Learning from Privileged Information

Chen et al. [21] observed that learning to imitate expert
drivers from visual perception conflates two difficult prob-
lems: learning to perceive the environment and learning to
control the vehicle. They proposed a two-stage approach
where a teacher policy is trained to imitate the expert’s
actions based on the environment’s ground-truth state. The
knowledge from the teacher is then distilled into a vision-
based student policy. Recently, Chen et al. [9], [10] extended
this strategy to reinforcement learning. In their approach, a
teacher policy is trained using simulator state information
to solve the control problem. Subsequently, a visual student
policy is trained more efficiently in a supervised manner
to imitate the teacher from realistic observations. Kumar
et al. [22] identified domain randomization parameters as
a special kind of privileged information. Their method,
Rapid Motor Adaptation, enables a student policy to infer
domain parameters from observation history, which are made
available to the teacher policy. Building on this framework,
Margolis et al. [23] developed a method to learn agile
locomotion over diverse terrains. The domain randomization
parameters are made available to the teacher policy, to
avoid learning overly conservative behaviors. The student
policy, which cannot access these parameters directly, utilizes
a history-aware approach, πS(xt,x[t−h:t−1]), to implicitly
deduce the domain parameters from the observation history.
Zhang et al. [15] recently utilized an asymmetric actor-
critic architecture to achieve resilient navigation. In their
method, the critic has perfect observability of obstacles,
while the history-aware actor uses exteroception along with
an imperfect map for navigation. This approach enables
policies to learn about unknown obstacles by integrating their
history of observations from interactions such as bumping
into or touching them. Similar to our approach, Kumar et al.
and Margolis et al. [22], [23] use student-teacher learning to
overcome a problem of explicit versus implicit observability.
While their focus is on domain randomization, we tackle the
problem associating imperfect sequences of detections with
the underlying state of the scene.

C. Prompt-Guided Manipulation

Recent research efforts strive to transfer grounded world
knowledge from vision-language models to robotics by train-
ing large foundation models on a wide array of behavioral
data [3], [24], [25]. Additionally, language models have been
employed for high-level planning in robotic manipulation [5],



(a) Training in simulation is performed in two stages via student-teacher learning.

SAM 2 Model

Screwdriver

(b) At deployment, the student policy can be prompted with points or language to infer the target object.

Fig. 2: We propose to train prompt-guided policies in two stages. First, the teacher policy is trained with model-free RL to
solve the control problem from privileged information sextt . Thereafter, the student policy is trained to imitate the teacher
without access to sextt , forcing it to implicitly infer the object state from the history of visual observations oext

[t−H,t].

[24]. Recently, Shen et al. [13] distilled knowledge from
language-supervised image models into a 3D representation
of the scene, enabling the learning of 6-DOF grasping
and placing of novel objects in a language-guided manner
from only a few demonstrations. In contrast, our work does
not rely on learning a representation of one specific scene
beforehand.

III. METHOD

A. Overview

Consider a warehouse robot tasked with fulfilling an order
by picking specific items from cluttered bins. At the start of
each trial, the robot receives a description of the item to
retrieve, which may be provided as an open-vocabulary text
prompt, a selected point, or a detected bounding box. The
robot uses this instruction to locate and grasp the specified
object.

Successfully executing this task requires addressing two
key challenges: (1) learning to interpret the provided instruc-
tion and visual observations, and (2) mastering the dexterous
control needed to grasp objects in clutter. Instead of tackling
both challenges simultaneously, we follow recent work in
imitation and reinforcement learning [9], [10], [21] and de-
compose the problem into two stages. We first train a teacher
policy using privileged simulator-state information, enabling
it to acquire effective control strategies in an idealized
setting. We then transfer these behaviors to a student policy
that operates solely on real-world inputs. To bridge the gap
between noisy perception and reliable control, we employ
memory-augmented student-teacher learning, allowing the
student to integrate outputs from perception modules like
SAM 2 — despite occlusions and segmentation errors — into
an implicit understanding of the object state.



B. Observations

To train our prompt-responsive grasping policies, we uti-
lize three types of observations: proprioception, privileged
exteroception, and VFM-based exteroception (see Table I).

Proprioception: Proprioception encompasses information
that is available in both simulation and real-world deploy-
ment. This includes the joint states of the robotic arm and
hand, the most recent action taken, and the 3D goal position
for the target object.

Privileged Exteroception: During privileged training, the
teacher policy has access to additional information unavail-
able in real-world deployment. This includes the oriented
bounding box (OBB) of the target object, as well as a
privileged heightmap centered around the gripper, which
provides a structured representation of the surrounding clut-
ter. Moreover, we provide additional information about the
state of the manipulator including the fingertip poses and
velocities.

VFM-based Exteroception: The student policy receives
object detections from a VFM (SAM,2 in our case) to
provide a prompt-responsive visual input space. Since these
detections are imperfect and non-Markovian — due to oc-
clusions and misdetections — we provide the student model
with a history of recent detections, allowing it to infer the
true object state over time.

C. Learning from Privileged Information

We train the teacher policy πT using RL, where the agent
maps observations oT

t to actions at. To ensure generalization
across diverse objects, we design the simulation as a multi-
task learning problem, where each parallel environment
contains a randomly selected subset of training objects. As
a result, the teacher policy must learn to handle objects of
varying shapes and sizes—both as targets and obstacles. To
optimize the teacher policy, we require a stable RL algorithm
capable of handling challenging continuous control tasks. We
use PPO [26], which optimizes the policy to maximize the
expected return:

J(πT) = EπT [

∞∑
t=0

γtR(oT
t ,at)]. (1)

Although the agent has access to privileged simulator-
state information, the observation oT

t at a single time-step
t does not convey the full state information, such as the
exact shape of an object. Hence, we evaluate the use of
LSTM architectures [27] alongside a standard MLP policy to
enable the teacher policy to consider temporal dependencies
for decision-making. The MLP policy comprises three layers
with 768, 512, and 256 units, respectively. The LSTM variant
adds a single LSTM layer with 768 units before the MLP.

The teacher policy observes regular proprioception along-
side the privileged simulator-state information. The detailed
makeup of the observation-space is given in Table I.

The policy controls the robot’s joints at a frequency of
10 Hz. We use an exponential moving average (EMA) to
control the joint velocities of the arm, formulated as q̇target

t+1 =

αat + (1 − α)q̇target
t , balancing smoothness and responsive-

ness. The Schunk SIH hand is controlled via servo-actuated
tendons. A similar EMA formulation is used to set the servo
target positions as ptarget

t+1 = αat + (1− α)ptarget
t .

Rewards and Termination Conditions: The reward func-
tion is designed to facilitate directed exploration without
distracting from the overall objective. Initially, the agent is
motivated to move its hand closer to the target object, where
∆dgrab denote the change in distance between the fingertips
and the object of interest. Once the agent reaches the object,
this reward term is exhausted, allowing the agent to focus
on manipulating the object. At this stage, we reward the
agent for lifting the object from the table or bin, where ht

represents the height of the object as measured by the lowest
point of its OBB. Finally, the agent is rewarded for moving
the target object to the goal position and for reaching the
goal position within a small threshold. The detailed reward
function is shown in Table II.

Notably, we opted not to include reward terms that directly
encourage safe behavior, such as contact or action penal-
ties, as they can interfere with task-relevant exploration in
hand-arm manipulation tasks. Our experiments showed that
imposing penalties for hard contacts significantly hindered
effective exploration. Instead, we employ termination con-
ditions to enforce safety, which offers several advantages.
Firstly, this eliminates the trade-off between task reward and

TABLE I: Observations combine robot proprioception
with privileged or visual exteroception for the teacher
and student, respectively.

Term Dimensionality

Last actions 11D
Arm joint state 18D
Hand joint targets 11D
Goal position 3D

Fingertip poses 35D
Fingertip velocities 30D
Target object OBB corners 24D
Heightmap 64D
Target object velocity 6D
Target to goal pos 3D

SAM2 detected point-cloud 4D ∗Npoints

TABLE II: Reward terms used to train the teacher policy.

Term Equation Weight

Alive 1.0 0.01
Grab object −∆dgrab 10.0
Lift object min(ht, hlifted) 40.0
Reach goal −∆dgoal 100.0
Goal bonus 1(dgoalt < d̄goal) 10.0

TABLE III: Termination conditions, where A and T denote the
bodies of the robot arm and the table (and bin), respectively.

Term Condition

Arm contacts maxi∈A ∥cit∥2 > 5.0
Tabletop or bin contacts maxi∈T ∥cit∥2 > 25.0
Time-out t > Tmax
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Fig. 3: Training performance of teacher policies (top) and student policies (bottom).

safety penalties, ensuring that unsafe behaviors are prohib-
ited outright. Secondly, using terminations to punish unsafe
behaviors creates a natural learning curriculum. Initially,
when the agent expects to obtain low rewards, terminating
an episode due to collision is less significant. As the agent
improves and anticipates higher rewards, it will avoid these
terminations due to the higher cost of lost future rewards.
The termination conditions are shown in Table III.

D. Memory-augmented Student-Teacher Learning

We apply a memory-augmented student-teacher learning
framework to transfer knowledge from the trained teacher
policy to a student policy that operates solely on propri-
oception and detections from a VFM. SAM 2 understands
the relationship between user prompts and objects. Using its
detections as a prompt-responsive observation space removes
the need for the agent to learn object-prompt associations
explicitly. Instead, the student policy learns to interpret these
detections as part of its perception pipeline.

The key challenge is that SAM 2’s detections are non-
Markovian — occlusions and segmentation inconsistencies
can cause missing or unstable detections. Thus, for the
student policy to successfully imitate the teacher, it must
implicitly infer the true state of the target object by integrat-
ing past detections with object dynamics. This motivates the
use of history-aware architectures, which allow the student
to compensate for gaps in perception.

While our final policy should be controllable via user
prompts, training requires automated prompting to ensure ef-
ficiency and consistency across parallelized simulation envi-
ronments. To achieve this, we introduce two key extensions.
First, we modify SAM 2 to handle batched image streams,
enabling efficient processing across multiple parallel environ-
ments in Isaac Sim. This allows detections to be generated in
parallel rather than sequentially, significantly reducing com-
putational overhead. Second, we automate prompt generation

by leveraging ground-truth object geometry from simulation.
Specifically, we extract points on the mesh surface of the
target object and project them into the camera frame. From
these projected points, we compute a tight bounding box in
the image space, which is then used as the prompt for SAM 2,
ensuring alignment between the model’s detections and the
true target object defined in the task.

To process these detections, we transform the depth image
from the RGB-D camera into a point cloud, providing
a direct 3D representation of objects in the environment.
Additionally, we append a feature dimension that indicates
which subset of points SAM 2 assigns to the target object.
For encoding these point clouds, we employ a PointNet-
like encoder, which extracts an embedding of the scene.
This embedding is then concatenated with proprioceptive
observations and passed to the policy network. To integrate
temporal information, we evaluate the follwoing memory-
based student architectures within the DAgger imitation
learning framework [28].

1D-CNN: Temporal convolution has been successfully
applied in prior work [22] as a lightweight approach to cap-
turing short-range dependencies. Here, we apply a three-layer
1D-CNN that convolves the feature representations across
the time dimension to extract relevant temporal correlations
The CNN layers use the following input channels, output
channels, kernel size, and stride: [256, 256, 8, 4], [256,256,
5, 1], [256, 256, 5, 1].

LSTM: The LSTM variant mirrors the recurrent teacher
policy, consisting of a single-layer LSTM of size 768..

Transformer: Given their proven effectiveness in captur-
ing long-range dependencies in sequential data, test the use
of a transformer encoder model to model. This transformer
comprises 4 layers, each with 8 heads and a hidden dimen-
sion of 256.

The output from each of the sequence models is passed
through a three-layer MLP to produce the action distribution.



TABLE IV: Simulation results with success and collision rate (SR/CR).

State Model Tabletop Bin

SR ↑ CR ↓ SR ↑ CR ↓

Privileged MLP 84.6± 4.0 2.5± 0.2 45.7± 5.2 5.6± 0.5
LSTM 91.2± 0.9 1.2± 0.1 63.5± 5.7 5.1± 0.8

Visual LSTM 87.1± 1.2 2.1± 0.2 59.0± 1.4 5.9± 0.9
Transformer 88.3± 1.1 2.0± 0.2 59.2± 1.3 5.9± 0.8

TABLE V: Real-robot results evaluated for the
tabletop scenario with different numbers of
train or test objects present (nobj).

Model Train (nobj) Test (nobj)

3 5 3 5

LSTM 6/10 6/10 6/10 5/10
Transformer 4/10 6/10 6/10 5/10

IV. EXPERIMENTAL SETUP

A. Environments

We evaluate our method in simulated multi-object manip-
ulation tasks using Nvidia Isaac Lab [29]. The simulation
consists of multiple parallel instances of our robotic system
interacting with randomly selected YCB objects [30]. In
total, we use 60 YCB objects, of which 48 are included in the
training set, while 12 are held out to assess generalization.

B. Evaluation and Metrics

Performance is measured based on two success criteria:
lifting the target object from the tabletop or bin and moving
it to a specified 3D goal position, which is considered
successful if the object is within 5 cm of the target location.

V. RESULTS

We deployed our trained controllers on a variety of unseen
objects, including items of diverse shapes and sizes, such as
a golf ball, a fork, and a cleanser bottle. Notably, the RL
policies exhibited robust yet nimble behaviors. Despite the
inherent safety challenges in deploying RL, our approach of
terminating on unsafe interactions resulted in unrestricted yet
careful manipulation. Additionally, the policies demonstrated
implicit inference of the target object state over time, allow-
ing for successful manipulation even when the target moves
out of view or is not detected by SAM 2.

A. Grasping from Tabletop Scenes

First, we present results for the task of grasping a target
object from a tabletop. In cluttered environments, a proficient
control policy should reliably grasp the target item while
ensuring safe operation. To evaluate these characteristics, we
measured the success rate and collision rate, defined as the
percentage of episodes where the robot induced undesirable
collisions, as shown in Table IV. The results show that LSTM
teacher outperforms the MLP variant, with the best LSTM
policy achieving a 92.4% success rate averaged over all 48
training objects. In 1.2% of the episodes, the policy induced
contacts that were larger than our desired threshold.

To identify failure modes, we manually reviewed rollouts
and found that most failures involved objects that were
difficult to grasp, such as thin, elongated items like knives,
which require precise handling to avoid excessive contact
forces. Failures also occurred when smaller objects were
covered by larger ones. While we observed some meaningful
pre-grasp behaviors, such as reorienting objects or pushing
obstacles aside, long-horizon strategies – like intentionally

moving a non-target object before retrieving the target –
remain difficult to learn. A curriculum learning approach
that scales the number of items over time as the policy
improves might be an interesting avenue for future work. We
depict the training progress on the left of Figure 3. Overall,
we were able to learn highly effective teacher policies, that
successfully handle diverse tabletop configurations. Failures
are mainly limited to particularly difficult scenarios or slight
exceedances of contact thresholds for hard-to-grasp items.

In Table IV, we can see that the visual student policies
are able to recover much of the teacher’s performance. This
indicates, that the formulation via supervised learning from a
sequence of imperfect observations is an effective approach
to transfer the policy’s abilities to a real-world deployable
observation space. On real-robot deployment (see Table V),
we observed that the policies exhibited similar success rates
on seen and unseen objects, indicating, that the learned
behaviors are not overfitting to the training subset.

B. Grasping from Cluttered Bins

The previous results demonstrate that, for tabletop scenes,
RL policies can learn to grasp objects from cluttered en-
vironments with high success rates. We aim to extend this
capability to the more challenging scenario of picking objects
from cluttered containers. This setup presents additional
challenges, such as tightly packed heaps causing unforeseen
interactions and the need for precise maneuvering to avoid
collisions with the container walls. Figure 3 center shows the
training process.

The teacher policies for the bin-picking scenario can
learn careful grasping of diverse items, but underperform
the tabletop policies by a substantial margin (see Table IV).
The learned policies again exhibit desirable behaviors like re-
grasping and pre-grasp manipulation. Inspecting the learned
behaviors revealed, that the complex kinematics required to
manouver the arm to the desired object without causing
collisions are most difficult to learn. The policies cause
more terminations due to contacts and tend to behave overly
conservative on objects that are difficult to grasp. The student
policies for this scenario again track the performance of the
teachers closely, indicating that the room for improvement
lies in learning better teacher policies. Combining RL with
explicit safety constraints is a promising avenue for future
work in this scenario.

C. Implicit Inference through Time

We hypothesize that the student infers the underlying
object state necessary for imitating the teacher by leveraging



the history of observations. If true, increasing the context
length should enhance the student’s ability to imitate the
teacher’s actions, resulting in lower loss. To investigate this,
we log the loss curves of a history-aware student policy
imitating an MLP teacher over different lengths of visible
context in the bottom right of Figure 3. A clear pattern
of decreasing loss with increasing context length is visible,
showing that the student is better able to imitate the teacher
when more context becomes available, which indicates that
the student is indeed learning to infer the underlying object
state from the history of observations.

VI. CONCLUSION

Summary: We have illustrated a way to condition RL
policies on the output of SAM 2 to achieve closed-loop,
prompt-guided grasping from clutter. Specifically, we have
formulated the problem of learning from imperfect detections
of a foundation model as a POMDP that can be solved
efficiently through history-aware architectures in a student-
teacher setting.

Limitations and Future Work: While we were able to
create dexterous manipulation behaviors for cluttered bin-
picking, the number of undesirable collisions is still higher
than for the tabletop scenario, causing us to leave real-robot
deployment for future work. Further, while we have tackled
the problem of picking and repositioning unknown objects,
it would be interesting to apply our methodology to addi-
tional manipulation tasks. Straightforward extensions might
be reposing objects, or placing them in specific locations in
the environment, such as on a shelf or in a container.
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