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Abstract— Robotic bin picking from cluttered bins is a
challenging task. We describe our team’s entry to the Amazon
Robotics Challenge 2017, which required stowing items into a
storage system, picking specific items, and packing cardboard
boxes. Our object perception pipeline can be quickly and
efficiently adapted to new items using a custom turntable
capture system and the transfer learning paradigm. It produces
high-quality item contours, on which grasp poses are found
heuristically. A planning component coordinates manipulation
actions between the two robot arms, minimizing execution
time. The system has been demonstrated successfully at the
Amazon Robotics Challenge 2017, where our team NimbRo
Picking reached second places in both the picking task and the
final stow-and-pick task. Additionally, we evaluate individual
components in separate experiments.

I. INTRODUCTION

In order to successfully approach robotic bin picking,

multiple research fields ranging from computer vision, grasp

planning, motion planning, and control need to be tightly

coupled. Especially the case of cluttered bin picking, i.e.

items of different types randomly arranged, is the focus of

active research. In order to advance the state of the art,

Amazon holds yearly competitions: The Amazon Picking

Challenges (APC) 2015 and 2016, and the Amazon Robotics

Challenge (ARC) 20171.

On a high level, the ARC required contestants to solve

two common warehouse tasks: The stowing of newly arrived

items into a storage system (“stow task”), and the retrieval

and packing of specific items from storage into boxes (“pick

task”). In contrast to the APC 2016, this year’s competition

allowed participants much more leeway with regards to the

system design. In particular, the storage system itself could

be built by the teams. On the other hand, the task was

made more challenging by not providing all items to the

teams before the competition, instead requiring participants

to learn new items in short time (45 min). This forced the

development of novel object perception approaches.

Our team NimbRo Picking developed a robotic system for

the ARC 2017 (see Fig. 1). Contributions include:

• A method for quickly and efficiently capturing novel

items with minimal human involvement,

• a highly precise semantic segmentation pipeline which

can be adapted to new items on-the-fly, and

• a method for dual-arm coordination for complex picking

or stowing tasks.

∗All authors at AIS, University of Bonn,
max.schwarz@ais.uni-bonn.de

1https://www.amazonrobotics.com/#/roboticschallenge/

results

Fig. 1. Our system at the Amazon Robotics Challenge 2017 in Nagoya,
performing the stow phase of the final task. Image by Amazon Robotics.

II. RELATED WORK

The Amazon Picking Challenge 2016 resulted in the de-

velopment of some very interesting systems for bin picking,

serving as inspiration for our system.

Hernandez et al. [1] won the picking and stowing chal-

lenges. Their system consisted of an industrial arm equipped

with a hybrid suction and pinch gripper. Similarly, our grip-

per can also apply suction and pinch grasps. However, our

gripper design allows suction and pinching simultaneously,

which was (to our knowledge) not possible with Team Delft’s

gripper. The team also used, like a number of other teams,

a fixed camera setup for perception of items in the tote—

allowing the perception pipeline to run while the robot is

putting an item away. This convinced us to build a fixed

sensor gantry for our system this year.

Matsumoto et al. [2] placed second in the pick task and

fourth in the stow task. Their system directly trains a neural

network to predict item grasp poses. We initially decided

against such an approach because item grasp annotations

would be expensive to obtain for new items and we were

not sure whether grasp affordances could be effectively

transferred from the known items.

Our own entry for the Amazon Picking Challenge 2016

[3], [4] placed second in the stow competition and third

in the pick competition. In contrast to this year, our 2016
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Fig. 2. CAD model of the entire system.

system used a single UR10 arm, could only use suction for

manipulation, and required manual annotation of entire tote

or shelf scenes for training the object perception pipeline.

Autonomous driving has given a large impulse into the

field of semantic segmentation. Large datasets allow the

training of increasingly complex models (e.g. [5], [6]), but

few works focus on fast training from few examples, as

required in this application.

Dual-arm manipulation has been investigated for a long

time, mostly inspired by the human physiology. Smith et al.

[7] survey different approaches and introduce the useful dis-

tinction of goal-coordinated manipulation (two arms working

towards a shared goal without direct physical interaction)

and bimanual manipulation (two arms manipulating the same

item). In this scheme, our system falls into the former cate-

gory. Since most works focus on the bimanual manipulation

case [8], [9] or consider sequential manipulation of one item

with two arms [10], our case of independent manipulation in

a shared workspace is quite interesting. Other works focus on

collision free multi robot manipulation planned offline [11].

This is not sufficient in our case since the arm trajectories

and timings are not fully known in advance.

III. MECHATRONIC DESIGN

Our system design was driven by three design goals: Task

completion, speed, and simplicity (in this order). It was

important to focus on task completion first, since any time

bonus would only be awarded if the task was complete. We

figured that it would be likely that only few, if any, teams

would complete the entire task—indeed, at the competition

no team was able to fully complete the final task.

A. Arms and Grippers

Our experience from last year told us that suction is a very

powerful tool for bin picking—we could manipulate all items

using suction at APC 2016. Nevertheless, it was clear that

this time mechanical grasping would be required as well.

To address our second design goal, speed, we decided

to go for a dual-arm system. In particular the pick task

lends itself to parallelization—three cardboard boxes have

to be filled with specific items, which can be done mostly

independently as long as multiple target items are visible,

i.e. not occluded by other items.

Fig. 3. System setup for both tasks. Storage system bins are depicted in
gray. Left: Configuration with tote (red) for the stow task. Right: Cardboard
boxes (orange) for the pick task.
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Fig. 4. Left: Gantry setup. Right: 3 DOF suction gripper.

Consequently, our robot system consists of two Universal

Robotics UR5 arms with 6-DOF. Each arm is equipped with

an endeffector having a bendable suction finger and a 2-DOF

second finger (see Fig. 4). The suction is generated by two

powerful vacuum cleaners, one for each arm. The suction

power can be controlled with an actuated bleed valve.

B. Storage System

Our storage system meets the maximum allowed volume

and area constraints. The rules specify a maximum of ten

bins. We chose two bins, since then the bin size is similar

to the tote size, equalizing the perception situations in both

containers. For the same reason, our storage system is painted

red, in the same color as the tote.

During the design of our storage system, we tried to make

it easily accessible for manipulation and perception. Both

parts of the storage system are reachable by both arms (see

Fig. 3) and are tilted by approx. 5◦ towards the center of the

robot system to increase the visibility of items located close

to the inner walls of the bins. The tote (stow task) or one of

the cardboard boxes (pick task) is located between the two

storage system bins. One remaining cardboard box for the

pick task is placed next to each arm and is only accessible by

this arm. We placed an industrial scale under each of the five

possible pick and place locations for measuring the weight

of the picked item and detecting contact between the arms

and the bins, cardboard boxes, and the tote.

C. Gantry Sensors

Our robot system is equipped with a 24 MPixel photo

camera (Nikon D3400) and a 3.2 MPixel Photoneo PhoXi®

3D-Scanner XL (see Fig. 4). The 3D scanner offers sub-

millimeter absolute accuracy on well-measurable surfaces.

Both sensors are mounted on a gantry approx. 2 m above

the storage system and tote. This configuration allows us to

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2018 IEEE International Conference on
Robotics and Automation. Received September 22, 2017.



Fig. 5. Turntable capture and automatic segmentation. Top: Input image.
Middle/Bottom: Extracted segments in standing and lying configuration.

observe all important parts of the system without moving the

sensors. Two LED panels provide active lighting, reducing

the influence of outside lights.

D. GPU Server

For fast training of deep neural networks, our system

includes a GPU server with four Nvidia Titan X (Pascal)

cards. The server exports a network share for transferring

new training data captured on the turntable.

IV. OBJECT PERCEPTION

A. Data Capture & Modeling

During a competition run, our system has to quickly adapt

to the provided new items. We experimented with using

only the few images provided by Amazon, but obtained

significantly better results using more images. The key issue

is that capturing tote scenes and annotating them manually as

in our 2016 system [3] would be much too time consuming.

Instead, we capture turntable frames using an automated

turntable setup (see Fig. 5). The turntable is equipped with

a Nikon D3400 camera (identical to the one in the gantry)

and an Intel RealSense SR300 sensor. The turntable captures

twenty frames per revolution, with one revolution lasting

10 s. This means a typical item can be scanned in three

different resting poses on the turntable in about a minute,

including manual repositioning.

Before starting the item capture, we also record a frame

without the item. We then use a background subtraction

scheme to automatically obtain a binary item mask. The

masks are visualized and the mask generation parameters

can be quickly modified to fit the particular item using a

graphical user interface. While the generated masks are not

perfect, they suffice for training.

B. Semantic Segmentation Architecture

In contrast to our previous APC 2016 entry [3], which

combined state-of-the-art object detection and semantic seg-

mentation approaches, we decided to go with a pure semantic

segmentation pipeline for the ARC 2017. This decision

was motivated by a) the small gain obtained by the hybrid

Fig. 6. Generated synthetic scenes. All scenes were generated with the
same annotated background frame (left column) for easier comparison. Top
row: RGB. Bottom row: Color-coded generated segmentation ground truth.

pipeline and b) the fact that Amazon removed the possibility

of multiple items of the same class being in the same

container, making true instance segmentation unnecessary. In

our experience, having pixel-precision segmentation instead

of just rectangle-based object detection is a large advantage

for scene analysis and grasp planning.

As a basis, we reimplemented the RefineNet architecture

proposed by Lin et al. [5], which gave state-of-the-art results

on the Cityscapes dataset. It uses intermediate features from

a pretrained ResNet-101 network [12], extracted after each of

the four ResNet blocks. Since the features get more abstract,

but also reduce in resolution after each block, the feature

maps are sequentially upsampled and merged with the next-

larger map, until the end result is a both high-resolution

and highly semantic feature map. The classification output is

computed using a linear layer and pixel-wise SoftMax. For

our purposes, we replaced the backbone network with the

similar but newer ResNeXt-101 network [13].

C. Scene Synthesis & Fast Training

As mentioned above, a key requirement is the fast adaption

to new items. Since the amount of training images we can

capture is very limited and the item images are recorded on

the turntable without occlusions, we generate new synthetic

scenes for training (see Fig. 6).

This scene generation happens on-the-fly during training,

so that we can immediately start training and add new

turntable captures as they become available. Manually an-

notated dataset frames are used as background, with five

new items placed randomly on top. This generates enough

occlusion on the new items, while not overloading the

scene. The scene generation part runs purely on CPU and

is multithreaded to achieve maximum performance.

The network training itself is distributed over N GPUs. We

train on N images (one image per card) and then average and

synchronize the weight gradients using the NCCL library2.

Using one scene generation pipeline per GPU card, we can

obtain 100% GPU utilization.

2https://github.com/NVIDIA/nccl
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a) b) c)

Fig. 7. Object perception example from the picking phase of our finals run at ARC 2017. The original model trained during the run was used. a) RGB
image captured by the Nikon camera. b) Segmentation output. c) Processed item contours with average confidences, polygon center of mass (small points),
and suction spots (large points). Best viewed in color.

While the ResNeXt backbone network is kept fixed during

training, all other RefineNet layers and the final classification

layer are trained with a constant learning rate. Weight updates

are computed using the Adam optimizer [14]. We pretrain the

network on the set of known objects, and then finetune during

the competition for the new objects. After every epoch,

the filesystem is scanned for new turntable captures, the

classification layers are potentially adapted to a new number

of classes, and training is resumed.

D. Heuristic Grasp Selection

Since it is infeasible to manually specify grasp positions

for the large number of items, especially for the new items

in each competition run, we built a robust grasp pose heuris-

tic for 2D grasp proposal. The heuristic is tuned towards

suction grasps. To avoid the dangerous item boundaries, the

heuristic starts with the contour predicted by the segmenta-

tion pipeline. As a first guess, it computes the point with

maximum distance dp to the item contour, the so-called

pole of inaccessibility [15]. For fast computation, we use

an approximation algorithm3.

For most lightweight items, the pole of inaccessibility

suffices. For heavy items, we also check the 2D polygon

center of mass and compute its distance dm to the contour.

If dm

dp

> 0.5, we prefer to grasp at the center of mass. See

Fig. 7 for examples.

In order to generate a 5D suction pose (rotations around

the suction axis are not considered), depth information is

needed. We upsample and filter the depth map generated

by the PhoXi 3D scanner by projecting it into the camera

frame and running a guided upsampling filter [4], [16]. The

resulting high-resolution depth map is used to estimate local

surface normals. Finally, the 5D suction pose consists of the

3D grasp contact point and the local surface normal.

For pinch grasps, the rotation around the suction axis has

to be determined. Here we try to point the second finger

towards the bin center, to avoid collisions. We add Gaussian

3https://github.com/mapbox/polylabel

Fig. 8. Clutter graph for the scene in Fig. 7. The bottom half is cut off,
leaving only the items on top of the pile. Vertices contain the class name
and detection confidence. Green vertices have no predecessor. Edges are
labelled with the point count (predecessor higher than successor).

noise on both translation (σ = 1.5 cm) and the rotation (σ =

60
◦), in order to obtain slightly different grasp poses on each

manipulation attempt.

E. The Clutter Graph

For high-level planning, it is quite important to estimate

which items are currently graspable and which are occluded

by other items, which would need to be moved first. For

this reason, we generate a directed graph, which we call the

clutter graph. All perceived items are vertices in this graph,

with an edge from A to B indicating that A is occluding B.

See Fig. 8 for an example.

The graph is initially generated by examining the item

contours. Along the contour, we check the upsampled depth

map for points on the outer side which are higher than the

corresponding points on the inner side. These points are

counted and an edge is inserted into the graph, directed from

the occluding item to the item under consideration. The point

count is attached to the edge.

After simplifying cycles of length two (edges and back

edges) by reducing them to one edge with the difference

in point counts, we further remove cycles by finding a set

of edges of minimum point count, whose removal makes

the graph acyclic. This is called the minimum feedback arc
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Fig. 9. Pose Estimation network architecture

set and is NP-hard, so we find a brute-force solution. The

result is a directed acyclic graph containing the occlusion

information, which can be easily used to read off which items

are graspable.

F. Object Pose Estimation

During preparation for the ARC 2017, we anticipated more

difficult items which would be graspable only at very specific

grasp poses. In order to retain the needed flexibility, we

decided to prepare a 6D pose estimation module, which

would allow us to specify allowable grasps relative to an

item frame.

This module includes the tools for arranging the turntable

captures (consisting of one to four sequences of turntable

revolutions with different item orientations), a 5D pose

prediction network, and a post-processing part.

The architecture of the pose estimation network is shown

in Fig. 9. It predicts the 3D orientation of the item relative

to the camera frame in the form of an unit quaternion. A

second branch predicts the 2D pixel location of the item

coordinate frame. The network consists of the RefineNet

backbone as in the semantic segmentation network, followed

by three convolution layers, and two fully connected layers.

For N item classes, the network predicts 6N values—

one quaternion and translation offset per item class. This

explicitly allows the predictor to adapt to the item class.

Note that the classification decision is already made by the

semantic segmentation network. During training, only the

predictor corresponding to the correct item is subject to the

error metric and is trained.

Using the object contour obtained from segmentation, we

crop the RGB image. The size of the crop is computed

based on the expected maximum size of the item in the

image, which results in constant scale even if part of the

object is occluded. During training, a segment captured on

the turntable is placed on top of a randomly cropped storage

system scene. Furthermore, the background is shifted towards

red to emphasize the item currently under consideration

(see Fig. 9). The output of the pose estimation network is

projected to a full 6D pose using the depth map and used

as an initialization for a traditional ICP-based registration

method to compute the exact 6D item pose.

V. DUAL-ARM MOTION GENERATION

A. Parametrized Motion Primitives

The UR5 arms and the endeffectors are controlled with

parametrized motion primitives. A motion is defined by

Fig. 10. Cost function planes for the IK solver. The planes affect the wrist
of the robot. The vertical plane keeps the endeffector vertical, as long as the
horizontal planes are not active (purple robot). The horizontal planes keep
the wrist away from the robot base to prevent collisions.

a set of keyframes which specify the kinematic group(s)

manipulated by this motion. Each keyframe either defines

an endeffector pose in Cartesian space or the joint state of

the kinematic group(s). The keyframes are either manually

designed beforehand or generated and adapted to perception

results at runtime. This motion generation has been used on

other robot systems in our group before (see [3] and [17]).

B. Inverse Kinematics

For keyframes defined in Cartesian space we use a se-

lectively damped least square (SDLS) solver is used, as in

[3]. Since the arm including the suction finger has seven

DOF, we can optimize secondary objectives in the null space

of the Jacobian matrix. In our case, we want to keep the

wrist as high as possible and thus keep the endeffector

vertical in order to reduce the horizontal space needed while

manipulating.

Hence, we define a horizontal plane above the robot and

use the squared distance from the wrist to the plane as cost

function. In the stow task, two additional vertical planes are

added (see Fig. 10) to prevent the wrist getting too close to

the manipulator base. For further details, we refer to [3].

C. High-Level Planning for Picking

The high-level planner for the pick task triggers the

perception pipeline, processes the segmentation results and

assigns manipulation tasks to the arms. The perception

pipeline is started for a particular bin whenever no possible

tasks are left and the bin is not occluded by an arm. Item

detections are sorted regarding a per-item fail counter, the

number of items occluding the target item, and the perception

confidence. The two best ranked target items are marked as

possible tasks for this bin. If no target items are detected

or the fail counter for the best items is too large, new tasks

moving non-target item out of the way are generated.

D. Placement Planning

Since the space inside the cardboard boxes is limited, our

system finds optimal placement poses inside the boxes. The

placement planner uses bounding box dimensions provided

by Amazon for each item. It considers three disjoint sets of

items per box: Already placed items (A), currently possible
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Fig. 11. Planning for the pick task. Left: Visualization of manipulation
tasks. Chosen tasks are marked in green and purple. Right: Timeline of
actions including perception time and arm motions.

task items (B), and items which will be picked later (C).

The planner finds a brute-force solution in the form of a 3D

stacking of the item bounding boxes, under the constraint

that items from A have a fixed position and items from B

have to be placed before items from C. The bounding boxes

may be rotated by 90
◦ around the vertical axis. The solution

with minimum total stacking height is then used to determine

the target poses for each item from B.

Objects of oblong shape are always placed such that

the height dimension is the smallest dimension. This may

necessitate a rotating motion during placement, since the

items are always grasped roughly from above. If required,

we place an additional constraint on the grasp pose which

ensures that the items are grasped in a way that allows the

later rotation using our single DOF on the suction finger.

E. Task Allocation

Whenever an arm is free, we assign the best marked task

considering collision avoidance with the other arm. A task

consists of a set of waypoints of endeffector poses starting

with the current arm pose, grasp pose, place pose, home pose

of the arm and some intermediate waypoints (see Fig. 11).

Since we assume the last link of the arm to be always

vertical, we only consider the 2D endeffector pose for

collision checking. Hence, all waypoints are projected into

2D. Next we compute the shortest Euclidean distance for

each line segment defined by two consecutive waypoints of

one task to all line segments of the other task. If the minimum

of all these distances is larger than a threshold, the tasks can

be executed in parallel. Since the number of possible tasks

is limited, we can test all possible task combinations as long

as an arm is free. If multiple collision-free tasks exist, we

prefer tasks which can only executed by the free arm (i.e.

the place location is in one of the corner boxes). We delete

reached waypoints from current tasks to allow the second

arm to start on new tasks as soon as possible.

Following each perception run, a predefined per-object

probability decides which grasp type (suction or pinch)

should be used. After grasping and lifting an item, the item

weight is measured with the scale mounted below the storage

system and compared with the expected item weight. If the

weight difference is under 5 g or 10% of the item weight,

TABLE I

TIMINGS AND SUCCESS RATES FROM ARC 2017

Individual Challenges Final Challenge

# Time [s] Stddev # Time [s] Stddev

S
to

w

Vision 19 11.1 0.0
Stows not comparable 14 29.8 5.4
Fails 12 14.0 6.9

Sum 45 13:17 min
Runtime 45 10:33 min

P
ic

k

Vision 13 12.0 0.9 32 13.1 1.3
Picks 10 38.3 7.6 8 39.1 10.0
Moves 4 34.5 9.0 10 30.3 3.0
Fails 5 20.4 3.2 22 28.9 10.9

Sum 32 12:59 min 72 27:52 min
Runtime 32 8:56 min 72 19:22 min

we accept the item and place it. Otherwise, we drop it and

increment the fail counter otherwise.

F. High-Level Planning for Stowing

In the stow task, the single pick location (the tote) limits

the possibility to parallelize the manipulation work, since

precise weight change measurements require sequential pick-

ing actions in the tote. Therefore, we assign each bin of the

storage system to one arm as its associated stow location.

This at least allows us to place an item with the first arm

while grasping the next item with the second.

Since we have to stow all of the given items, we start

with objects where we are confident that they are lying

on top. Thus, the item detections are first sorted by the

confidence reported by the perception pipeline. Next the best
3

4
detections are sorted by the total number of items lying

on top and finally the best half of these are considered as

possible tasks.

Since manipulation is performed open-loop after percep-

tion, we allow a maximum of two manipulation attempts

before the scene is measured again. We try to find a pair

of items containing one of the two best detection results,

respecting a minimum distance between the two items. This

prevent the first manipulation attempt affecting the second

item. If such a pair exists, we assign the items randomly

to the arms, otherwise we stow only the item with the best

perception confidence.

After grasping an item, the weight check is performed. In

contrast to the pick task, no collision avoidance at the high-

level planning is needed since each arm has its dedicated

workspace and access to the tote is granted sequentially.

VI. EVALUATION

We evaluated our work on a system level at the Amazon

Robotics Challenge 2017. We augment this evaluation with

separate experiments for the object perception pipeline and

the dual-arm planner.

A. Amazon Robotics Challenge 2017

At the ARC 2017, our team had four chances to demon-

strate the system’s abilities. In our practice slot, we success-
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Fig. 12. Semantic Segmentation experiments. Left: Training image
throughput depending on the number of GPUs. Right: Test set IoU during
training.

fully attempted the pick task and obtained a score of 150

points, the maximum of all practice scores.

Unfortunately, the evening before our official stow run we

experienced a short in the power supply wiring, damaging

our control computer and a few microcontrollers beyond

repair. The repair did not leave us any time for full system

tests before our stow run. Consequently, due to a series

of operator mistakes caused by the new configuration, our

system operated with wrong item weights during the stow

task and discarded nearly all grasped items.

We were able to fix these remaining issues for the pick

task, where our team scored 245 points, which led to a

second place in the pick competition, behind Team Nanyang

with 257 points. The third placed team achieved 160 points.

Our system also performed very well in the final task,

which combined the stow and pick tasks sequentially. In the

stow phase, we were able to stow fourteen out of sixteen

items. The remaining two items could not be picked because

a bug resulted in an unfortunate gripper orientation, was

prevented from execution by collision checks. In the picking

phase, we picked eight out of ten target items. One of the

target items had not been stowed in the stow phase, so it was

impossible to pick. The other one was a cup made out of thin

and sparse wires, making it both very difficult to perceive

and to grasp. The system succeeded once in grasping it, but

discarded it due to an imprecise weight measurement. We

scored 235 points in the final task, which placed us second

behind the winning Team ACRV with 272 points and in front

of Team Nanyang (225 points).

Table I shows a summary of the successes and failures

per task and recorded times for perception and manipulation

actions. Generally, having two arms for manipulation lowers

the overall runtime and allows more manipulation attempts

in a given time. Overall, our system performed very well and

showcased all of its abilities at the ARC 2017.

B. Semantic Segmentation

After the ARC, we annotated the collected images during

our final run (pick phase) with ground truth segments to be

able to quantitatively judge segmentation performance. We

then recreated the segmentation training run from our final.

To investigate the scalability of our training pipeline, we

ran 10 training epochs (with one epoch defined by 140

background images) on a varying number of Nvidia Titan

TABLE II

POSE ESTIMATION ERRORS

Translation Quaternion Angular

[pixel] [norm, ·10−2] [degrees]

train val train val train val

Epsom salts 2.28 3.32 1.63 3.83 1.80 3.19
Toilet paper 2.41 3.79 1.94 4.75 1.68 3.09

Yellow windex 2.25 3.41 2.04 3.23 1.86 2.78

Average 2.31 3.51 1.87 3.93 1.78 3.02

Fig. 13. Pose Estimation experiments. Top row: Item coordinate systems.
Middle row: RGB input image. Black and red squares depict ground truth
and predicted origin of the item, respectively. Bottom row: Dataset image
(train and eval) closest to the predicted orientation. Ideally, this should be
the image from the evaluation set matching the predicted orientation.

Xp cards. Figure 12 shows that our pipeline scales nicely to

up to eight GPUs (and possibly more).

Figure 12 also shows a typical test result curve recorded

during training. We measure the intersection over union

(IoU) separately for each class and then average over the

classes present in the test set. One can see that after 5000

to 10000 images the curve saturates. Using four GPUs, as

during the ARC, this occurs after approx. 15 to 30 min. Note

that during a real training run, the system starts training with

the images provided by Amazon and turntable captures are

added over a period of 20 min, extending the needed training

time.

C. Pose Estimation

During the ARC 2017, pose estimation was not necessary.

Our grasp heuristic was able to find good suction or pinch

grasps on all of the encountered items. Nevertheless, we

evaluated the pose estimation network by training it on

three different items. Table II shows quantitative results of

these experiments. Our pose estimator is able to predict the

translation of the item origin within a few pixels and the

orientation within a few degrees. Figure 13 shows example

frames from this experiment.

D. Dual-Arm Experiments

We also investigated the speedup of our system achieved

by using a second arm. For both tasks (pick and stow) several
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Fig. 14. Averaged run time with standard deviation (10 runs each) in
simulation for stow and pick task with one (red) and two arms (blue) used.

full runs were performed in simulation.

The perception pipeline was not simulated, instead the

planner was supplied with the item poses after a certain

time—11 s for stow and 13 s for pick, since this was the

average perception time needed in the ARC final. Object

poses were generated by uniformly sampling positions inside

the storage bin and the tote with fixed orientation.

We averaged the time needed for solving the task with

different grasp success probability values over ten runs each.

For the one arm pick task experiments the unreachable box

was symmetrically placed next to the used arm.

Figure 14 shows the results. If only one arm is used, the

system needs on average 1.2 to 1.3 times longer to complete

the task. The large configuration space of grasp success rate,

item locations, requested order, and order of detection result

in a high standard deviation, nevertheless the trend is clearly

observable.

VII. LESSONS LEARNED

Overall, several design choices were validated at the ARC

2017 or have been proven suboptimal. Our strong focus on

the object perception pipeline and efficient execution of the

tasks, as opposed to more complicated mechanical solutions,

was very successful. We also learned that even such dynamic

tasks requiring fast adaption to new items are within reach

of current mainstream deep learning approaches, if one can

parallelize the training and makes proper use of pretraining.

In retrospect, we could have minimized the execution time

further by optimizing our storage system layout. The dual-

arm speed-up from factor 1.3 to 1 is slightly disappointing

and is mostly limited due to resource conflicts, e.g. both arms

wanting to place in the central box. A different placement of

boxes or more global planning could alleviate these conflicts.

As always with robotics competitions, proper full-scale

testing is important, both for the system as well as the

operators. On the operator side, we had mistakes during our

stow slot. On the system side, we noticed precision problems

with our scales quite late in the competition, which might

have cost us the first place in the finals.

VIII. CONCLUSION

In this paper, we presented our system designed for

the ARC 2017. Our object perception pipeline is able to

be quickly adapted to new items, to produce precise item

contours, infer grasp poses, and predict 6D item poses. We

demonstrated how to quickly plan and coordinate two arms

operating in the same workspace. Our very good results at

the ARC 2017 and our quantitative experiments show the

effectiveness of our approach.

In future work, we will investigate replacing heuristics in

our system with trainable modules to further robustify the

item perception pipeline.
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