
VILLAR-CORRALES ET AL.: MCDS-VSS: VIDEO SEMANTIC SEGMENTATION 1

Supplementary Material: MCDS-VSS

A Evaluation Metrics
To evaluate MCDS-VSS, we compute its segmentation performance, temporal consistency,
throughput and inference speed.

Following the standard practice, we use the mean Intersection over Union (mIoU) to
evaluate the segmentation performance.

To evaluate the temporal consistency (TC) of a VSS model, we closely follow the proce-
dure proposed by Liu et al. [9], in which we compute the mean flow warping error between
every two neighboring frames. More precisely, we use FlowNet2 [7] to compute the optical
flow between two adjacent frames, and warp the predicted segmentation maps from time-
step t − 1 into time t. We then calculate the mIoU between the warped and actual target
segmentations. Following [9], we evaluate TC using a subset of 100 sequences from the
validation set.

We measure the throughput and inference speed of our model in frames per second
(FPS) and milliseconds (ms), respectively. For this purpose, we perform inference with
MCDS-VSS on 200 different video sequences of 6 frames and average the throughput and
time across frames and sequences.

B Implementation Details

B.1 Network Details
In this section, we describe the network architectures and operation of each module in
MCDS-VSS. We emphasize that MCDS-VSS is architecture-agnostic and could be imple-
mented with different, e.g. more powerful or efficient, model designs.
Image Encoder & Segmentation Decoder: We implement two distinct MCDS-VSS vari-
ants, whose image encoder and segmentation decoder follow the architecture of two popular
image semantic segmentation models, namely DeepLabV3+ [1] with a ResNet18 [5] back-
bone and HRNetV2 [12] with a channel multiplier of 18, respectively. In both cases we
initialize the parameters of the encoders with those of the model pretrained on ImageNet,
whereas the segmentation decoders are initialized with random weights.
Motion Encoder: The motion encoder concatenates the image features from two consecu-
tive time steps (i.e. ht−1 and ht) across the channel dimension, and processes this represen-
tation with three convolutional layers, followed by batch normalization and ReLU activation
functions.
Depth Decoder: The network architecture of our depth decoder, which is reported in Ta-
ble 1, closely follows [3, 4]. It is composed of five convolutional blocks using reflection

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Liu, Shen, Yu, and Wang} 2020

Citation
Citation
{Ilg, Mayer, Saikia, Keuper, Dosovitskiy, and Brox} 2017

Citation
Citation
{Liu, Shen, Yu, and Wang} 2020

Citation
Citation
{Chen, Zhu, Papandreou, Schroff, and Adam} 2018

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Wang, Sun, Cheng, Jiang, Deng, Zhao, Liu, Mu, Tan, Wang, etprotect unhbox voidb@x protect penalty @M {}al.} 2020

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M {}Aodha, and Brostow} 2017

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M {}Aodha, Firman, and Brostow} 2019

2 VILLAR-CORRALES ET AL.: MCDS-VSS: VIDEO SEMANTIC SEGMENTATION

Table 1: Network architecture of the depth
decoder module.

Layer Modules Output Dim.

Block 1 Conv + ELU 256 × H/8 × W/8
Conv + ELU 256 × H/8 × W/8

Block 2 Conv + ELU 128 × H/8 × W/8
Conv + ELU 128 × H/8 × W/8

Block 3 Conv + ELU + Ups. 64 × H/4 × W/4
Conv + ELU 64 × H/4 × W/4

Block 4 Conv + ELU + Ups. 32 × H/2 × W/2
Conv + ELU 32 × H/2 × W/2

Block 5 Conv + ELU + Ups. 16 × H × W
Conv + ELU 16 × H × W

Disp. Pred. Conv + Sigmoid 1 × H × W

Table 2: Network architecture of the ego-
motion decoder module.

Layer Modules Output Dim.

Block 1 Conv + BN + ReLU 256 × H/8 × W/8

Block 2 Conv + BN + ReLU 256 × H/8 × W/8

Block 3 Conv + BN + ReLU 128 × H/8 × W/8

Block 4 Conv + Pool + ReLU 128 × H/16 × W/16

Ego
Motion

Conv 6 × H/16 × W/16
Global Avg. Pool 6

padding, followed by ELU nonlinearities. Each of the last three convolutional blocks up-
samples the feature maps by a factor of two using nearest-neighbor upsampling. The depth
decoder outputs normalized inverse depth maps d/, which are then converted into depth maps
d by:

1
d
=

1
Dmin

+(
1

Dmax
− 1

Dmin
) ·d/ , (1)

where Dmin and Dmax are constant values defining the minimum and maximum depth values
in the scene, set to Dmin = 0.1m and Dmax = 100m for the Cityscapes dataset.
Ego-Motion Decoder: The ego-motion decoder, which is reported in Table 2, processes
the motion features with a series of convolution layers, followed by batch normalization
and ReLU nonlinearities. The final layer outputs a 6-dimensional vector representing the
translation and rotation (parameterized as Euler angles) of the camera transformation matrix.
Residual Flow Decoder: The residual flow decoder is implemented as a modified lightweight
version of RAFT [11]. To seamlessly integrate this module into our MCDS-VSS filter, we
modify the implementation of raft_small provided by PyTorch1 by replacing the expen-
sive feature and context encoders with a single convolutional block that directly processes
the ego-warped sego

t and image features ht . We set the number of refinement iterations to 12.
MCDS-VSS Filter: We instantiate the MCDS-VSS filter using the modules described above,
after being pretrained for semantic segmentation, SSL of depth and ego-motion, and distilla-
tion of object motion. For the first image in a video sequence, MCDS-VSS directly predicts
its semantic segmentation, without the use of any temporal filtering. For all other frames,
MCDS-VSS employs the structured filtering method described in the paper. The scene fea-
ture state is initialized with the image features from the first frame in the video sequence
(s1 = h1), whereas the initial camera state c1 is initialized with zeros. We experimented with
learning the initial state representations; however it did not yield any qualitative or quantita-
tive improvements, while increasing the number of learnable parameters.

1https://pytorch.org/vision/main/models/raft.html

Citation
Citation
{Teed and Deng} 2020

https://pytorch.org/vision/main/models/raft.html

VILLAR-CORRALES ET AL.: MCDS-VSS: VIDEO SEMANTIC SEGMENTATION 3

Table 3: MCDS-VSS training stages and hyper-parameters.

Stage Training Goal Loss Function LR Batch Train Time # Imgs

1 Segmentation & SSL Geometry LSegm +λD ·LDepth 2 ·10−4 12 40h 3
2 Distillation of Object Motion LFlow 1 ·10−4 4 18h 2
3 Ego-Motion Filter LEgo 8 ·10−5 8 8h 6
4 Temporal Integration LSegm +λTC ·LTC 8 ·10−5 4 12h 6

Table 4: Throughput, inference speed (in
ms) and number of learnable parameters for
MCDS-VSS based on DeepLabV3+.
Model # Params. FPS Inf. (ms)

Image Enc Ex 15.3M 76.9 12.9
Motion Enc Em 4.8M 279.4 3.6
Motion Update 2.8M 476.2 2.1
Ego-Motion Dec Dc 1.6M 492.8 2.0
Depth Dec Dd 1.9M 227.1 4.4
Ego-Motion Comp. 0 63.4 15.8
Residual Flow Dec Rf 2.7M 14.0 71.8
Object Motion Comp. 0 775.6 1.3
Feature Fusion 2.6M 215.3 4.6
Segmentation Dec Dy 1.3M 196.7 5.1

Total MCDS-VSS 32.9M 9.0 111.6

Table 5: Throughput, inference speed (in
ms) and number of learnable parameters for
MCDS-VSS based on HRNetV2.
Model # Params. FPS Inf. (ms)

Image Enc Ex 9.5M 36.7 27.2
Motion Enc Em 5.0M 75.8 13.2
Motion Update 2.8M 166.7 6.0
Ego-Motion Dec Dc 1.6M 174.4 5.7
Depth Dec Dd 1.9M 62.4 16.0
Ego-Motion Comp. 0 47.9 20.9
Residual Flow Dec Rf 2.9M 13.4 74.6
Object Motion Comp. 0 886.2 1.1
Feature Fusion 2.6M 76.8 13.0
Segmentation Dec Dy 78.8K 627.6 1.6

Total MCDS-VSS 26.2M 5.6 177.6

B.2 Training and Inference

All our models are implemented in PyTorch [10] and trained with two NVIDIA A100 (80GB)
GPUs. For each of the four training stages undergone by MCDS-VSS, we report in Table 3
the most relevant hyper-parameters, including the approximate training time, learning rate,
batch size and number of images per sequence. We empirically set the loss weight values to
λD = 2, λReg = 10−5 and λTC = 1.

Tables 4 and 5 report the number of learnable parameters, throughput and inference time
for each individual module, as well as for the complete model, for the MCDS-VSS variants
based on DeepLabV3+ and HRNetV2, respectively. We emphasize that the ego-motion and
object motion compensation modules do not have any learnable parameters, but instead hard-
wire our knowledge from the moving camera dynamic scene domain to project the previous
scene features into the current time-step using geometry and motion representations. We also
observe that MCDS-VSS inference is severely limited by its residual flow decoder. Adapting
such module to exploit recent advances in fast optical flow estimation [8]), as well as using
more efficient image encoders [6], could allow MCDS-VSS to be used for real time video
semantic segmentation.

C Quantitative Results

In Table 6 we compare for individual classes of the Cityscapes dataset the segmentation
performance and temporal consistency of MCDS-VSS with an HRNetV2 baseline trained
for semantic segmentation and SSL of geometry and motion. MCDS-VSS achieves the

Citation
Citation
{Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, and Lerer} 2017

Citation
Citation
{Kong, Shen, and Yang} 2021

Citation
Citation
{Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

4 VILLAR-CORRALES ET AL.: MCDS-VSS: VIDEO SEMANTIC SEGMENTATION

Table 6: Segmentation performance (mIoU) and temporal consistency (TC) for individual
Cityscapes classes. We compare MCDS-VSS with HRNetV2 backbone with an HRNetV2
model trained for semantic segmentation and SSL of geometry and motion.

R
oa

d

Si
de

w
al

k
Bu

ild
in

g
W

al
l

Fe
nc

e

Po
le

Tr
af

. L
ig

ht
Tr

af
. S

ig
n

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

Bu
s

Tr
ai

n

M
ot

or
bi

ke
Bi

cy
cl

e

M
ea

n

m
Io

U Baseline 98.1 84.3 92.5 50.3 59.2 66.5 70.3 79.3 81.8 63.5 94.6 72.4 83.5 67.7 61.4 76.6 76.5
Ours 98.1 84.7 92.7 51.3 59.6 65.9 70.5 79.3 81.6 63.7 94.9 77.6 85.0 70.6 61.7 76.7 77.1

T
C Baseline 98.7 86.0 91.1 60.8 60.1 67.1 62.4 77.1 69.0 65.8 89.0 58.1 66.8 45.8 49.4 66.6 71.7

Ours 98.9 88.2 92.1 64.1 65.9 69.1 69.2 79.5 70.5 67.8 90.5 65.2 69.6 48.3 53.6 71.0 75.3

best segmentation performance and temporal consistency for most classes in the dataset,
especially for those corresponding to moving objects, such as car, truck, bus or train.

D Qualitative Results

D.1 Effect of Each MCDS-VSS Stage

In Figure 1 we display the semantic segmentations obtained when decoding the scene fea-
tures from different stages of our MCDS-VSS filter. We can observe how the segmentations
after ego-motion compensation (Figure 1 b) atone for the movement of the ego-vehicle,
correctly representing static scene features such as buildings or the bicycle. However, the
dynamics of moving objects (e.g. yellow car) are not addressed in this step, thus not compen-
sating for such movement. This limitation is addressed in the object motion compensation
step (Figure 1 c). However, the disocclusions resulting from the moving car and inaccuracies
in the residual flow estimation can lead to segmentation errors. Finally, fusing the projected
scene state features with the current observations (Figure 1 d) leads to a more accurate seg-
mentation of the scene. In (Figure 1 e) we visualize the update gate mask u employed for
feature fusion. For visualization purposes, we take the mean across all channels and as-
sign lighter colors to spatial locations where MCDS-VSS relies on the propagated state sfull

t ,
whereas darker colors correspond to the current features ht . We observe that MCDS-VSS
relies on the scene state to represent static areas such as buildings or the street, whereas it
relies heavier on observations for accurately segmenting disoccluded areas of the image, fast
moving objects or thin structures (e.g. poles or street signs).

D.2 MCDS-VSS Qualitative Results

In Figure 2, we show a qualitative result comparing MCDS-VSS with the HRNetV2 baseline.
Our method achieves more accurate and temporally consistent segmentations compared to
HRNet, correctly segmenting the traffic signs and reducing the amount of flickering between
frames.

In Figures 3–6, we show on four validation sequences how MCDS-VSS obtains an ac-
curate and temporally consistent segmentation of the scene, estimates the scene depth, and
computes the residual motion flow, which encodes the movement of dynamic objects in the
scene, as well as some minor motion corrections for other objects and scene features.

VILLAR-CORRALES ET AL.: MCDS-VSS: VIDEO SEMANTIC SEGMENTATION 5

Figure 1: Video segmentation for each stage in MCDS-VSS. a) Input images, b) segmen-
tation after ego-motion compensation, c) segmentation after object motion compensation,
d) segmentation after feature fusion, e) feature fusion update mask, lighter colors mean that
filter information is used, whereas darker ones correspond to observations.

D.3 Cross-Dataset Evaluation

We qualitatively evaluate the robustness of MCDS-VSS by performing a cross-dataset vali-
dation in which a DeepLabV3+ baseline and our MCDS-VSS model trained on Cityscapes
are qualitatively evaluated without retraining on sequences from the KITTI [2] dataset. Fig-
ures 7 and 8 illustrate the semantic segmentation predictions of both models, as well as the
MCDS-VSS depth estimates on two validation sequences of the KITTI dataset. Due to dif-
ferences with respect to the training data in the camera model and calibration, as well as
different image resolution and aspect ratio, the segmentation performance of both models on
the KITTI dataset is severely degraded with respect to Cityscapes. However, MCDS-VSS
achieves a more accurate and temporally consistent video segmentation, thus verifying that
incorporating geometry and motion inductive biases from the moving camera dynamic scene
domain into the VSS model design leads to more robust representations and segmentation
results.

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

6 VILLAR-CORRALES ET AL.: MCDS-VSS: VIDEO SEMANTIC SEGMENTATION

Figure 2: Qualitative evaluation. a) Input frames, b) HRNetV2, c) MCDS-VSS , d) Esti-
mated scene depth, e) Estimated residual flow. We highlight areas of the segmentation masks
where MCDS-VSS obtains visibly more accurate and temporally consistent segmentations.

Figure 3: MCDS-VSS qualitative evaluation. a) Input frames, b) semantic segmentation,
c) scene depth, d) residual flow.

D.4 Point Clouds
Figures 9–12 show examples of RGB and semantic point clouds rendered by backproject-
ing image values and semantic labels using the depth maps estimated by MCDS-VSS and
known camera intrinsics. The high-quality depth maps computed by MCDS-VSS allow for
an accurate 3D representation of the scene.

VILLAR-CORRALES ET AL.: MCDS-VSS: VIDEO SEMANTIC SEGMENTATION 7

Figure 4: MCDS-VSS qualitative evaluation. a) Input frames, b) semantic segmentation,
c) scene depth, d) residual flow.

Figure 5: MCDS-VSS qualitative evaluation. a) Input frames, b) semantic segmentation,
c) scene depth, d) residual flow.

Figure 6: MCDS-VSS qualitative evaluation. a) Input frames, b) semantic segmentation,
c) scene depth, d) residual flow.

8 VILLAR-CORRALES ET AL.: MCDS-VSS: VIDEO SEMANTIC SEGMENTATION

Figure 7: Cross-dataset qualitative evaluation of models trained on Cityscapes and evaluated
on KITTI. a) Input frames, b) DeepLabV3+ baseline, c) MCDS-VSS (ours), d) estimated
scene depth.

Figure 8: Cross-dataset qualitative evaluation of models trained on Cityscapes and evaluated
on KITTI. a) Input frames, b) DeepLabV3+ baseline, c) MCDS-VSS (ours), d) estimated
scene depth.

Figure 9: RGB and semantic point clouds rendered by lifting image values and semantic
labels to 3D space.

VILLAR-CORRALES ET AL.: MCDS-VSS: VIDEO SEMANTIC SEGMENTATION 9

Figure 10: RGB and semantic point clouds rendered by lifting image values and semantic
labels to 3D space.

Figure 11: RGB and semantic point clouds rendered by lifting image values and semantic
labels to 3D space.

Figure 12: RGB and semantic point clouds rendered by lifting image values and semantic
labels to 3D space.

10 VILLAR-CORRALES ET AL.: MCDS-VSS: VIDEO SEMANTIC SEGMENTATION

References
[1] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig

Adam. Encoder-decoder with atrous separable convolution for semantic image seg-
mentation. In European Conference on Computer Vision (ECCV), pages 801–818,
2018.

[2] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driv-
ing? the kitti vision benchmark suite. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2012.

[3] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised monocular
depth estimation with left-right consistency. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 270–279, 2017.

[4] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow. Digging
into self-supervised monocular depth estimation. In IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 3828–3838, 2019.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 770–778, 2016.

[6] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing
Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for
MobileNetV3. In IEEE/CVF International Conference on Computer Vision (CVPR),
pages 1314–1324, 2019.

[7] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and
Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
2462–2470, 2017.

[8] Lingtong Kong, Chunhua Shen, and Jie Yang. FastFlowNet: A lightweight network for
fast optical flow estimation. In International Conference on Robotics and Automation
(ICRA), pages 10310–10316. IEEE, 2021.

[9] Yifan Liu, Chunhua Shen, Changqian Yu, and Jingdong Wang. Efficient semantic video
segmentation with per-frame inference. In European Conference on Computer Vision
(ECCV), pages 352–368, 2020.

[10] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in PyTorch. In International Conference on Neural Information Processing
Systems Workshops (NeurIPS-W), 2017.

[11] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow.
In European Conference on Computer Vision (ECCV), pages 402–419, 2020.

[12] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao,
Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution
representation learning for visual recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 2020.

