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Abstract. This team description paper outlines the setup, contribu-
tions, and efforts for team NimbRo@Home of the Autonomous Intelli-
gent Systems group from the University of Bonn for their participation
at RoboCup@Home Open Platform League taking place in 2024 in Eind-
hoven, Netherlands. We plan to attend the competition with a modified
PAL Robotics TIAGo++ omnidirectional, two-armed robot platform.
Further, we describe our intended approaches for object pose and grasp
estimation, semantic mapping and human-robot-interaction. Our soft-
ware contributions can be found at: https://github.com/AIS-Bonn/.

1 Introduction

The NimbRo team has a well established track record of successful participations
in various robotic competitions ranging from domains like humanoid soccer in the
RoboCup AdultSize league, unstructured environments like the DARPA Grand
Challenge 2016 to autonomous bin picking challenges like the Amazon Picking
Challenge. Recently, in 2022 the NimbRo team won the ANA Avatar XPRIZE
challenge. The team already successfully took part in the RoboCup@Home league
and won three consecutive international RoboCup@Home competitions (2011 Is-
tanbul [22], 2012 Mexico City [21], 2013 Eindhoven [20] and also won numerous
RoboCup@Home German Open challenges. We focused on two-armed manip-
ulation and tool usage in our demonstrations. After reinitiating our domestic
service robotics activities, we participated at RoboCup@Home 2023 Bordeaux
and ended up in the 4th place. An excerpt from our performance during the
RoboCup@Home 2023 in Bordeaux is given in Figure1.

We developed methods for real-time environment and object perception, 3D
object pose and grasp estimation using 3D sensors such as laser scanners and
RGB-D cameras. We further describe our approaches for object segmentation,
mapping and navigation, grasping, audio and natural language processing and
behaviour control.

In this paper, we briefly outline the intended robotic platform. Further, we
describe our proposed approaches for the RoboCup@Home tasks and give a
coarse overview of our behaviour control. Finally, we summarize our domestic
service robotics related research.

https://www.ais.uni-bonn.de/nimbro/@Home/
https://github.com/AIS-Bonn/
behnke
Schreibmaschine
In: RoboCup@Home League Team Descriptions, Eindhoven, Netherlands, July 2024.
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(a) Receptionist (b) Serving Breakfast (c) Restaurant

Fig. 1: RoboCup@Home 2023 impressions.

2 Hardware

Ouster OSDome 3D LiDAR

Zotac  ZBOX 

QTG7A4500

Omnidirectional Drive

Touchscreen

Zoom Am7 Microphone

Bose SoundLink Mini II

Liftable Torso

Astra Orbbec RGB-D Camera

2 DoF Head

2 x SiCK TiM 571

2 x 7 DoF Arm

Fig. 2: TIAGo++ omnidirectional robot platform.

For RoboCup@Home 2024 participation we intend to use a TIAGo++ robot
(see figure 2) which is equipped with an omnidirectional platform, a linear liftable
torso with two 7-DOF arms and a pan-tilt-unit with an RGB-D camera. A ZBOX
QTG7A4500 with an NVIDIA RTX A4500, which is used for model inference,
is mounted on the back of the robot’s torso. An Ouster OSDOME-128 with a
180◦ FOV is used to gather a wide frontal view of the robot for small obstacle



NimbRo@Home 2024 Open Platform League Team Description 3

avoidance and precise estimates for distant vision perception. The LiDAR is
calibrated against a Logitech Brio webcam with a wide-angle lens. A 10-inch
IPS touch screen at the front of the robot and a Zoom Am7 microphone are
for human-robot interaction. We aim at using a second, almost identical setup
to distribute the development and testing and may integrate distributed robot-
robot interaction and extend the robot’s individual views by integration into a
sensor-edge network [2].

3 Approaches

In this section, we present the approaches of the team related to perception and
behaviour control.

3.1 Object Segmentation

Our object detection system relies on a Mask DINO [12] model to generate pixel-
wise segmentation for each object instance visible in the color channels of our
RGB-D camera, as depicted in Fig. 3. The model is pre-trained on COCO [13]
and briefly fine-tuned on annotated data captured in our arena, at RoboCup
2023 and collected from web image searches. Rapid manual data annotation is
achieved by interaction with Segment Anything [10] in CVAT [4]. To adapt to
the requirements of different RoboCup@Home tasks, tailored datasets featur-
ing pertinent object classes and negative examples are created on the fly using
fiftyone [15] to remap labels or remove dataset sections entirely. Used together,
these components yield performant detectors which are readily adapted to novel
object classes on-site. Our datasets, dataset curation process and training script
are available1.

3.2 Person Recognition

We detect and recognize humans on multiple levels. For human pose estimation
we utilize OpenPifPaf [11] which infers a set of 2D keypoints from multiple
persons. These keypoints are then projected in 3D using the depth channel of
the RGB-D camera. Similarly, we extract human faces using the RetinaFace
approach [5]. To remember and re-identify, we augment the faces with descriptors
gathered by a learned metric [19] and the analysis of facial attributes. For person
tracking, we combine tracked legs from 2D LiDAR data and person detections
from camera images, where we augment the person detections with a person
descriptor. This allows us to re-identify persons once their track is lost, e.g. by
leaving the robot’s FOV. We plan to improve the fusion of different detections
and modalities and use the wide-angle camera in combination with the Ouster
OSDOME 3D LiDAR for accurate person estimation of more distant persons,
e.g. in the Restaurant task.

1 https://github.com/JanNogga/athome23_detection

https://github.com/JanNogga/athome23_detection
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Fig. 3: Object instances as segmented by our fine-tuned Mask DINO [12].

3.3 Mapping and Navigation

We employ the SLAM Toolbox [14] to perform mapping and utilize AMCL for
localization. The SLAM toolbox is a graph-based approach with high mapping
accuracy due to loop closure support. In the future, we plan to employ the
localization of the SLAM Toolbox and expect to improve localization in known
environments with many changes. We use two modes, a localization mode for use
in known environments and a mapping mode for use in unknown environments.
In known environments, we utilize pose location markers to encode poses of
interest. In addition, we can use those markers to define regions that can be
used to distinguish between different areas (rooms), to determine which area
people, the robot or objects belong, or to restrict specified areas for the robot.
A visualization of the underlying map is given in Figure 4.

Our navigation approach relies on ROS 2 Navigation. For global path plan-
ning, we use the standard A* algorithm that updates the path once per second.
Since our robot is omnidirectional, we employ a Timed Elastic Band (TEB) con-
troller [18] that is designed for omnidirectional robots. This controller is aware of
the robot dynamics and thus allows replanning trajectories frequently without
abrupt motions. We filter the raw LiDAR data from the Ouster OSDOME and
the SiCK LiDARs and then construct an aggregated costmap. This costmap is
used for planning and integrates dynamic obstacle avoidance. The Ouster OS-
DOME gives us the ability to avoid hard-to-see obstacles for the 2D LiDARs,
e.g. tables, chairs, barriers or small objects. The 3D LiDAR is processed by a
crop box, pass through and statistical outlier filters before aggregation into the
costmap.



NimbRo@Home 2024 Open Platform League Team Description 5

Fig. 4: A constructed map including location markers and annotated regions.
Markers show locations of interest. Regions define different rooms, area borders
or task-specific regions, e.g. for searching persons.

3.4 Grasping

Grasp planning begins with partial object pointclouds of recognized objects,
which are lightly post-processed and registered to a 3D object model when avail-
able. This is illustrated in Figure 5 (a). Then, grasp proposals are sampled on
a pill-shaped structure around the detected object and filtered to exclude poses
which are outside the robot’s workspace or in collision with the nearby envi-
ronment. Additionally, poses in which the object does not fit the gripper width
are rejected. Finally, a cost function considering the best available pre-grasp
poses, desired object approach modes, a safe distance from obstacles and the
surface supporting the object as well as problematic regions in the workspace is
employed to find the best grasp proposal. An example is depicted in Figure 5
(b). This cost function is symmetrical for both robot arms, allowing for flexible
selection of the best suitable arm and also dual-arm manipulation for grasping
two objects at once.

3.5 Audio and Natural Language Processing

The foundation of our audio processing pipeline is the JACK Audio Connection
Kit [8], which provides capabilities for real-time audio processing and interfac-
ing to connected audio hardware. To cope with challenging acoustic conditions
in downstream tasks, the microphone signal is being pre-processed using the
NVIDIA Maxine toolkit [3], applying denoising and dereverberation to isolate
speech from environmental noise. To retrieve speech commands at specific times



6 R. Memmesheimer et al.

(a) Object Registration (b) Grasp Proposals

Fig. 5: (a) If available, 3D models can be registered to partial pointclouds of all
detected objects. (b) The grasp proposals minimizing the grasping cost function
for approaching a bottle of mustard lying on a surface.

during task execution, we use a voice activity detection model [1] to determine
beginning- and end-of-speech boundaries. Speech segments are then forwarded
directly to a speech recognition model [17], which is capable of transcribing 99
different languages and translating them into English. Thus, our speech recog-
nition pipeline can be characterized as robust, grammar-free, and multilingual.

For text-to-speech synthesis, we utilize the Coqui.ai library [6], which im-
plements the end-to-end approach of Jaehyeon et al. [9]. We embed this model
between custom pre- and post-processing modules for text normalization of nu-
merals and punctuation, as well as loudness normalization between passes and
loudness maximization to cut through loud environmental noises.

To comprehend and utilize complex natural language instructions, where
naive scanning for specific keywords is not sufficient, we use large language
models [16][7]. This allows us to extract relevant information from arbitrary
text (and images). In addition, we instruct these models to generate JSON out-
put to autonomously choose between multiple viable functions to advance task
completion.

3.6 Behaviour Control

We developed an abstraction layer for integration of novel robot behaviours based
on state machines encapsulating basic behaviours and functionalities, keeping in
mind that these will be replaced by learned behaviours in the future. We employ
an abstraction layer for simplifying higher-level behaviour development of com-
plex state machines by re-using generalized sub-statemachines on various levels
of complexity on a functionality and behaviour level. These state-machines are
designed such that their execution and individual parameters can be mapped
from natural language descriptions. In its current state the state machines are se-
quences of manually defined behaviours and functionality sequences, however our
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system is designed to learn these behaviours and functionalities e.g. by demon-
strations.

4 Research

In this section, we briefly describe our domestic service robotic related research.

4.1 Visual Pose Estimation with Smart Edge Sensors and
Collaborative Semantic Mapping

We developed an external camera-based mobile robot pose estimation approach
for collaborative perception with smart edge sensors. Our approach allows for
the initialization and correction of a mobile robot’s pose from N external static
cameras. Furthermore, robot observations from changing viewpoints are fused
into the allocentric scene model to extend the view of the static cameras. The
robot pose is estimated using a robot detection and keypoint estimation ap-
proach trained on a combination of synthetic and real data. The robot pose is
then recovered by minimizing the reprojection errors in multiple views. We ver-
ify the performance of our approach with various experiments using a Toyota
HSR robot in an approximately 250 m2 lab. First, we demonstrate the external
visual pose estimation for initialization of the robot pose in the map, given no
or a coarse initial localization. Our approach is shown to perform well for initial

(a) Initialization (b) Explored Map

Fig. 6: Resulting semantic map of the proposed collaborative semantic mapping
approach with improved consistency by external pose refinement. The approach
is initialized with an empty map (a) and a mobile smart edge sensor node explores
the environment, resulting in an explored final semantic map (b).

camera-based localization. Second, we evaluate the accuracy of our pose esti-
mation approach using an HTC Vive tracking system as a reference. Through
the continuous correction via localization feedback from the external cameras,
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the pose error remains below a few centimeters. We integrate the external pose
estimation approach in a collaborative semantic mapping scenario. The external
localization improves the consistency of the resulting semantic map. Finally, we
demonstrate long-term robustness in a highly cluttered environment (see Figure
6). The laser-based robot-internal localization accumulates a high localization
error over longer paths, which leads to unreachable targets or high positional
errors at the target locations that could lead to collisions. Our external pose
estimation can correct and compensate for the localization errors for better ro-
bustness. Recently, we integrated the PAL Robotics TIAGo++ platform with
this framework.

5 Conclusions

In this team description paper, we presented the intended robot platform, sci-
entific contributions and intended approaches for an intended RoboCup 2024
participation of team NimbRo in the RoboCup@Home Open Platform League.
Our team previously participated successfully in the RoboCup@Home compe-
tition. With our intended RoboCup@Home participation, we are aiming to en-
force our autonomous mobile domestic service robot research activities. Our
most recent developments about our team can be found on our team webpage
https://www.ais.uni-bonn.de/nimbro/@Home/.
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Fig. 7: NimbRo@Home team at RoboCup 2023, Bordeaux (France)

Name of team : NimbRo
Member : Raphael Memmesheimer, Jan Nogga, Jonas Bode, Bastian Pätzold,

Helin Cao, Alena Savinykh, Evgenii Kruzhkov, Simon Bultmann, Michael
Schreiber, Sven Behnke (TBC)

Contact information : memmesheimer@ais.uni-bonn.de
Website : https://www.ais.uni-bonn.de/nimbro/@Home/
Hardware :

– PAL Robotics TIAGo++ Omni Edition
Software :

– ROS
– OpenCV
– SLAM Toolbox
– PCL
– PyTorch
– Whisper
– Custom software:

• 3D Semantic Scene Perception using Distributed Smart Edge Sensors
https://github.com/AIS-Bonn/SmartEdgeSensor3DScenePerception

• Online Marker-free Extrinsic Camera Calibration using Person Key-
point Detections https://github.com/AIS-Bonn/ExtrCamCalib_PersonKeypoints

• Directional TSDF InfiniTAM https://github.com/AIS-Bonn/DirectionalTSDF)
• Real-Time Multi-View 3D Human Pose Estimation using Semantic
Feedback to Smart Edge Sensors https://github.com/AIS-Bonn/
SmartEdgeSensor3DHumanPose

• ROS transport for high-latency, low-quality networks https://github.
com/AIS-Bonn/nimbro_network

– More open-source releases can be found here: https://github.com/

AIS-Bonn

https://www.ais.uni-bonn.de/nimbro/@Home/
https://github.com/AIS-Bonn/SmartEdgeSensor3DScenePerception
https://github.com/AIS-Bonn/ExtrCamCalib_PersonKeypoints
https://github.com/AIS-Bonn/DirectionalTSDF
https://github.com/AIS-Bonn/SmartEdgeSensor3DHumanPose
https://github.com/AIS-Bonn/SmartEdgeSensor3DHumanPose
https://github.com/AIS-Bonn/nimbro_network
https://github.com/AIS-Bonn/nimbro_network
https://github.com/AIS-Bonn
https://github.com/AIS-Bonn
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