CUV  0.9.201304091348
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
rprop.hpp
1 //*LB*
2 // Copyright (c) 2010, University of Bonn, Institute for Computer Science VI
3 // All rights reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of the University of Bonn
14 // nor the names of its contributors may be used to endorse or promote
15 // products derived from this software without specific prior written
16 // permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
19 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 //*LE*
29 
30 
31 
32 
33 
34 #ifndef __RPROP_HPP__
35 #define __RPROP_HPP__
36 
37 #include <cuv/tools/cuv_general.hpp>
38 #include <cuv/basics/tensor.hpp>
39 
40 namespace cuv{
41 
42 
64  template<class __value_type, class __memory_space_type, class S>
65  void rprop(tensor<__value_type,__memory_space_type>& W, tensor<__value_type,__memory_space_type>& dW, tensor<S,__memory_space_type>& dW_old, tensor<__value_type,__memory_space_type>& rate, const float& decay = 0.0f, const float& sparsedecay=0.0f);
66 
72  template<class __value_type, class __memory_space_type, class S>
75  typedef tensor<S, __memory_space_type> rm_tensor_S;
76  rprop(*reinterpret_cast<rm_tensor*>(&W),*reinterpret_cast<rm_tensor*>(&dW),*reinterpret_cast<rm_tensor_S*>(&dW_old),*reinterpret_cast<rm_tensor*>(&rate),decay,sparsedecay);
77  }
89  template<class __value_type, class __memory_space_type>
90  void learn_step_weight_decay(tensor<__value_type,__memory_space_type>& W, const tensor<__value_type,__memory_space_type>& dW, const float& learnrate, const float& decay = 0.0f, const float& sparsedecay=0.0f);
91 
104  template<class V, class M>
105  void learn_step_weight_decay_momentum(tensor<V,M>& W, tensor<V,M>& momentum, const tensor<V,M>& dW, const float& learnrate, const float& momentum_weight=0.9, const float& decay = 0.0f, const float& sparsedecay=0.0f);
106 
112  template<class __value_type, class __memory_space_type>
113  void learn_step_weight_decay(tensor<__value_type,__memory_space_type, column_major>& W, const tensor<__value_type,__memory_space_type, column_major>& dW, const float& learnrate, const float& decay = 0.0f, const float& sparsedecay=0.0f){
115  learn_step_weight_decay(*reinterpret_cast<rm_tensor*>(&W),*reinterpret_cast<const rm_tensor*>(&dW),learnrate,decay,sparsedecay);
116  } // blas1
118 
119 }
120 
121 
122 #endif /* __RPROP_HPP__ */