CUV  0.9.201304091348
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
opt.hpp
1 //*LB*
2 // Copyright (c) 2010, University of Bonn, Institute for Computer Science VI
3 // All rights reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of the University of Bonn
14 // nor the names of its contributors may be used to endorse or promote
15 // products derived from this software without specific prior written
16 // permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
19 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 //*LE*
29 
30 #ifndef __CUV_OPT_HPP__
31 #define __CUV_OPT_HPP__
32 #include<cuv/basics/tensor.hpp>
33 
34 namespace cuv{ namespace libs{
36  namespace opt
37  {
57  template<class V, class M, class L>
58  void softmax(cuv::tensor<V, M,L>& dst, const cuv::tensor<V, M,L>& src, unsigned int vardim=1);
59 
73  template<class V, class M, class L>
74  void softmax_derivative(cuv::tensor<V, M,L>& dst, const cuv::tensor<V, M,L>& softmax_act, const cuv::tensor<V,M,L>& residual, unsigned int vardim=1);
75 
88  template<class V, class M, class L>
89  void adagrad(tensor<V,M,L>& W, const tensor<V,M,L>& dW, tensor<V,M,L>& sW, const float& learnrate, const float& delta, const float& decay = 0.0f, const float& sparsedecay=0.0f);
90 
104  template<class V, class M, class L>
105  void rmsprop(tensor<V,M,L>& W, const tensor<V,M,L>& dW, tensor<V,M,L>& sW, const float& learnrate, const float& delta, const float& decay = 0.0f, const float& sparsedecay=0.0f, const float& grad_avg=0.9f);
110  }
111 } };
112 
113 #endif