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Our Cognitive Service Robots

Domestic service
tasks in
RoboCup@Home

Mobile
manipulation for
the support of
rescue workers,
telepresence

Centauro
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Neural Abstraction Pyramid

A

Abstract features

- Data-driven - Model-driven
- Analysis SRR - Synthesis
- Feature extraction [ e R - Feature expansion

e I
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[Behnke, Rojas, IICNN 1998] [Behnke, LNCS 2766, 2003] L/ L



Iterative Image Interpretation

Interpret most obvious parts first

Use partial interpretation as context to iteratively resolve local ambiguities

et
L0

[Behnke, Rojas, IJCNN 1998] [Behnke, LNCS 2766, 2003]



Neural Abstraction Pyramid for Semantic Segmentation of RGB-D
Video

Recursive computation is efficient for temporal integration

Neural Abstraction Pyramid
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[Pavel, Schulz, Behnke, Neural Networks 2017]



The Data Problem

Deep Learning in robotics (still) suffers from shortage of available examples

We address this problem in three ways:

Transfer learning:
Pre-training on large related data,
self-supervised learning

Generating data:
Online mesh databases,
scene synthesis

Inductive biases:

3D projective geometry,
camera motion, canonical frames,
object relations, compositionality, ...

UNIVERSITAT



RGB-D Object Recognition and Pose Estimation

Transfer learning from large-scale data sets

Color

Masked color

Colorized depth

Pre-trained CNN

Pre-trained CNN
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Category
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Instance

“SVR

Pose

[Schwarz, Schulz, Behnke, ICRA2015]
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Canonical View, Colorization

Objects viewed from different elevation |

Render canonical view

Colorization based on distance from center vertical

n

[Schwarz, Schulz, Behnke, ICRA2015]



Pretrained Features Disentangle Data

w t-SNE
embedding

[Schwarz, Schulz,
Behnke ICRA2015]
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Recognition Accuracy

Improved both category and instance recognition

Category Accuracy (%)

Instance Accuracy (%)

Method RGB RGB-D RGB RGB-D
Lai et al. [1] 74.3+3.3 81.9+28 59.3
Bo et al. [2] 824 1+ 3.1 87.b129 92.1
PHOWI3] 80.2+1.8 — 62.8
Ours 831+20 88.3+15 92.0
Ours 831+20 894+13 92.0
Confusion: 50
z 0s 1: pitcher / coffe mug

Category

[§9)
W

25 50
Prediction

0.6

0.4
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0

[Schwarz, Schulz, Behnke, ICRA2015]
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Amazon Robotics Challenge 0

amazon robotIcs

Storing and picking of items LENGE

Dual-arm robotic system

Sensor setup

Vacuum cleaner

6 DOF UR5 arm

3 DOF endeffector

Storage system

Industrial scales : _ .
Belt drive Suction hose

Bendable finger 2 DOF
[Schwarz et al. ICRA 2018] pinch finger I
0 [Amazon]

Suction cup

12 L u@
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Object Capture and Scene Rendering

Turntable + DLSR camera Insertion in complex annotated scenes

[Schwarz et al. ICRA 2018]




Semantic Segmentation and Grasp Pose Estimation

Semantic segmentation using RefineNet [Lin et al. CVPR 2017]

Grasp positions in segment centers

bronze_wire_cup

irish_spring_soap
conf: 0.811500

playing_cards

w_aquarium_gravel
crayons

reynolds_wrap
conf: 0.836467

paper_towels
conf: 0.903645

white_facecloth
conf: 0.895212

hand_weight

robots_everywhere
conf: 0.930464

14 [Schwarz et al. ICRA 2018]

conf: 0.749401

& conf: 0.813761

conf: 0.891001

conf: 0.422604 .

conf: 0.928119 I i

mouse_traps

—~conf: 0.921731

windex
conf: 0.861246

q—tips_500
conf: 0.475015

fiskars_scissors
conf: 0.831069

ice_cube_tray
conf: 0.976856

UNIVERSITAT m
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Object Pose Estimation

. Normalization

Cut out individual
segments

Use upper layer of
RefineNet as input

Predict pose
coordinates

Predicted pose

[Schwarz et al. ICRA 2018, Periyasamy et al. IROS 2018]



Dense Convolutional 6D Object Pose Estimation

Extension of PoseCNN [Xiang et al. RSS 2018]
Dense prediction of object center and orientation, without cutting out

. . . .
} &= Feature Extraction ==———plg=Embedding=—] === Classification / Regression  memp |

Segmentation

m
Center
direction X  direction Y distance

64 #classes

A RGB Image

sy

Convolution
' Max Pooling | +RelU
Convolution
Deconvolution
‘ Addition ' Hough Voting

Tk w " V'l
Center s 4
‘ l
\ o Translation
.
»
—  ROtaETION 5
] Prediction error
selection of a
Orlenuloninorm

- result quaternion

4-dim quaternion for each object
prediction

56
256 #classes

17 [Capellen et al., VISAPP 2020]
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Self-Supervised Surface Descriptor Learning

Feature descriptor should be constant under different transformations, viewing
angles, and environmental effects such as lighting changes

Descriptor should be unique to facilitate matching across different frames or
representations

Learn dense features using a contrastive loss

Known correspondences Learned features

[Periyasamy, Schwarz, Behnke Humanoids 2019] wwsmu@



Descriptors as Texture on Object Surfaces

Learned feature channels used as textures for 3D object models

@3 A
lllU:A

[Periyasamy, Schwarz, Behnke Humanoids 2019]

Used for 6D object pose estimation

UNIVERSITAT
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Abstract Object Registration

Compare rendered and actual scene in feature space
Adapt model pose by gradient descent

Feature-Annotated
Mesh Database Mesh Database

. -1 Abstraction . ’
A ' Module A .

Pose P Abstract Scene Ag

Differentiable
Renderer
Abstraction | —

Module

[Periyasamy, Schwarz,
Behnke Humanoids 2019]

Observed Scene I

Abstract Scene Ay

Loss L

UNIVERSITAT @
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Registration Examples

[Periyasamy, Schwarz, Behnke Humanoids 2019]




T6D-Direct: Transformers for Multi-Object 6D Pose Direct Regression

Extends DETR: End-to-end object detection with transformers [carion et al. ECCV 2020]
End-to-end differentiable pipeline for 6D object pose estimation

HxW H W H W
S 2048X 35X 35 256X ( 32*32)
Transformer
)I|| > encoder-
decoder
CNN features

Encoder self-attention Object detections and decoder attention

= s
| G

22 [Amini et al. GCPR 2021] o



YOLOPose: Multi-Object 6D Pose Estimation using Keypoint Regression
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i Hgaf/‘l}bonemx( i ; i Prediction Heads !
I = 1 1
! e i E ; class, box |
: | 1 : translation, :
H ! 1 : keypoints md | RotEst R
I 1 I
| i I LN i
i : i Layer 6 i f class, box i
! ! 1 | 1 translation, | |
e : ; T AN keypoints —-4—>|. RotEst |—>| R |
1 ! cer I ! !
1 1 ! H 1
! \i T b o | !
1 : : ! object !
i | Layer 1 Y i
i b ! i class, box | |
| [ 1 ! translation, : N
Positional , i i i ! kevpoints ——— RotEst [ R
: [ I 1 1

Encoding Object Queries

23




24

YOLOPose: Multi-Object 6D Pose Estimation using Keypoint Regression

Encoder self-attention

Attention Maps Scene

[Am|n|et al. 1AS 2022, Best Paper Award] . uﬁ



MOTPose: Attention-based Temporal Fusion for Multi-object 6D Pose
Estimation
Propagating object embeddings, object descriptors, and poses

Object “Objeetd
B - = Embedding B0 kpts [EEPN}—{6D Posd
m——@_e‘z_l Encoder |_‘E_.| Decoderl = FEPN Class H
to = et = ' : H
¥ N/ H
E—I O|bj| | REE- Bt FFPN e
Positional Encoding Qué?i(éts K [Ciass “>[REEM
= = : FFPN}—[6D Posd: ;
S =[] Sl — =] "
\ i H
‘_' IIII REE-. Tor FPN .
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[Periyasamy,
ICRA 2024]
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Stillleben: Learning from Synthetic Scenes

Cluttered arrangements from 3D meshes

Photorealistic scenes with randomized
material and lighting including ground truth

For online learning & render-and-compare
Semantic segmentation on YCB Video Dataset
Close to real-data accuracy
Improves segmentation of real data

Generated Ground Truth Channels

Depth

[Schwarz and Behnke, ICRA 2020]
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Synthetic-to-Real Domain Adaptation

Generate images from 3D
object meshes

Adapt the synthetic images to
the real domain using un-
annotated real images (GAN
loss)

Train downstream task using
adapted images

Semantic segmentation
results almost as good as
trained with real images
Improved results in combina-
tion with real annotations

[Imbusch et al. CASE 2022]

3D Object Models Unannotated Real Images

r
K

h

"=
22N
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Bulspuay
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| (4) Segmentation
Network

Robotic Application

Prediction




Learning from SAM: Sim2Real Domain Adaptation through Segment VI-
Regularization

Learns from synthetic scenes and

Semantic
Synthetic segmentation Ground truth

@ @]
unannotated real images < .. <
Supervised training of semantic « - -loss_ _ i)
segmentation for synthetic scenes -

]

Segment Anything Model (SAM)
used to generate many

Invariance loss

overlapping segments for real =) 2

images — | §

. =

Dense features from shared : =

backbone -
. Segment
Contrastive loss for segments features

Features within a segment are
trained to have low variance
Features for different segments
trained to have high variance [Bonani et al. arXiv:2309.15562] ﬂ@

Unsupervised
segmentation |




Learning from SAM: Sim2Real Domain Adaptation through Segment VI-
Regularization

Learned dense features correspond well to objects, are stable under camera
motion, and label sub-parts

HomebrewedDB

YCB-Video

Real

Dense features

[Bonani et al. arXiv:2309.15562]

20 1|
UNIVERSITAT



Learning from SAM: Sim2Real Domain Adaptation through Segment VI-
Regularization

Qualitative Results on the YCB-Video Dataset

Good results on real images without need for real
labels

Better than training with real labels on VCB-Video

YCB-Video HomebrewedDB

i R R ~" ~" “p Ground truth Full model Learned features
-~ ~ =~ - - Mean IoU
Method YCB-Video [19] HomebrewedDB [20]
g# S .\.. .‘.' Imbusch er al. [4]
- real labels 0.770 0.737
f - synthetic only 0.701 0.481!
- 1
-‘ n u ’ " " full 0.763 0.558
a t @ A - Ours
- real labels 0.839 0.883
5 - synthetic only 0.807 0.748
& k ‘*Q '*Q - CUT [4] only? 0.814 -
) e - full 0.853 0.787°
i ’ * . ‘» Note: “real labels™ is a baseline which has access to real supervision.
‘v Q ! Using Stillleben [2] synthetic data, where we use Blender-
ﬁ ' Proc4BOP.
2 Training our backbone on CUT-refined synthetic data.

Input image a) Synthetic-only b) Full model Ground truth Input image a) Synthetic-only b) Full model Ground truth

[Bonani et al. arXiv:2309.15562]

30 u@
UNIVERSITAT

3 Model was trained for only 200k epochs.



Object-centric Video Prediction Decoupling Dynamics and Interaction

( R Scene parsing into object

slots

Video synthesis from objects
and masks

Predictor decouples tempo-
ral and relational attention

Object
| Centric
\ Predictor

Sci+1r-1 \m—

——

\ )Sc+T
31 [Villar-Corrales et al. ICIP 2023]




Object-centric Video Prediction Data Sets

Obj3D MOVi-A
Synthetic 3D objects Synthetic 3D objects
Ball colliding with static objects Complex dynamics and occlusions
Given 5 frames, predict next 5 Given 6 frames, predict next 8

[Villar-Corrales et al. ICIP 2023] ﬂ@




Object-centric Video Prediction: Obj3D

ConvLSTM PhyDNet Transf. O0CVP-Seq OCVP-Par

ConvLSTM PhyDNet Transf. O0CVP-Seq OCVP-Par

[Villar-Corrales et al. ICIP 2023] o




Object-centric Video Prediction: MOVi-A

ConvISTM PhyDNet Transf. OCVP-Seq OCVP-Par

ConvISTM PhyDNet Transf. OCVP-Seq OCVP-Par

[Villar-Corrales et al. ICIP 2023] ﬂ@




Object-centric Video Prediction: Object Predictions

Pred. Object Predictions Segm.

[Villar-Corrales et al. ICIP 2023] Uu@




Object-centric Video Prediction: Model Interpretability

t= 3 5 6 7 8 10 15 20 25

Frames

Segmentation

Obj. Mask R.A. Temporal Attention

4

4

[Villar-Corrales et al. ICIP 2023]

Pred

Segm.




MSPred: Video Prediction at Multiple Spatio-Temporal Scales

Coarser, more abstract predictions for longer time horizons in higher layers

Predict image itself, human pose joint keypoints, and human body position

— Feature maps flow
= =LSTM states

@ Channelwise concat

3 [Villar-Corrales et al., BMVC 2022] o



MSPred: Video Prediction at Multiple Spatio-Temporal Scales

= Coarser, more abstract predictions for longer time horizons in higher layers

= Predict image itself, human pose joint keypoints, and human body position

Frame 1 Frame 1 Frame 1

38 [Villar-Corrales et al., BMVC 2022]
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Hierarchical Planning in the Now

= Use predicted state on different layers of abstraction for planning

= Coarse-to-fine planning makes actions more concrete as they come closer to
execution

= Plan consists of few steps on each layer

abstract actions

L;
Lirrirrr 2
L TTTTTTT
L, - concrete actions

time

NOW




Centauro Robot

CENTAURO

Serial elastic actuators
42 main DoFs

Schunk hand

3D laser

RGB-D camera

Color cameras

Two GPU PCs

| [Tsagarakis et al., IT 2017]

. * s g -
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Hybrid Driving-Stepping Locomotion Planning: Abstraction

Planning in the here and now

Far-away details are abstracted away

-------

[Klamt and Behnke, IROS 2017, ICRA 2018]



Hybrid Driving-Stepping Locomotion Planning: Abstraction

Level Map Resolution Map Features Robot Representation Action Semantics
e 25cm e Height e Individual
e 64 orient. Foot Actions
e 50cm e Height e Foot Pair
e 32 orient. e Height Difference Actions
e 10cm e Height e Whole Robot
e 16 orient. e Height Difference Actions
e Terrain Class

42 [Klamt and Behnke, IROS 2017, ICRA 2018] WRW"@
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Learning Cost Functions of Abstract Representations

Planning problem

[Klamt and Behnke, ICRA 2019]



Abstraction CNN

Predict feasibility and costs of local detailed planning

31@ 36@ 40@
1@ 28x28 11x11 77

7272 72><72 72><72 28@ 34@ 38@

59x59 13%13 9%9
HE B EH N

~ ~— T T \_/"
Conv 1 Conv 2 Conv 3 Conv.4 Conv.5 © ~ @
3x3 7x7 14x14  4x4  38x3 2R 29 29
|| EE B Padding=1  Padding=3 +Mmax  + max 8 ® 3® 8-
Xgoal pooling pooling
( Ygoal )
9goa|

Training data

» generated with random obstacles, walls, staircases

costs and feasibility from detailed A*-planner
+ ~250.000 tasks

44 [Klamt and Behnke, ICRA 2019]
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Learned Cost Function: Abstraction Quality

CNN predicts feasibility and costs better than manually tuned geometric

heuristics

45

S

=3

=

mndom simulated real
feasibility correct, man.tuned | 79.27%  65.35% 69.77%
Error(C, man.tuned) 0.057 0.021 0.103
feasibility correct, CNN 95.04%  96.69% 92.62%
Error(C, cnN) 0.027 0.013 0.081

[Klamt and Behnke, ICRA 2019]



Experiments — Planning Performance

Learned heuristics accelerates planning,
without increasing path costs much

—

vy

VI w

1y -

Iy I I -+

Heuristic preprocessing: 239 sec

46 [Klamt and Behnke, ICRA 2019]
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B Planning time [s]

Geometric heuristic

10° B

102

10!

10° 8

101

1.0 1.25 2.0

w

140
120
100

Abstract representation

10° £

102 |

10 1}

10" |

100

heurjstic

1.0 1.25 2.0

140
120
100

H Path costs [%)]

B Path costs [%]



CENTAURO Evaluation @ KHG: Locomotion Tasks

[Klamt et al. RAM 2019]
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Transfer of Manipulation Skills

Knowledge
Transfer

[Rodriguez and Behnke ICRA 2018]

UNIVERSITAT




Learning a Latent Shape Space

Non-rigid registration of instances and canonical model

Principal component analysis of deformations

Traini
Sla?:;lrz Calculate Latent (shape) Space
Defromations
w T =C+GW; Design Matrix
Canonical _
Model Y = E‘ a
[ ] =
T =C+GW, \ wy 2
! S
Wy | rpcaem  ©
E
| —»
m Ti=C+GW, ; £
=]
/ g
") 3
¢ N
Tr=C+GWr C-
First Principal Component
49 [Rodriguez and Behnke ICRA 2018]



Interpolation in Shape Space

[Rodriguez and Behnke ICRA 2018]



Shape-aware Non-rigid Registration

m Partial view of novel instance

o m Deformed canonical model
::.:_'_:.'ll-h LR -J‘.'.'.: .g:':' am®
" N Ao
-_l' : . w see v, e - a"-‘.._-_-: .
s e AR ) Ve
[ ] Ir e P — “!g',‘.:;l -
'..'."‘.‘.".\';:5,_ '-"-:“-_-::1 %+
Erc T e s SR
S i S
T Bea | Ta
NN T 6

[Rodriguez and Behnke ICRA 2018] u@



Shape-aware Registration for Grasp Transfer

Full point cloud

....... .-.? ..* Tl
r:.'.“ ~.'. .‘ :. ."
< . 2u " 5 as .-.J
S ... ..- ... o -~ .
o .. .ﬂ.'. - }
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Partial view

P
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piaiae,

]
1

52 [Rodriguez and Behnke ICRA 2018]
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Collision-aware Motion Generation

Constrained Trajectory Optimization:
Collision avoidance
Joint limits
Time minimization

Torque optimization

[Pavlichenko et al., IROS 2017]

UNIVERSITAT @



Grasping an Unknown Power Drill and Fastening Screws
e - ‘




CENTAURO: Complex Manipulation Tasks

[Klamt et al. RAM 2019]

1N
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Direct functional grasps not always feasible

Regrasping for Functional Grasp

Pick up object with support hand, such that it can be grasped in a functional way

([Semantic Segmentation)
and Pose Estimation

?l ¢
ooy
| AN

\_ — J

A 4

é Non-Rigid R

( Handover Motion
Planing

~\

(View Pose Generation )
and Execution

[ In-Hand Object Pose )
Refinement

Reqistration

R -
#2

Grasp Sampling

[Pavlichenko et al. Humanoids 2019]

Grasp
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Regrasping Experiments

[Pavlichenko et al. Humanoids 2019]



Learning Interactive Grasping

Deep RL-based interactive policy

Input: object parameters or point cloud + hand pose

Output: increments of hand DoF

=
concat.P— 8 E

v

(]

for PC only___-———""’ e ..

PointNet-like embedding

|
— [Co4 ReLU—> FC 128
;, —*  FCo64 ReLU— FC 128

I I

I |
shared shared

I I

'Nx3

| I
— FCo64 ReLU— FC 128

58

[Mosbach and Behnke, IRC 2022]
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Learning Interactive Functional Grasping

Generalization of a single demonstration Interactive operation of unseen tools

[Mosbach and Behnke CASE 2023, Best Paper Award] Uu@



Learning Pre-grasp Manipulation for Human-like Functional Grasping

—_—— e e o — — — —— — —— — — — — — — — — — — — - —_——— — — — — — — — ——— — —— —— — — — — — — — — — =

¢,

\

|
Policy Gaaeaa st s e N e N :
———————— ) ! : : Reach grasp : | : : [ 0!
[ p— O] | | L position L Reach object | Manipulability | | |
p pose | I |

| : I | [Reachgrasp | ! ! | I penalty '

= action rotation | 1 | | Hold object | | | l
Grasp joints | | o [ !
1 | | I | |Grasp reached |
1 I 1| Reachgrasp | ! Orient object | 1 I
————————— i 1| hand joints 1| e __ |
r—i Environmentl—-l \ - _____ e I

|
/' N /,

e o e o e e e e e e e = = e = = = = e = = = = = = = = e e e e e e e e o = = o = = e = e = = = = = = = = = =

Dense multi-component reward function

encodes desired functional grasp

Learns to reposition and reorient objects
to achieve functional grasps

o0 [Pavlichenko and Behnke CASE 2023] uwsmu@



Grasp Anything: Augmenting Reinforcement Learning with Instance
Segmentation to Grasp Arbitrary Objects

Teacher training Real-world deployment of

_________

, promptable grasping policy
: image target prompt
- ['PG (¢) ° ° tomato
7 o soup can

privileged state s} policy 7} actions a} l < T

t
.
. . . Segment Anything Model
Teacher-guided sensorimotor learning [

linitialize
af

% stop gradient

ey ARG

@—» actions a; —> LFG(0)

sensory state s¢ policy 7g

S/

tracking

rollout

61 [Mosbach and Behnke ICRA 2024]
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Grasp Anything: Augmenting Reinforcement Learning with Instance
Segmentation to Grasp Arbitrary Objects

Learned policy with improved object visibility is real-world deployable

[Mosbach and Behnke ICRA 2024] Uu@



NimbRo@Home RoboCup 2023 in Bordeaux, France

LUNIVERSITE DE BORDEAUX PRESENTE

“RoBoGupr23

BORDEAUX, NOUVELLE-AQUITAINE, FRANCE

NimbRo@Home
Competition Highlights

UNIVERSITAT @
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LLM Integration

Utilization of Function
Calling Models (GPT /
Mistral)

Map available robot
functionalities to user
commands

Given Information:

Environment info
Callable robot
functionalities

Can request and query
additional image data
(counting, descriptions, ...)

User: Please bring me a sponge from the kitchen.

System: Briefly summarize the next steps to accomplish the
task in text form.

Assistant:

1. Drive to the kitchen.

2. Search for a sponge in the kitchen.

3. Grasp the sponge.

4. Drive back to the parlor.

5. Hand over the sponge to the user.

6. Call the exit function to complete the interaction.
System: From now on only use function calls to execute the
task.

Assistant: drive to location: {"location": "kitchen"}

You successfully arrived in the new location
kitchen.

Assistant: find object: {"object name list": ["sponge"]}
The following items were found in the kitchen: 3
Sponges
Assistant: grasp object: {"object name": "sponge"}
You successfully grasped the object sponge.
Assistant: drive to location: {"location": "parlor"}
You successfully arrived in the new location
parlor.
Assistant: place object: {"object name": "sponge"}

You successfully placed the object sponge.

Assistant: exit: {} >
AR



Cooking Advice

Q: Please describe the content of this image. Focus your description on food
items, drinks, and ingredients that could be used for cooking.

A: The image shows a variety of food items and drinks arranged on a white
surface. There is a can of SPAM, which is a type of canned cooked pork product.
.. Nexttoitis an open can of Campbell’s Tomato Soup... LS



Cooking Advice

Q: How can | cook dinner from these ingredients? <PROMPT>

A: You can create a simple and creative meal using these ingredients. Here's a
suggestion:

SPAM and Orange Glaze: Slice the SPAM into thin pieces and fry them in a pan
until they are crispy on both sides. Create a glaze by squeezing the juice of the
orange into a small saucepan, adding a bit of the Coca-Cola Zero Sugar for
sweetness, and reducing it over medium heat until it thickens. Pour the glaze
over the fried SPAM slices.

Tomato Soup Enhancement: Warm the Campbell’s Tomato Soup on the stove.
To add more depth to the flavor, you could mix in a small amount of the
orange juice and a pinch of the JELL-O powder for a hint of sweetness and
tanginess.

LS



Conclusions

Developed capable robotic systems for challenging scenarios
Bin picking
Disaster response
Domestic service tasks

Challenges include
4D semantic perception
High-dimensional motion planning
Human-robot interaction

Promising approaches
Prior knowledge (pretrained models,
inductive bias, LLMs)
Shared experience (fleet learning)
Shared autonomy (human-robot) :
Instrumented environments | LS
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