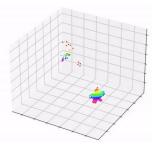
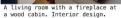


Seminar Vision Systems MA-INF 4208

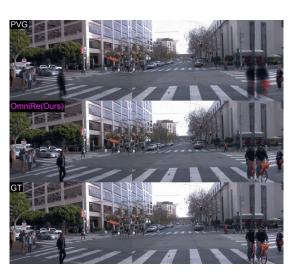
07.02.2025


PROF. SVEN BEHNKE, ANGEL VILLAR-CORRALES

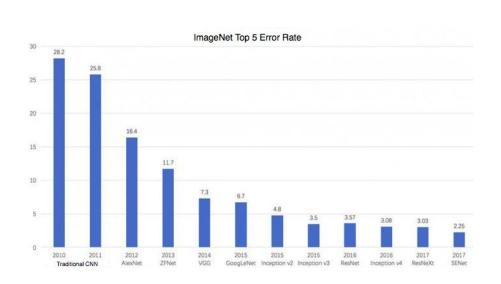
Contact: villar@ais.uni-bonn.de

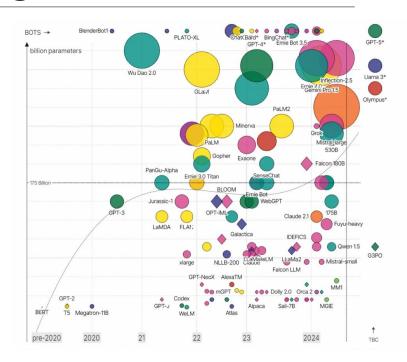


The Age of Deep Learning



a blue Porsche 356 parked in front of a yellow brick wall.


Eiffel Tower, landscape photography



The Age of Deep Learning

The Age of Deep Learning

In this seminar...

- Acquire/improve ability to:
 - deal with scientific publications (e.g. papers)
 - write a scientific report
 - o present a scientific topic to an audience
 - engage technical topics

Important skills for Master Thesis!

In this seminar

- Discuss trending topics in deep learning and computer vision
- We will cover the following topics
 - Generative and World Models
 - Representation Learning from Video & Downstream Tasks
 - Multi-View Learning, Neural Rendering and Applications

Seminar: Vision Systems MA-INF 4208

Prof. Dr. Sven Behnke, Angel Villar-Corrales

1 Paper List

- 1. Generative and World Models
 - a) Menapace, Willi, et al. Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models. Transactions on Graphics, 2024. Link
 - Valevsky, Dani, et al. Diffusion Models Are Real-Time Game Engines. ICLR. 2025. [Link]
 - c) Wu, Ziyi, et al. Neural Assets: 3D-Aware Multi-Object Scene Synthesis with Image Diffusion Models. NeurIPS. 2024. [Link]
 - d) Yu, Hong-Xing, et al. WonderWorld: Interactive 3D Scene Generation from a Single Image. ArXiv. 2024. [Link]
 - e) Namekata Koich et al. SG-12V: Self-Guided Trajectory Control in Image-to-Video Generation. ICLR. 2025. Link
- 2. Representation Learning from Video & Downstream Tasks
 - a) van Steenkiste, Sjoerd, et al. Moving Off-the-Grid: Scene-Grounded Video Representations. NeurIPS. 2024. |Link
 - b) Carreira, Joao, et al. Scaling 4D Representations. ArXiv. 2024. Link
 - c) Wang, Yihan, et al. SEA-RAFT: Simple, Efficient, Accurate RAFT for Optical Flow. ECCV. 2024. [Link]
 - d) Li, Rui, et al. Decomposition Betters Tracking Everything Everywhere. ECCV. 2024. Link
- 3. Multi-View Learning, Neural Rendering and Applications
 - a) Zhou, Hongyu, et al. HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting. CVPR. 2024. Link
 - Huang Binbin, et al. 2DGS: 2D Gaussian Splatting for Geometrically Accurate Radiance Fields. SIGGRAPH. 2024. Link
 - c) Li Zhengqi, et al. Generative Image Dynamics. CVPR. 2024. Link
 - d) Chen Ziyu, et al. OmniRe: Omni Urban Scene Reconstruction. ArXiv. 2024. [Link]
 - He Xingyi, et al. MatchAnything: Universal Cross-Modality Image Matching with Large-Scale Pre-Training. ArXiv. 2025. Link

Paper List: https://www.ais.uni-bonn.de/WS/SeminarVision/PaperList.pdf

Generative and World Models

- Models trained on large-scale data with broad generalization and controllability
- Applications such as:
 - Playable Video Generation
 - Generating new objects and scenes
 - Control in Image-to-Video Generation

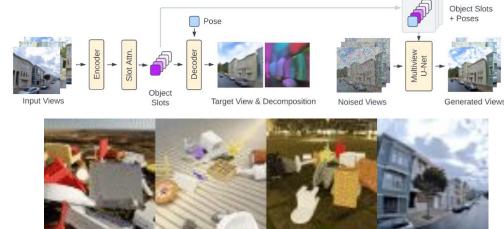
The player jumps to the right and sends the ball to the no man's land with a forehand

Learning from Videos & Downstream Tasks

- Learning representations from video data without annotations
- Applications such as:
 - Representation learning
 - Decomposition and Tracking

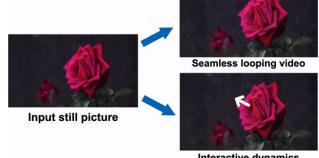
Original video

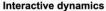
Static scenes


Dynamic objects

Unsupervised Learning from Videos

- Learning representations from video data without annotations
- Applications such as:
 - Unsupervised 3D object detection & tracking
 - Object-centric learning and novel view synthesis





Multi-View Learning & Neural Rendering

- Learning 3D-aware representations of a scene given a set of posed images
- Applications such as:
 - Generative dynamics
 - Scene reconstruction and editing
 - Novel-view Synthesis

Get a Spot and Select your Topic

- Fill the following <u>form</u> no later than 10.02.2025
 - Your name & email
 - Matriculation number
 - Your three preferred papers
- Based on this form, I will and assign seminar spots and papers to review on Monday 11.02.2025
- Upon my confirmation:
 - Register in BASIS
 - Start working on your paper

BASIS Registration opened until 20.02.2025!

Deliverables (preliminary dates)

- Presentation: Thursday 27.03.2025
 - 30 min presentation
 - 15 min discussion
- Report: Thursday 03.04.2025 (will be one week after presentations)
 - LaTeX template
 - 8-12 pages
 - Brief but readable and informative
 - BibTex citations

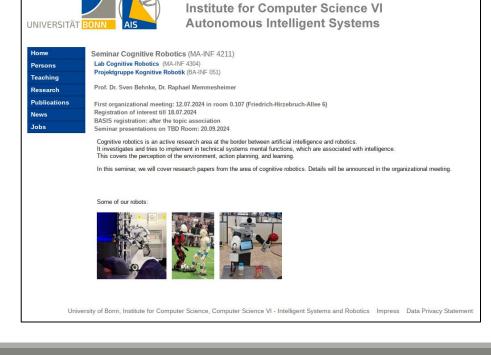
Arrange a meeting with me ≈1 week before the presentation to check the preliminary materials for the presentation and report.

Report

- Well structured:
 - Abstract
 - Introduction, methods, results, conclusion, ...
 - Tables and figures
 - Correct citations
- Your own scientific opinion:
 - What are the weak points of the paper?
 - What is missing?
 - Are comparisons fair and believable?
 - Possible future steps?

We don't want a copy of the paper!

Grading


- 66.7%: Presentation
 - Quality of the presentation slides
 - Presentation skills
 - Ability to answer questions
- 33.3%: Report
 - Overall quality of the report
 - Critical thinking and own discussion
 - Understanding of the concept

Seminar Alternative

Seminar Cognitive Robotics: Link

- Same seminar format
- Papers more robotics related:
 - Grasping and Manipulation
 - Robot perception
 - > SLAM
 - Planning and Navigation
- Introductory meeting on 12.07.2024

Questions?

