

#### **Major Nuclear Accidents**



- March 1979
- United States
- Three Mile Island nuclear power plant



- April 1986
- Ukraine
- Chernobyl No. 4 reactor



- March 11, 2011
- Japan
- Fukushima Daiichi nuclear power plant



#### DARPA Robotics Challenge vs. Real World

Opening a door

Turning a valve

Removing debris

Cutting through a wall











Real World











## Manipulator design

#### Human-arm inspired design



Hydraulic actuators





Closed linkage mechanism



Micro Hydraulic Power Unit



Extreme Robotics Team

# Size, workspace



Fire door width: < 800 mm

#### Micro Hydraulic Power Unit

#### [Conventional HPU]



Low power density

Absence of flow controller

#### [micro - HPU]



- Electrically driven
- Compact size
- High power density
- Variable flow rate control



## **ARMstrong** robot



| Item       | Specification                     |
|------------|-----------------------------------|
| Size       | 180 (L) x 70 (W) x 120 (H) cm     |
| Weight     | 620 kg                            |
| Speed      | 6 km/h                            |
| Arm length | 110 cm                            |
| Workspace  | Height: 0~220 cm<br>Width: 260 cm |
| Payload    | 200 kg = 100 kg x 2               |

#### **Applications**

- Valve control
- Connecting hoses
- Hazardous material handling
- Heavy weight lifting
- Assembly (from LAN cable to heavy pipes)
- Fire equipment control
- Construction tool handling
- Stacking bricks
- Debris removal
- Waste disposal
- General door open
- Dismantling
- Logistics



## **ARMstrong Robot**





#### **Current Radioactive Material Sampling Methods**









 Collecting and analyzing radioactive samples by human inspectors at high radiation area



#### Radioactive material sampling

Cuboid sample



Surface swipe sampling



Surface Soil sampling



- Sampling operation in a radioactive contamination area
- 100 cc of topsoil x 5 samples
- Depth: 5 ~ 10 cm from the ground





#### Prevention of radioactive material leakage using

#### a sealing window

Date: 20.8.18

Place: Post Irradiation Examination Facility

Accident scenario

| Time    | Event                                                    |
|---------|----------------------------------------------------------|
| H+00:00 | Normal operation status of post-                         |
|         | irradiation fuel test facility                           |
| H+00:10 | <ul> <li>Spent nuclear fuel crash</li> </ul>             |
|         | • Fire                                                   |
|         | <ul> <li>Rapid rise in radiation level in the</li> </ul> |
|         | water tank test area                                     |
| H+01:30 | Air leak sealing operation                               |
| H+02:00 | <ul> <li>Complete sealing of polluted air at</li> </ul>  |
|         | the post-irradiation fuel test facility                  |







#### Prevention of radioactive material leakage using

#### foam spray





Date: 20.10.21

Place: Hanaro research reactor

Accident scenario

| Time      | Event                                                                    |
|-----------|--------------------------------------------------------------------------|
| H+00:00 • | Operating at full power (30MWth) of the reactor                          |
| +04:00    | Damage to the nuclear fuel bundle in the core due to a heavy object fall |
| H+04:10 • | Failure to extinguish the fire in the reactor room                       |
| H+04:40 • | Establishment of building leakage sealing plan                           |
| H+04:50 • | Dispatch of a building leak sealing robot                                |
| H+06:00 • | Completed sealing of leaks in the reactor building                       |
|           |                                                                          |



# Fire suppression training

Date: 21.10.06

Place: IMEF(Irradiated materials examination facility)

Accident scenario

| Time    | Event                                                              |
|---------|--------------------------------------------------------------------|
| H+00:00 | Normal operation                                                   |
| H+00:01 | Fire alarm                                                         |
|         | <ul> <li>Initial fire response failure due to sprinkler</li> </ul> |
|         | malfunction                                                        |
| H+00:10 | Increase in radioactivity concentration                            |
|         | Early fire suppression                                             |
|         | Start of radiation dose detection                                  |
| H+00:25 | Rapid increase in radiation concentration                          |
|         | Start of radiation dose rate exploration around                    |
|         | the facility                                                       |
| H+00:50 | Fire suppression completed                                         |





# Radiation disaster preparedness training (Wolseong Nuclear Power Plant)

Date: 23.8.31

Place: Wolseong Nuclear Power Plant

Accident scenario

Prevention of radioactive gas leakage through a fire door





# Radiation disaster preparedness training (Saewool Nuclear Power Plant)

• Date: 24.9.25

Place: Saewool Nuclear Power Plant

Accident scenario

Prevention of radioactive gas leakage through a fire door







## High-Tension Bolt Tightening Robot

# As-is



 Development of Technology for Applying Commercial Tools to Dual-Arm Robots for Bolt Tightening in High-Risk Construction Sites



#### High-Tension Bolt Tightening Test

#### **Impact Wrench Mount Design**



**Hyundai Engineering & Construction Robot Demo.** 





- High-tension bolt x4 tightening
- M22 bolt



