Remote Haptic Telepresence and Telemanipulation with Robotic Exoskeletons Antonio Frisoli Full Professor of Robotics Scuola Sant'Anna ISTITUTO Sant'Anna **FRT** Human **Robot** Interaction **DI INTELLIGENZA** MECCANICA Finanziato dall'Unione europea uscany Health Ecosystem NextGenerationEU linistero dell'Università Italia**domani** e della Ricerca VIANO NAZIONALE IROS '24 ABU DHABI

HRI Human Robot @

Italiadomani ^{PIANO NAZIONALE} DI RIPRESA E RESILIENZA

Finanziato dall'Unione europea **NextGenerationEU**

Wearable Robotics

Telerobotics and Collaborative Robotics

Mobile and Inspection Robotics

The Hype Cycle in robotics

Antonio Frisoli

Exoskeleton as haptic interface for Telepresence/Teleoperation

Current challenges in telerobotics

- Restitution of high fidelity haptic feedback
- Dexterous manipulation
- Remote context aware of environment
- Haptic stability and transparency in bilateral teleoperation

Antonio Frisoli

Stability and Transparency

Hand teleoperation control

Kinematic Mapping

...

• Rodriguez, D., Di Guardo, A., Frisoli, A., & Behnke, S. (2018, November). Learning postural synergies for categorical grasping through shape space registration. In 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids) (pp. 270-276). IEEE.

...

0 👥 🛛 🔿 🎃

Rodriguez, D., Di Guardo, A., Frisoli, A., & Behnke, S. (2018, November) cearning postural synergies for categorical grasping through shape space registration in 2018 *IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)* (pp 200-276). IEEE.

••

Sensory principles for artificial skin transduction

The creation of haptic sensation directly at the hands relies on eliciting mechanoreceptors that emulate the stimuli encountered during interactions with real physical object surfaces

This recreation is fundamental for evoking a sense of richness in haptics, as it involves the activation of four main types of

mechanoreceptors. These receptors - differ in their response characteristics concerning adaptation rates, receptor field sizes, and temporal and spatial sensitivities

Classification based on wearability

Hand Grounded

Fingertip Devices

With Domenico Prattichizzo

(a) Grounded haptics (e.g., Phantom Premium) Courtesy of SIRS labs UNISI

(b) Exoskeletons (e.g., CyberGrasp)

(c) Fingertip devices (e.g., 3-DoF cable-driven device [5])

Pacchierotti, C., Sinclair, S., Solazzi, M., Frisoli, A., Hayward, V., & Prattichizzo, D. (2017). Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives. *IEEE transactions on haptics*, *10*(4), 580-600.

ISTITUTO DI INTELLIGENZA

Principles for artificial haptics recreation

Stimulus modalities

Actuation principles

Art-graphic by Daniele Leonardis

Rendering of the transition from the no-contact to the contact condition is important both for realism and for informative feedback, regarding also properties of the virtual object such as its stiffness

Frisoli, Leonardis, Nature Reviews in Electrical Engineering (2024)

tion

Technical Committee for Telerobotics Best Paper Award

is hereby presented to

MARCELLO PALAGI

For the paper co-authored with G. Santamato, D. Chiaradia, M. Gabardi, S. Marcheschi, M. Sollazi, A. Firosoli, and D. Leonardis, entitled

"A Mechanical Hand-Tracking System with Tactile Feedback Designed for Telemanipulation "

ignature Claudia Parchierat

Sensorized

Finger joints

Claudio Pacchierotti IEEE RAS TCT Co-Chair

as published in the IEEE Transactions on Haptics; vol. 16, no. 4, pp. 594 - 601, Oct-Dec 2023

Signature Keyvan Hashtrudi-Zaad IEEE RAS TCT Co-Chair

EEE

WORLD

2023

HAPTICS

A Mechanical Hand-Tracking System With TactileFeedback Designed forTelemanipulation, Palagi, Frisoli et al, TOH 2023

With Marcello Palagi

Wireless Electronics

Voice coil Haptic Actuators

> Thumb sensorized joints

Teleoperation with haptic feedback

Antonio Frisoli

The CENTAURO Project

The CENTAURO project Approach

- Hybrid wheeled-legged base
- Anthropomorphic upper body
- Telepresence suit awareness, intuitive control
- Predictive robot-environment model

- => Flexible locomotion => Dexterous manipulation
 - => Situation

Upper limb exos

Hand exoskeleton

A CHARLES

Visual Feedback

WRES: Differential kinematics

- Low weight
- Optimal mass distribution
- High torque/mass ratio

CENTAURO

Buongiorno, Domenico, et al. "WRES: a novel 3 DoF WRist ExoSkeleton with tendon-driven differential transmission for neuro-rehabilitation and teleoperation." *IEEE Robotics and Automation Letters* 3.3 (2018): 2152-2159.

Teleoperation in 1st evaluation camp

Manipulation with Schunk Hand

Klamt, Tobias, et al. "Remote mobile manipulation with the centauro robot: Full-body telepresence and autonomous operator assistance." *Journal of Field Robotics* 37.5 (2020): 889-919.

ISTITUTO DI INTELLIGENZA

MECCANICA

Klamt, Tobias, et al. "Remote mobile manipulation with the centauro robot: Full-body telepresence and autonomous operator assistance." *Journal of Field Robotics* 37.5 (2020): 889-919.

Antonio Frisoli

The AVATAR ANA X_Prize

- Compliant grasping - Independent fingers actuation

Teleoperation Station

Vision

Pedals

3 DOF roto-translation of the mobile base

Stereoscopic camera streaming 1 dof head rotation (pan)

Arm Exoskeleton - Cable actuation (transparency) - Dof shoulder + 1 dof elbow

Wrist exoskeleton 3Dof actuated rotation

Hand Exsoskeleton 5 Dof (1 each Finger, underactuated)

computers, controllers and battery

Santamato, G., Leonardis, D., Marcheschi, S., D'Avella, S., Bagneschi, T., Camardella, C., ... & Frisoli, A. (2024). Anywhere is possible: An Avatar Platform for Social Telepresence with Full Perception of Physical Interaction. *IEEE Access*.

Task example – Magic trick with remote friend

Recipient Room

Santamato, G., Leonardis, D., Marcheschi, S., D'Avella, S., Bagneschi, T., Camardella, C., ... & Frisoli, A. (2024). Anywhere is possible: An Avatar Platform for Social Telepresence with Full Perception of Physical Interaction. *IEEE Access*.

Antonio Frisoli

Principles for artificial haptics recreation

Experimental findings showed that surface orientation dominates haptic curvature discrimination, supporting development of tactile-only devices to render surface orientation.

Actuation principles

Sant'Anna

ISTITUTO

MECCANICA

DI INTELLIGENZA

Frisoli, Leonardis, Nature Reviews in Electrical Engineering (2024), in press

Principles for artificial haptics recreation

Translating tactor

ISTITUTO DI INTELLIGENZA

MECCANIC

Sant'Anna

Actuation principles

Pressing tactor

Lateral forces prove very informative too. In example, considering the aforementioned sensory substitution principle, the weight of an object can be rendered by tactile feedback only, and in particular through lateral forces applied to fingerpads

Actu Closely related to the rendering of lateral forces is the stick-slip condition.

Frisoli, Leonardis, Nature Reviews in Electrical Engineering (2024), in press

Evolution from rigid to soft multimodal wearable haptics

Miniature Actuators in Fingertip Haptic Devices

The forefront of wearable haptics research has been characterized by advancements in actuation mechanisms. It emerges a sustained interest in developing soft and stretchable haptic actuators, striving to increase wearability and comfort for the user

ISTITUTO DI INTELLIGENZA

Sant'Anna

Micro gearmotors: high output force, yet noise and low-bandwidth

Wire transmission: difficult routing and preload in miniature mechanisms

Haptic feedback at fingertips

Prototypes developed by SSSA: Targeted at high wearability and wide-bandwidth modulation (no vibration inertial motors!)

Leonardis, Daniele, Domenico Chiaradia, and Antonio Frisoli. "A Miniature Direct-Drive Hydraulic Actuator for Wearable Haptic Devices based on Ferrofluid Magnetohydrodynamic Levitation." 2023 IEEE World Haptics Conference (WHC). IEEE, 2023.

Direct-drive hydraulic actuator

Miniature hydraulic actuator

- Device embedded, no tethering
- Soft finger interface
- Better transmission of signals
- Potential of more complex shapes

Characterization

measuring higher

force modulation

virtual/teleoperated

and rendering

experiments

control in

settings

Novel prototype with different resin and coil materials (aiming at improving longterm reliability)

Leonardis, Daniele, Domenico Chiaradia, and Antonio Frisoli. "A Miniature Direct-Drive Hydraulic Actuator for Wearable Haptic Devices based on Ferrofluid Magnetohydrodynamic Levitation." 2023 IEEE World Haptics Conference (WHC). IEEE, 2023.

ISTITUTO DI INTELLIGENZA

MECCANICA

With Daniele Leonardis

With Daniele Leonardis

Principles for artificial haptics recreation

Frisoli, Leonardis, Nature Reviews in Electrical Engineering (2024), in press

Belt-Driven direct-drive thimble

Rotate in opposite direction

 Gravity Grapper was the 1st seminal work by Kouta Minimizawa

- Soft thimble, 3D printed, commercial miniature DC motors
- Shape and actuation method adaptable to large finger-dimensions range
- Robust, suitable for extensive use in rehabilitation

Rotate in same direction

Improvements

Novel miniature actuators (lowfriction, precision ball bearings)

Colours compliant to IR vision-based tracking

Hand dorsum Integrated electronics for multi-finger configuration (5 actuators)

Minamizawa, Kouta, et al. "Gravity grabber: wearable haptic display to present virtual mass sensation." *ACM SIGGRAPH 2007 emerging*

Null Space Exploration for Enhanced Transparency **Dissipation in rTDPA**based Teleoperation

Experimental Setup

WP3: CENTAURO Operator Interface

Exoskeleton-based bilateral teleoperation of an asymmetrical master-slave system with a time Domain passivity approach

Domenico Buongiorno, Domenico Chiaradia, Massimiliano Solazzi and Antonio Frisoli

Scuola Superiore Sant'Anna, TeCIP Institute, PERCRO Laboratory, Pisa, Italy

Teleoperation Stability and Transparency Issues

• In teleoperation, achieving stability and transparency is crucial, but time delays cause instability. • The Time-Domain Passivity Approach (TDPA) ensures stability but degrades transparency by introducing drift and jitter.

A proposed solution is rTDPA (Porcini et al., 2022)

The redundant TDPA (rTDPA) uses null space to dissipate energy and minimize transparency loss.

LBR iiwa - Kinematic Redundancy, KUKA - Robots & Automation, https://www.youtube.com/watch?v=sZYBC8Lrmdo

Prioritize dissipation THE TASK SPACE IS in Jacobian null-MINIMALLY space **INFLUENCED BY THE Residual energy (if DISSIPATING ACTION** any) dissipated in the task space Leader Channe

However, rTDPA limitations like suboptimal use of null space lead to configuration issues.

Follower

Nullability Index is defined as a measure of the robot's ability to manipulate in its null space, enhancing dissipation.

$$\sigma_N(q) = \frac{\sigma_{min}(P)}{\sigma_{MAX}(P)}$$

NrTDPA enhances rTDPA by maximizing the efficiency of energy dissipation in the null space. Thus, the dissipation vector is defined to maximize the nullability index. q_{2}

- Joint space is explored computing Nullability index of each state
- An optimal path to maximize a cumulative Nullability index is identified
- The dissipation vector is oriented along this path

Experimental Setup and Procedure

 The experiment used two Franka Emika Panda robots (leader and follower) with a 50 ms time delay.

• The follower tracked the leader's motion, interacting with a stiff wall, simulating realworld contact with time delay.

Results: ITAE and Velocity/Force Comparison

The experiment compared rTDPA and NrTDPA in terms of drift and force jitter.

- NrTDPA shows a significant improvement in transparency with lower drift and force jittering.
- ITAE results demonstrate a nearly one order of magnitude reduction in errors compared to rTDPA.

Towards a remote ultrasound diagnostic system

Overcoming existing solutions

Bilateral architecture

- X The mat in the doctor-site workstation does not allow you to manage the third dimension
- X Difficulty distributing the gel and ensuring uniform contact of the transducer with the skin
- X Insufficient two-dimensional view from cameras

- Management of the third dimension and orientations through the haptic interface
- Good gel distribution enabled by the use of the haptic interface
- Ongoing development of an optimal vision system

Human-Robot Interaction Group

thank you!

email: a.frisoli@santannapisa.it

