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Abstract
Fast and versatile locomotion can be achieved with wheeled quadruped robots that
provide agile and long-range navigation over challenging terrain. By integrating
dynamic jumps into hybrid motion control and planning, obstacles can be over-
come without stopping to step over them or changing paths to avoid them. In this
thesis, we present a control optimization framework for quadruped robots that
incorporates non-steerable wheels into the control problem and provides hybrid
driving-stepping locomotion capabilities to quadruped robots with wheels. We
formulated a Kalman Filter (KF) for state estimation that integrates the wheels
into the filter equations. We present a Model Predictive Controller (MPC) that
uses a time-varying Rigid Body Dynamics (RBD) model of the robot, including
legs and wheels, which helps in tracking dynamic motions such as jumping. We
formulated an approach to generate reference trajectories and commands for hy-
brid locomotion and dynamic driving-jumping, which are optimized by MPC to
generate reaction forces, and are followed by a Whole-Body Controller (WBC) to
generate joint commands. To the best of our knowledge, this is the first wheeled
quadruped robot that can jump while driving. We introduce a method for driving
with minimal leg swings to reduce the robot’s energy consumption due to the effort
required to move the heavy wheels at the end of legs. We tested our approach on
the wheeled Mini Cheetah robot in simulation and in the real world.
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1 Introduction
Robots that can be safely used in close proximity to humans are the subject of
ongoing research. Flying systems, such as drones, are highly maneuverable but
have a short flight time, are very noisy, and are not considered safe around humans.
Ground robots, on the other hand, can navigate quickly and can be used safely near
humans, but generally do not have high speed or versatility in their locomotion
system.

Robots with legs are well suited for locomotion on irregular terrain, as the use
of limbs in such terrain provides a much greater flexibility compared with pure
wheeled robots [17]. The ability to place feet in discrete positions allows legged
systems to climb stairs or maneuver in unstructured terrain like humans, and are
therefore versatile platforms for such terrain [19].

Four-legged systems offer many advantages in mobility and versatility over
bipeds, and are considered reasonable candidates for robust and safe locomotion
over difficult terrain in close proximity to humans. Bipeds can only walk and run
and have limited balancing abilities. A quadruped, on the other hand, can use
its four legs to maintain balance while performing various gaits (e.g., trotting,
bounding, pacing, etc.) and can move easily over uneven terrain or stairs. Various
systems demonstrated dynamic motions [12, 18, 61], overcame slippery surfaces
[8], or performed optimized jumps and backflips [11, 16].

Although walking robots are great at overcoming obstacles such as stairs, they
are slow and consume a lot of energy. In contrast, wheeled robots can move
quickly and efficiently on flat terrain and have very low transportation costs com-
pared to their legged counterparts. However, they are usually not able to handle
rough terrain, especially if the obstacles are larger than the radius of their wheels.
Figure 1.1 highlights the benefits of wheeled, legged, and hybrid locomotion and
demonstrates the motivation to choose the hybrid locomotion over the other.

The terrain around humans is mostly flat with height differences and obstacles.
This motivates us to combine the capabilities of wheeled and legged robots, using
fast and efficient wheels in flat terrain and locomotion on foot to bypass obstacles.
The resulting hybrid locomotion solves the trade-off between efficiency and speed
in systems with wheels and legs by reducing the number of leg swings, since driving
is usually preferred to walking, while stepping is applied either at the request of
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1 Introduction

Figure 1.1: Locomotion comparison. Top: Wheeled systems are very fast on regular
terrain, but fail if they encounter an obstacle larger than the radius of their
wheels, or if there is a gap in the terrain. Middle: Four-legged systems can
avoid obstacles by stepping through them, but are usually slow. They can
jump over gaps in the terrain, but the length of the jump is limited by the
power of the actuators. Below: The hybrid four-legged robot takes advantage
of a wheeled system to travel quickly on regular terrain to overcome obstacles.
The jumping motion while driving allows the robot to utilize leg joints only
for vertical acceleration, which increases the jump height. During the jump,
the rolling wheels continue to move the robot forward, increasing the jump
length.

the user or due to irregularities in the terrain. Various systems have demonstrated
hybrid locomotion [5, 14] on dynamic quadruped robots [2, 1, 7], and on bipedal
systems with wheels [15]. Due to the above capabilities, wheeled legged systems
are beneficial to society since the need for robotic caregivers increases as people live
longer [2]. For example, people with poor eyesight can use such an energy-efficient
robot that can overcome height differences, to navigate them.

The environment may have obstacles or elevation changes that require strategies
for the system to slow down and to move around the obstacle or to spend a lot of
time walking across them. The high forward speed of the wheels would make it
expensive to stop when an obstacle appears in front of the robot. The better option
is to perform a driving jump motion and to use the robot’s dynamics to overcome
the obstacle without slowing down and switching to walking mode (Figure 1.1).

While robots with legs have already found their way into real-world applications,
legged robots with wheels are mostly found only in research labs [7, 25] and their
locomotion capabilities are not well known since there are no natural counterparts
to them [1]. The approaches [1, 7, 12, 16, 21, 30, 57] contain simplifications that
capture the dynamics of hybrid locomotion by mostly assuming massless legs in
the system.
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Our is to develop a robot that can be used among humans, combining the
versatility of legs to overcome difficult terrain with the efficiency of wheels to go
fast. In this way, we increase the locomotion speed and energetic efficiency of the
robot without compromising its versatility.

With the above motivation, this thesis presents algorithms that enable dynamic
hybrid driving-stepping locomotion for a wheeled quadruped robot capable of
jumping, using online MPC , taking into account the additional wheels in terms
of their shape, mass and inertia tensor.

To this end, we have improved the open platform hardware of the Mini Cheetah
by adding wheels to the ends of each limb. The Mini Cheetah robot is a torque-
controlled quadruped robot developed in the MIT Biomimetic Robotics Lab using
low-cost, highly reliable, and powerful hardware [11]. It is equipped with an Iner-
tial Measurement Unit (IMU), a computer and a battery so that it can be operated
without an external wired connection. The open source software, low cost, high
performance and reliability of the Mini Cheetah platform make it an ideal choice
for researchers. In the AIS Lab1, we transferred the above open software into
the ROS2 echo system and used our robot control architecture, which allows us
to separate the motion controls from the hardware interfaces so that we can ex-
change the hardware with similar quadrupeds or visualize and simulate them using
different tools such as RViz3, MuJoCo4 and Gazebo5.

We transformed the Mini Cheetah’s hardware into a hybrid quadruped by de-
signing and fabricating relatively small wheels and enhanced shank links. These
wheels can produce a maximum torque of 2.1 Nm and a speed of 2150 rpm, the-
oretically allowing the robot to reach up to 40 km/h. We use ODrive6 BLDC7

drivers with custom firmware to control the speed and torque of the wheels with a
low-resolution encoder (Hall sensor with 84 pulses per revolution). The replaced
components on each leg increased the weight of each leg by 0.39 kg (with each
wheel weighing about 0.32 kg). Together with the additional components, the to-
tal weight of the modified robot increased to 12.5 kg (from its original weight of
10 kg). Figure 1.2 shows the resulted hardware. We employed MuJoCo as a multi-
body simulator that can accurately simulate the contact dynamics and rolling
friction of the additional wheels, as well as the joints and corresponding rotor dy-
namics. We intend to use the resulting system to study hybrid locomotion and

1https://www.ais.uni-bonn.de
2https://www.ros.org
3http://wiki.ros.org/rviz
4http://mujoco.org
5http://gazebosim.org
6https://odriverobotics.com
7Brushless Direct Current motor
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1 Introduction

Figure 1.2: The utilized hardware. This figure shows the upgraded hardware of the
MIT Mini Cheetah open platform. The additional wheels and shank links
were designed and fabricated in the AIS lab at the university of Bonn, and
the electronic equipment was upgraded to meet the wheels’ requirements.

associated control strategies. It will also serve as a research platform for other
desired areas of hybrid mobile robotics, including navigation, path planning in
complex terrain, and the application of learning-based control algorithms.

1.1 Contributions and Outline
In this thesis, we work on the use of predictive and whole-body controllers for hy-
brid driving-stepping and jumping locomotion in quadrupedal wheeled robots. For
this goal, which requires research in several areas, we have identified the following
main categories:

• State Estimation

• Control

• Planning

• Driving Locomotion

The above list provides a convenient way to identify our contributions to the overall
problem.
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1.1 Contributions and Outline

While the design of the robotic systems is a major part of our research, the
discussion of hardware developments for wheels, the software framework that em-
bodies all the requirements to make the actual robot work, and the simulation of
the robot out of the scope of this document. Below we explain our contributions
to each category defined above.

State Estimation. In terms of state estimation, our main contributions lie in
incorporating the geometry of the end effector into the robot kinematics and the
rolling wheels into the Kalman Filter (KF) equations .

We have replaced the rubber balls at the end of each limb with wheels, magni-
fying the physical geometry of the end effector, which can no longer be ignored.
We incorporate the above enlarged geometry into the robot’s kinematic model,
and instead of simply considering the center of the end effector as the ground
contact point, we define the exact touchdown position of the end effector, the cor-
responding Jacobian matrix, and the effective radius of the wheel (Section 4.2).
We calculate the accurate velocity for the touchdown point above by converting
the measured angular velocity of the wheel into a linear velocity using the effective
radius, considering the contribution of the angular velocity of the body and the
velocities of the leg joints to the contact point velocity, and adding the velocity
measured by the kinematic model (Section 4.3.2).

We include the touchdown velocities above into KF state and measurement
space and update the filter equations to simultaneously correct for the position of
the foot contacts, the pose of the main body, and the contribution of driving with
wheels, resulting the state estimation for the hybrid driving-stepping quadruped
(Section 4.3.3).

Control. Our major contribution to the control method is the time-varying dy-
namic model of the robot used for the MPC, which accounts for the legs in the
model, and allows for tracking various motions such as jumping. We explain the
whole-body kinematic model of the robot in Section 5.4.1, which computes the
effective mass, composite inertia tensor, and Center of Mass (CoM) of the robot
according to the known future body orientation and foot positions. In this way,
we obtain a set of expected single rigid bodies for the prediction horizon of MPC,
which enables the implementation of a time-varying dynamics model in Section
5.4.2.

We consider the whole 3D orientation of the body, rather than restricting our-
selves to the yaw angles, and keep the MPC formulation convex by linearizing the
orientation dynamics around the known body orientations of the prediction hori-
zon (Section 5.4.2). In this way, the inertia tensor in the world is more accurately
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1 Introduction

described.
We include the weight and inertia of the wheels in the dynamic model of the

robot in Section 4.1 to incorporate the additional wheels in the control accuracy
of the WBC (Section 5.5).

We exploit the control over wheels’ velocity and torque to achieve robust loco-
motion (Section 5.6). Rotating the wheel with respect to the speed of the swinging
foot in the world frame allows for lower swing heights and enhanced swings along
the rolling direction. This is because the continuous rotation of the wheels during
the swing reduces the disturbance caused by the foot hitting an obstacle or landing
earlier than expected. By feed-forwarding the torque commands for wheels ac-
cording to the reaction forces received from the WBC and the commanded driving
accelerations, the feet are kept at the desired contact points, resulting in improved
control performance. We use the effective radius explained earlier to convert linear
velocity and force into angular velocity and torque.

Planning. The control method described above requires expected trajectories
for the body state, foot positions, and contact states to generate the time-varying
model for the MPC. In addition, body and foot commands are needed to perform
the tasks of the WBC. These trajectories and commands should be generated dif-
ferently for the hybrid driving-jumping and driving-stepping behaviors. We show
that realistic trajectories improve control performance. Therefore, we introduce
the Trajectory and Contact (Section 5.1), and Footstep (Section 5.2) planner mod-
ules to describe the above trajectories and commands separately for each behavior.

To generate the expected state trajectory, we integrated driving and stepping
velocity and acceleration commands for driving-stepping behavior and proposed a
formulation based on the commanded jump height for jumping behavior (Section
5.1.2).

We add a dynamic variable to each gait, which changes the ratio of contact
and swing phase duration, allowing for a wide range of dynamic and static gaits
(Figure 5.5). We use the resulting gaits to create the expected contact trajectory
for driving-stepping behavior (Section 5.1.3).

The target landing foot locations are manipulated by the Foot Step Planner
using the symmetry offset (Equation 5.24) according to the walking speed of the
robot. However, for a hybrid robot, the measured velocity is only partially related
to the walking speed. Therefore, we define the expected gait velocity based on
the current speed of the robot and the commanded driving velocity. We also
compute the linear velocities induced by the yaw angular velocity of the robot at
each shoulder location as additional terms in the symmetry equation to account
for the rotational velocity of the robot or the yaw torque applied externally. With
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1.1 Contributions and Outline

the above contribution, even a driving only robot (without stepping commands)
responds to the external pushes or yaw torques by performing corrective swings.

We add yaw offset (to the direction of travel) to the body pose at runtime which
allows the robot to walk or drive forward while looking at a different direction 4
Figure 4.2

Driving Locomotion. Our goal is to use the wheels to drive with lower energy
consumption and to increase the efficiency of the robot by executing steps only
when requested by the user or when instabilities occur due to irregular terrain. For
this purpose, we can use driving as the main tool for locomotion and the stepping
as an additional tool to correct the robot’s posture or to bypass challenging terrain.

To achieve a natural driving locomotion, we aim to minimize the number of leg
swings. To this end, we propose the driving assistant in Section 5.3 which assigns
a utility value to each leg and dynamically determines the swing duration and
height as well as the gait frequency to achieve a dynamic gait, and adds corrective
velocities to the stance legs along the rolling direction.

In contrast to [1] which uses leg utilities to switch between pure driving mode,
static walking, and trotting to recover legs that have reached their kinematic limits,
this approach is not limited to specific gaits and always executes the dynamic gait
cycle to simultaneously perform user-requested walking commands and corrective
leg swings to correct the robot’s kinematics all the time.

A lower leg utility results in a higher swing height and duration and a lower
gait frequency. When a foot encounters an obstacle, the leg utility decreases
significantly and the robot recovers the stuck leg with a larger swing. Finally, the
stance leg correction applies additional control inputs to the wheels to reduce the
error in the desired contact leg positions along the rolling direction (Section 5.3).

When the robot is near its nominal kinematic configuration, performing the
dynamic gait described above allows the reaction forces on each leg to periodically
approach 0 without the need to lift the legs, allowing the controller to slide the legs
along the ground with very little friction. The further the robot moves away from
the nominal configuration, the larger the steps it can take due to the decreased
gait frequency and increased swing heights and duration. Therefore, the robot
always keeps its kinematics close to the nominal configuration instead of discretely
switching between pure driving and leg swinging, as in [1].

This introduction is followed in Chapter 2 by the presentation of the related
works. Chapter 3 introduces the methods necessary for the dynamic control of
quadruped robots. It derives the formulation of MPC from optimum control and
Linear Quadratic Regulators (LQR), and then explains the WBC, in particular the

7



1 Introduction

Whole-Body Impulse Controller (WBIC) and its formulations. Chapter 4 explains
our approach in a larger context and discusses the inclusion of wheels in terms of
mass, inertia tensor, and shape in the state estimation, as well as the kinematic
and dynamic model of the robot. Chapter 5 describes the hybrid driving-stepping
control framework in detail. It explains the reference trajectories and control
commands generation for the driving-jumping and driving-stepping behaviors in
Sections 5.1 and 5.2, the role of the driving assistant module in the locomotion of
the hybrid system in Section 5.3, the whole-body kinematic model of the robot in
Section 5.4.1 from which the time-varying dynamics model for the MPC is derived
in Section 5.4.2, and the Quadratic Programming (QP) formulation of the MPC
in Section 5.4.3, the considered prioritized tasks and the configuration parameters
for the WBIC in Section 5.5, and the wheel controller module executing the WBC
output commands in Section 5.6. Chapter 6 explains our evaluation and presents
quantitative and qualitative results related to our contributions to simulated and
real robots. Finally, Chapter 7 concludes this thesis by summarizing the main
contributions of this thesis and by providing an outlook on future work.
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2 Related Work

In this thesis, we present a multibody system that interacts with the environment
through multiple contact points to perform hybrid dynamic locomotion. The robot
must be aware of its state in the environment to perform dynamic motions on un-
known and difficult terrain. In the following, we briefly explain existing approaches
related to our work in three categories: Legged locomotion, hybrid locomotion, and
state estimation.

Legged Locomotion

Motion plans for robots with legs are successfully generated in a number of works
on real hardware using the Linear Inverted Pendulum Model (LIPM) as a robot
model [4, 72], which is fast but comes at the price of inaccurate modeling of the
real robot.

However, the LIPM is not suitable for generating motions with flight phases. A
common approach that can generate such dynamic motions is based on the Tra-
jectory Optimization (TO), which deals with systems subject to a set of physical
constraints, with the aim of reducing the influence of the user by using numerical
optimization techniques. TO requires a physical model of the system that defines
its dynamics in order to generate motions for the given task and to control the
legged locomotion on a more general level [41, 43]. Solving such TO problems is
addressed in [31] by three methods, dynamic programming over the entire state
space, indirect methods, and direct methods that minimize an objective function.

The physical model can be approximated with a Single Rigid Body Dynamics
(SRBD) model, which assumes that the momentum of the joint accelerations is
negligible and that the inertia of the system is constant. The work in [26] replaces
the LIPM model with the 6D SRBD model using 3D contact forces of each end
effector with friction constraints and optimizes the gait with a Nonlinear Program-
ming (NLP) solver that takes into account forces and support-area constraints in
TO. However, the results are only shown in simulation as the approach could not
be performed online due to the time required for the NLP solver. The work in
[33] considers the mass and inertia of all limbs to obtain a complete RBD model
that accounts for the changing CoM positions and inertial properties based on the

9



2 Related Work

Figure 2.1: Legged Robots. From left: Cheetah 2 (from [45]), Cheetah 3 (from [16]),
Mini Cheetah (from [12]), and ANYmal (from [27])

foot positions and the Coriolis forces generated by the leg motions. However, this
model is very computationally expensive and cannot be used online.

Recent results have shown that quadrupeds can walk, trot, and climb stairs
by using whole-body control and motion optimization algorithms. The approach
presented in [35] for controlling the walking of quadrupeds is based on whole-body
control combined with hierarchical optimization by solving a prioritized task using
QP solvers, but is not flexible in responding to perturbations. The dynamic control
method in [38] uses the principle of learning through practice to automatically
fine-tune the parameters of the state-feedback controller on a parameterized whole-
body model by repeatedly executing slight variations of the same motion in the
simulation. However, the process would need to be rerun when changes are made to
the hardware or when tasks involving new motions are executed. Climbing stairs,
demonstrated in [36] is a similar motion plan to [39] that is tracked by a whole-body
feedback controller to ensure accurate motion execution, but is only performed
offline based on the predefined motions and the tasks should be redefined according
to changes in the environment.

The TO methods discussed so far share a common problem: they are compu-
tationally expensive, which limits their use for online applications. A common
alternative to using TO methods for online applications is to execute them in the
form of MPC. MPC methods (Section 3.1) follow the dynamic model of the robot
during the prediction horizon and solve an optimization problem that minimizes
the objective function, which is usually to minimize the control effort and/or the
deviation from the expected reference trajectory during the control horizon. The
resulting optimization problem, which is computationally expensive to solve (and
becomes more expensive as the length of the horizon increases), must be solved at
each control iteration, making the approach unsuitable for online control. How-
ever, a highly accurate model of the robot dynamics during the prediction horizon
may not be as important as an accurate model of the instantaneous dynamics.

10



Therefore, there are several approaches that simplify the model of the robot to
achieve a faster update rate for optimization, or use a different controller (e.g.,
WBC) to account for the disturbances in real time, or a combination of the above
approaches. The following related works use MPC in their respective approaches.

The method in [27] uses a simplified and linearized Zero Moment Point (ZMP)-
based model to optimize a motion planner that generates planar CoM motions
through a sequence of arbitrary support polygons in an MPC-like manner at low
update rates, and uses a hierarchical whole-body controller to track the reference
motion at higher update rates. This results in a controller that executes trot and
step gaits while responding to perturbations and dealing with model inaccuracies,
which is tested on the ANYmal quadruped (Figure 2.1). However, it is unable to
control a gait with flight phases and cannot properly handle gait transitions or
strong perturbations.

The work in [18] extends the above method by optimizing for the full position of
the CoM and solving a separate optimization of footholds to achieve a wider range
of gaits with full flight phases (trot, dynamic pace, and pronk). The nonlinear
ZMP constraints are solved by sequential quadratic programming, which is about
6 times slower compared to the previous approach. However, by parallelizing the
foothold optimization and the hierarchical controller, it is still possible to generate
motion plans online.

The Cheetah 2 robot (Figure 2.1), presented in [45] from MIT, uses an online
MPC controller to optimize its locomotion to run and jump over obstacles with
heights up to 40 cm. The presented approach divides the jumping motion into 4
phases (front stance phase, air phase, back stance phase, and jump phase) and
performs gait planning using a multiple horizon MPC problem solved for each
phase by QP.

The authors in [16] present an optimized jumping trajectory for the Cheetah 3
quadruped robot (Figure 2.1). The jumping trajectory optimization uses a sim-
plified 2D model of the robot with 5 limbs on a vertical plane to generate joint
commands at low update rates (100 Hz), which are then linearly interpolated to
obtain the desired joint commands at high update rates (1 kHz). Landing is han-
dled separately based on a force control method that enforces PD control over
the CoM and body orientation while satisfying friction constraints. The authors
successfully validated the method by repeatedly jumping onto and down from a
desk with a height of 76 cm/. However, the simplified planar model only allows the
method to be used in certain environments with flat ground plane.

In [21], the authors present a MPC approach for computing ground reaction
forces for the Cheetah 3 robot (Figure 2.1). For this purpose, they simplified the
dynamics model of the robot to a single rigid body by assuming massless legs. The
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2 Related Work

mass and inertia of the body are considered constant and the body is assumed to
have only yaw angular velocities. Considering a prediction horizon of up to 0.5
seconds, they formulated the MPC problem as a convex QP optimization with
constraints on the ground reaction force and an objective function that penalizes
tracking error and control effort. The resulting MPC runs in up to 50 Hz while
joint torques are computed in 1 kHz according to the last MPC control output,
state estimation data, and swing leg schedules. Despite the use of a simplified
model, they achieved robust locomotion with different gaits (trot, running-trot,
pronk, bound, pace and a full 3D gallop) and a maximum forward speed of 3 m/s1.
However, the dynamics of the links are ignored and the body tracking relies only
on the MPC with low update rates.

The authors of [12] extended the above work by combining the previous MPC
method with a WBC. They defined 6 virtual joints for body orientation and po-
sition in addition to leg joints. The WBC computes joint positions, velocity and
acceleration commands for the body and legs by tracking the commanded body
and foot states, taking into account the optimal reaction force profiles found by
the MPC. To this end, they optimize a QP, which is constrained to the full-body
dynamics, using the computed accelerations of the body joints and the reaction
force found by the MPC. During the optimization, the body acceleration com-
mands are relaxed according to the specified weights to account for the optimal
reaction forces. The joint torques are then found using the full-body dynamics
formulations. With this approach, the control of the swing leg is still possible dur-
ing the full flight phases by relaxing the body accelerations. In addition, a longer
horizon length for the MPC is possible because the WBC applies the instantaneous
dynamics of the robot with high update rates. The authors tested this approach
on the Mini-Cheetah quadruped (Figure 2.1) robot with different gaits and rough
terrain and achieved a top speed of 3.7 m/s in the lab and 1 m/s outdoor2.

Hybrid Locomotion

The legged locomotion methods described above rely on non-slip contact points
with unmovable location of forces. However, in a wheeled legged system, the
rolling wheels allow the controller to change the location of forces along the rolling
direction simply by rotating the wheels in contact, which can increase control
performance. There are various quadruped robots with wheels in several institutes
that either use the wheels only for driving and the legs for climbing in unstructured
terrain, or formulate the controllers to integrate the wheels into the dynamics

1https://youtu.be/q6zxCvCxhic
2https://youtu.be/6JlVol3eyNI
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Figure 2.2: Hybrid Robots. From left: CENTAURO (from [13]), Wheeled ANYmal
2018 (from [2]), Wheeled ANYmal 2020 (from [1]), Ascento (from [15])

model of the system.
The work in [24] presents a hybrid driving-stepping locomotion for Momaro

robot that can walk or drive in simulation, but only performs quasi-static motions
without considering the dynamics of the robot. The CENTAURO robot (Figure
2.2) from [13] is a quadruped robot with a humanoid upper body, and wheels at
the end of each leg, capable of automatic footstep placement using a linear MPC,
but it uses the wheels only for driving and performs walking motions separately.
There are several hybrid locomotion platforms that use TO to precompute complex
trajectories over a time horizon offline and plan a motion on flat terrain by solving
a NLP problem. [5, 22].

In [7], authors discuss a hierarchical whole-body controller that tracks the mo-
tion trajectories including the rolling conditions of the wheels. However, the robot
cannot walk and drive at the same time, so it is forced to stop and switch to a
walk-only mode to overcome obstacles3. The work in [6] extends the aforemen-
tioned work by computing base and wheel trajectories in a single optimization
framework using linearized ZMP constraints, which has a low update rate of 50
Hz and does not perform experiments on real robot4. A generalized approach to
motion planning is presented in [22] for the Skaterbots5 by solving a nonlinear
programming problem. However, due to the high computational cost, it is not
practical to perform online in a receding horizon.

The work in [2] presents an optimization framework that incorporates the addi-
tional degrees of freedom introduced by the wheels into the motion generation. The
optimization problem is split into end-effector and base trajectory planning, similar
to [65], to make the locomotion planning more manageable for high-dimensional
robots with wheels and legs. The problem is solved in realtime in a MPC fashion

3https://youtu.be/nGLUsyx9Vvc
4https://youtu.be/I1aTCTc0J4U
5https://youtu.be/TcTD0rRPG_k
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2 Related Work

to be robust against disturbances6.
The authors in [1] propose a MPC method based on a kinodynamic model of

hybrid quadruped robots with moving ground contacts to simultaneously optimize
joint velocity and ground reaction forces. The robot dynamics are approximated
by a SRBD with predefined inertia at the nominal robot configuration, treating
the wheels as moving ground contacts. They increase the Cost of Transport (CoT)
by proposing a leg utility which assigns a value for each leg that describes how
useful the leg is. According to the leg utility values, the robot switches between
pure driving, static walking and trotting. However, the robot remains in pure
driving mode until one or two legs reach their kinematic limits. Then it discretely
switches to walking or trotting to recover the legs, and other gaits (e.g. bounding
or pronking) are not used to recover the legs. This method is evaluated on the
ANYmal robot (Figure 2.2), which shows robust locomotion at driving speeds up
to 4 m/s7.

The Ascento robot (Figure 2.2) in [15] is a compact bipedal robot with wheels
that is able to navigate quickly, balance on flat terrain, and overcome obstacles by
jumping8. The dynamics of the robot is modeled using SRBD and controlled by
LQR method. However, the dynamics of the leg links and motors were neglected,
which is significant due to the weight of the wheels relative to the body.

Most of the above methods neglected the dynamics of the legs and simplified
the model of the robot by approximating the dynamics by a SRBD with constant
inertia during the prediction horizon. However, the wheels add more weight to
the end effector of each leg and increase the mass of the feet, which should be
made as light as possible to satisfy the above simplifications. Therefore, in this
thesis, we incorporate the kinematics and the mass of the legs into the dynamics
model used in the MPC and formulate a time-varying SRB that simplifies the
robot dynamics into a different SRBD at each time step of the control horizon to
obtain a predictive controller that can accurately track various dynamic motions.

State Estimation

State estimation plays an important role for systems that require constant stabi-
lization, such as quadruped robots. Robots can localize their environment using
visual or GPS based methods [60, 66, 68]. However, for a legged robot without per-
ceptual units, state estimation relies on data from IMU and the robot’s interaction
with the environment over multiple intermittent ground contacts.

6https://youtu.be/ukY0vyM-yfY
7https://youtu.be/_rPvKlvyw2w
8https://youtu.be/U8bIsUPX1ZU
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The state estimation approach in this thesis is an extension of the approach
presented by the Mini Cheetah open platform robot [11], which estimates the
robot’s position and orientation in the world coordinate system without perceptual
units. Therefore, we focus on related works that use contact points on the ground
to estimate the robot’s state.

In [67], data from IMU is fused with the leg-based odometer of a hexapod robot,
assuming that the robot is in contact with three of its six feet at all times and
that the terrain is completely flat. However, the method is limited to walking and
running on three legs.

In [52], an extended KF method is presented that fuses kinematic encoder data
with IMU measurements by including the absolute position of all feet in the filter
state to accurately capture the uncertainties related to the ground contacts. The
resulting filter simultaneously estimates the pose of the main body and the posi-
tions of the footholds without making assumptions about the shape of the terrain,
but is only tested in simulation.

The above contact-based methods require accurate knowledge of the contact
state of each leg and therefore need a system with dedicated sensors on each
foot to detect ground contact. However, for a legged wheeled robot, the use of
accurate contact sensors could be costly and require a complex hardware design,
motivating state estimation methods that do not rely on such sensors. To this end,
a probabilistic contact detection algorithm is presented in [20] which uses a KF to
fuse pre-calculated probabilities: the contact probability from gait swing phase,
from foot height, and from foot force. The work in [29] estimates the probability
of reliable contact and detects foot impacts using internal force sensing. This
knowledge is then used to improve the estimation of the kinematic-inertial state
of the robot base, resulting in an approach that has comparable performance to
systems with foot sensors.

The approach followed in this thesis fuses IMU and kinematic encoder data by
including the contribution of driving with the wheels in robot pose and the position
of all end effectors in world coordinates in the filter state. The fusion is based on
the contact probability given by the gait sequence of the robot.
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3 Backgrounds

This chapter gives the background related to our methods. Our approach relies
heavily on MPC, which is often formulated as a QP problem.

3.1 Model Predictive Controller
MPC is a control technique that is often applied in practice due to its ability
to handle constraints on control inputs. MPC has evolved into a mature control
technique based on a well-established theoretical foundation, especially after its
success in the process industry in the 1980s. The basic concepts of MPC were
introduced in the 1960s, and since then, numerous researchers have published ap-
plications and theoretical aspects around it. There has been an increasing interest
in developing fast MPC methods in recent years, enabling MPC to be used for
systems with slow dynamics, such as chemical processes and high-speed sampled
systems like turbine control.

While the basic idea of MPC is well established, there exist many variants
for guaranteeing closed-loop feasibility, stability, robustness or reference tracking.
This section introduces MPC as an expansion over LQR, the closed-loop control
of a plant with MPC, the condensed formulation of MPC, and its formulation as
a QP problem.

3.1.1 Linear Quadratic Regulator
Control objectives describe the performance expected from the system being con-
trolled and are usually stated as desired output values, such as the torque output
of a joint, the speed of the wheels of a car, etc. Given a set of possible control
actions, the controller chooses the one that minimizes the deviation of the system
from the specified target values. Optimal control deals with several control objec-
tives simultaneously, whose relative importance is weighted in the so-called cost
function, allowing for complex control objective formulations. The goal of optimal
control is to minimize the value of the cost function over time by utilizing available
knowledge about the system’s dynamics to predict its future behavior.
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The LQR simplifies the formulations of optimal controls by discretizing the
system dynamics, by making the cost function a quadratic polynomial and convex,
and by considering the system dynamics as the only constraints in the problem
[73]. We can formulate the finite-horizon version of LQR as:

min
U ,X

∑N−1
k=0

{
x⊤
k Qxk + u⊤

k Ruk

}
+ x⊤

NPxN

s.t. xk+1 = Axk +Buk, k = 0 . . . N−1

x0 = x̃(t),

(3.1)

where N > 0 is referred to as the prediction horizon, uk ∈ Rm is the input
vector at step k, xk ∈ Rn is the state vector at step k, and x̃(t) is the state
estimate at time t. There are m inputs and n states in the system. The matrices
A ∈ Rn×n and B ∈ Rn×m represent the discrete time system dynamics over
state and control variables. B describes the influence of the control input on
the following state, and A describes the impact of the current state on the next
state. R ∈ Rm×m,Q ∈ Rn×n and P ∈ Rn×n are the input, state and terminal
state penalty matrices. They weigh the relative importance of different deviations
from the control goals. These penalty matrices are considered positive definite, a
mathematical condition that guarantees the problem is strictly convex and has a
unique solution by minimizing the cost [51].

In this thesis, we use capital letters U ∈ RN ·m and X ∈ RN ·n to represent the
sequences of inputs and states, respectively, as:

U :=
[
u⊤

0 u⊤
1 . . . u⊤

N−1

]⊤
X :=

[
x⊤
0 x⊤

1 . . . x⊤
N

]⊤
The optimal analytical solution for this problem is expressed as the feedback law
u∗

k := −Lkxk where Lk is the feedback matrix obtained from Discrete Algebraic
Riccati Equation explained in [28, p. 168]. u∗

k stands for the optimal input at time
step k, and U ∗ stands for the optimal sequences of inputs up to the prediction
horizon length.

Simplifications of LQR along with the absence of constraints over inputs and
states are the reasons why this method only solves a few real-world problems.
However, most of the time, constraints need to be considered for the problem. For
example, the joints of a robot arm can only be operated over a limited range of
angles (state constraints) and can be controlled only by a bounded torque (con-
trol constraints), which LQR cannot capture. Model Predictive Control expands
LQR to be more feasible in real-world applications. Even though this expansion
increases the computational costs of the problem, it is necessary to achieve a more
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realistic control over the plant.

3.1.2 Model Predictive Control

Physical systems naturally involve constraints by definition (e.g., opening a valve
in range of 0% to 100%), because of limitations (e.g., the maximum possible torque
of a joint in a robot arm), or because of the control goals defined in the model (e.g.,
the top speed of a car on streets for safety reasons). Suppose a model neglects
such limitations (which is the case of traditional PID controllers). In that case,
the generated control actions might violate some constraints and pose a danger or
even completely lose control of the plant.

MPC expands LQR by including constraints in the state and control variables
with a receding horizon, allowing the models to represent the behavior of more com-
plex dynamics systems. These models predict the changes in their state variables
caused by the state-independent control actions or the measured disturbances.
The task of MPC is to hold the state variables close to reference, while fulfilling
constraints over state and control variables. Therefore, the cost function includes
control sequence and error on reference state tracking.

In linear MPC, the problem to be solved at each point has linear dynamics and
a quadratic objective function, which sets a classical optimization problem using
QP, which is convex since the quadratic objective function is convex. For linear
MPC, the feasible sets for states and control are based on only linear constraints,
resulting the following formulation of the problem:

min
U ,X

∑N−1
k=0

{
x⊤
k Qxk + u⊤

k Ruk

}
+ x⊤

NPxN

s.t.

xk+1 = Axk +Buk, k = 0 . . . N−1

Fuuk ≤ fu, k = 0 . . . N−1

Fxxk ≤ fx, k = 0 . . . N−1

FtxN ≤ ft
x0 = x̃(t),

(3.2)

where the matrices Fu ∈ Rκu×m,Fx ∈ Rκx×n and Ft ∈ Rκt×n are the coefficient
matrices for the input constraints, state constraints and terminal constraints, re-
spectively. The state sequence is different from LQR (Section 3.1.1) by eliminating
x0 as:

X :=
[
x⊤
1 x⊤

2 . . . x⊤
N

]⊤
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Figure 3.1: Model predictive controller block diagram. The estimator observes the
plant state y and generates state estimate x̂, the dynamics model predicts
future trajectory based on reference trajectory, the estimated state, and the
latest control output. The optimizer finds a series of optimal control vectors
for the horizon length N (u∗

0 . . .u
∗
N−1) by minimizing the cost function while

considering constraints. The first control action u∗
0 is applied to the plant

resulting new state y. The whole process repeats in a loop.

Closed-loop Control

Equation (3.2) computes a sequence of optimal control inputs for a predicted
evolution of the system model over a finite horizon. This process is an open-
loop control with the optimal solution U ∗, which is optimal for the corresponding
state X∗. But, in the presence of external disturbances or model inaccuracies,
the system might deviate from its predicted optimal trajectory. In that case,
the control inputs are no longer optimal, leading to degraded performance or
instabilities. With short horizons, minimizing the cost function might generate an
optimal control sequence but it might drive the system into uncontrollable states.
Although increasing the prediction horizon can circumvent this issue and avoid
such a scenario, it would be more computationally expensive to solve.

To address the aforementioned issues, the receding horizon idea is introduced
[73, pp. 7-9]. This so-called receding horizon strategy introduces feedback to the
system, making the controller closed-loop, and allows for compensation of potential
modeling errors or disturbances acting on the system, resulting in improved and
more robust control [28, pp. 243–274]. Figure 3.1 describes the closed-loop control
structure.

With the receding horizon approach, depicted in Figure 3.2, a finite-horizon
optimization problem is solved at each sampling instant. However, only the first
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u

u*0

...

Prediction horizon N

k+N

U*

Figure 3.2: Model predictive controller tracking graph. The measured state y
of the plant in past are already influenced by the past control actions u. At
current time step k, the controller solves an optimization problem over the
prediction horizon N that moves the plant toward the reference trajectory by
generating control actions U∗ := (u∗

0 . . .u
∗
N−1) and expected future states ŷ

for all steps of the control. (modified picture1)

element of the control sequence u∗0 is applied (the rest of the control sequence is
ignored). Then, the system’s state is measured again at the next sampling time,
repeating the whole process with a new optimization problem that uses the new
state estimate as its initial state. Therefore, the propagated error between the
actual and predicted states is reduced.

Tracking Problem

The nominal MPC Equation (3.2) typically regulates the system state x(k) to
the origin while minimizing the control effort and respecting constraints on inputs
and states. But, many control applications in practice require tracking the desired
sequence of steady states rather than regulation around the origin or a particular
steady-state. The tracking of piecewise constant references can be achieved by
modifying the MPC Equation (3.2), so that the variables penalize the deviation
of the state from the input reference (rather than simply penalizing the state
itself)[73]. However, these deviations should be small to steer the system to the
new reference point. Otherwise, it might not be reachable from the current state,
given the horizon length.

The tracking approach is possible by the introduction of an artificial reference
into the optimization problem. An optimal artificial reference and control inputs

1https://en.wikipedia.org/wiki/File:MPC_scheme_basic.svg
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are then computed in one optimization problem, allowing the artificial reference
to deviate from the actual reference if the latter is not a feasible target from the
current state. This provides recursive feasibility and renders the shifted solution
computed at the previous time instant feasible for the current state measurement.

The tracking approach can be formulated in the form of an MPC problem, in
which the cost penalizes the deviation from the states and inputs to the artificial
reference instead of the real reference. Penalizing such deviations sometimes causes
the system to oscillate around the reference due to model inaccuracies and distur-
bances. However, one can circumvent this by also punishing the input change rate.
The resulting cost function of the Equation (3.2) for a simple reference tracking is
given by:

min
U ,X

N−1∑
k=0

{
u⊤

k Ruk + (xk − xk,r)
⊤Q(xk − xk,r)

}
+ (xN − xN,r)

⊤P(xN − xN,r),

(3.3)
where xk,r and xN,r denote the artificial reference state at time k and N .

3.1.3 Quadratic Programming Formulation

In this thesis, a linear time-variant version of MPC (LTV-MPC) is used. Hence, in
this section, we consider a model predictive controller problem with time horizon
length k in the standard linear form, without constraining states variables, which
leads to the QP problem:

min
U ,X

∑N−1
k=0

{
x⊤
k Qxk + u⊤

k Ruk

}
+ x⊤

NPxN

s.t.
xk+1 = Akxk +Bkuk, k = 0 . . . N−1

ck ≤ Ckuk ≤ c̄k, k = 0 . . . N−1

Dkuk = 0, k = 0 . . . N−1

,
(3.4)

where Ck represents inequality constraints on the control input within the lower ck
and upper c̄k bounds, and Dk is the equality matrix. Ck and Dk are set specifically
for each problem to select and scale the aspects of the control input that needs to
be constrained. For example, consider a robot joint where the torque on the joint
is the control input, so the maximum physical limits can be set as the upper-bound
for the constraints.

We focus on QP formulation of the nominal MPC Equation (3.4) which regulates
the system state to the origin (xk → 0). However, the tracking problems can also
be explained similarly by defining the model state as deviations from the reference
trajectory δk = (xk−xk,r) resulting δk → 0.
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Equality constraints can be applied using the inequality constraints by set-
ting upper and lower bounds to zero. Hence we remove the equality constraints
(Dkuk = 0). Then, by taking out x0 separately, we can rewrite the Equation (3.4)
as:

min
U ,X

X⊤Q̄X +U⊤R̄U + x⊤
0 Qx0

s.t. X = ĀX + B̄U +A◦x0

c ≤ CU ≤ c̄
,

(3.5)

where C is the block matrix consisting of all the constraint matrices during the
prediction horizon, and the block matrices Q̄, R̄, Ā, B̄, and the block vectors X,
U , A◦ are defined as:

X =


x1

...
xN−1

xN

 U =


u0

u1

...
uN−1

 A◦ =


A0

0
...
0



Ā =



0 0 . . . 0

A1 0 . . . 0
... A2

. . . ...
0 . . .

. . . 0

0 0 . . . AN−1


Q̄ =


Q 0 0 . . . 0

0 Q 0 . . . 0
... ... . . . ... ...
0 . . . 0 Q 0

0 0 . . . 0 P



B̄ =


B0 0 . . . 0

0 B1 . . . 0
... ... . . . ...
0 . . . 0 BN−1

 R̄ =


R 0 . . . 0

0 R . . . 0
... ... . . . ...
0 . . . 0 R


We disregard the term corresponding to the initial state x⊤

0 Qx0 in Equation
(3.5) because it is just a constant offset in the cost function. By combining state
and control vectors into one vector w =

[
X U

]⊤
, we can formulate the opti-

mization problem as a minimization of the following pure quadratic form:

min
w

w⊤

[
Q̄

R̄

]
w

s.t. ¯̄Aw + ¯̄bU = 0 ,

(3.6)

where ¯̄A =
[
(Ā−I) B̄

]
and ¯̄b = A◦X. Clearly, Equation (3.6) with linear con-
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straints renders our problem perfectly suitable for quadratic solvers (e.g. quadprog
[79]).

Condensed Approach

Condensing is an approach that eliminates the state variables X from the opti-
mization problem. This is achieved by expressing the state variables as a function
of the initial state x0 and the input sequence U . With recursive iterations over
the discrete-time horizon as:

x1 = A0x0 +B0u0

x2 = A1x1 +B1u1 = A0A1x0 +A1B0u0 +B1u1

x3 = A0A1A2x0 +A1A2B0u0 +A2B1u1 +B2u2

...

xk =
k−1∏
i=0

Aix0 +

[
k−1∏
i=1

AiB0

k−1∏
i=2

AiB1 . . .
k−1∏

i=k−1

AiBk−2 Bk−1

]
U ,

the resulting dynamics of the system becomes a function of the initial state x0 and
the control vector U over all the steps in the optimization horizon:

X = C̄U + Âx0, (3.7)

where C̄ and Â are called the controllablity matrix and the dynamics vector,
respectively. C̄ converts the control input into the state vector trajectory during
the whole prediction horizon. cr,c =

∏r
i=c+1AiBc, (c ≤ r) defines element of

lower-triangular matrix C̄ at row r and column c (zero-based indexing), and ar =∏r
i=0Ai is the element of Â on each row r. The controllablity matrix ends up as:

C̄ =



B0 0 . . . 0 0

A1B0 B1
... . . . 0

A1A2B0 A2B1
... ... 0

... ... . . . . . .
...

(A1 . . .AN−1)B0 (A2 . . .AN−1)B1 . . . BN−2 0

(A1 . . .AN)B0 (A2 . . .AN)B1 . . . ANBN−2 BN−1


Â =


A0

A0A1

...
A0 . . .AN


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We can substitute into the cost function we derived above, as:

J(U ,x0) = (C̄U + Âx0)
⊤Q̄(C̄U + Âx0) +U⊤R̄U + x⊤

0 Qx0

= 1
2
U⊤ 2(C̄

⊤
Q̄C̄+ R̄)︸ ︷︷ ︸
H

U + x⊤
0 2Â

⊤
Q̄C̄︸ ︷︷ ︸

g⊤

U +
1

2
x⊤
0 2(Â

⊤
Q̄Â+Q)x0︸ ︷︷ ︸

constant offset ⇒ ignored
J(U) = 1

2
U⊤HU +U⊤g.

Using the cost function J(U) we achieve the following optimization program:

min
U

U⊤HU +U⊤g

s.t. c ≤ CU ≤ c̄ ,
(3.8)

where H and g are given as:

H = 2(C̄
⊤
Q̄C̄+ R̄)

g = 2C̄
⊤
Q̄(Âx0).

(3.9)

For a tracking MPC however, we will reach to g = 2C̄
⊤
Q̄(Âx0 −Xr) where Xr

is the reference trajectory for the whole horizon.
The optimum solution U ∗ to the minimization of J(U ), which does not consider

any constraints, is obtained by zeroing the gradient of the cost function:

∇UJ(U ) = HU + g = 0 ⇒ U ∗ = −H−1g. (3.10)

Since C̄ is a lower block triangular matrix, the symmetry of the result could be
exploited to reduce the cost of operations for the matrix-matrix multiplications.
For the system of linear equations, the symmetric positive definite (SPD) dense
matrices help the problem to be solved using an unstructured Cholesky factoriza-
tion [59].

Multiple practical approaches to find solutions to the Equation (3.8), which
includes constraints, are introduced. Among those methods are: Gradient Projec-
tion (e.g. [71, 77]), Active Set (e.g. [37, 76]), and Interior Point (e.g. [9, 34, 62])
methods.

3.2 Whole-Body Control
Control trajectories used for planners typically include position, velocity, orienta-
tion, and angular velocity of the robot’s CoM. While behavioral planners typically
decide on control trajectories in relatively large time discretizations, whole-body
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control architectures augment the planned trajectory with feedback strategies to
achieve a fast control loop over all robot joints.

Tracking the CoM of a robot has often been performed by position control.
This leads to a stiff behavior of the robot, which is effective in the case of a well-
estimated ground geometry, but not very robust in the case of a premature or
delayed ground contact. On the other hand, torque-controlled systems with the
possibility of force control include architectures for compliant behavior and more
robustness when the robot interacts with an uncertain environment [40, 46, 49,
63].

Methods like force control directly governs the forces which are actively applied
by the robot [74]. For this, position and force tasks in the control architecture
are separated into strictly prioritized sub-tasks [53, 56, 69]. Hence, the control
behavior of the high-priority tasks are applied first, without the lower-priority
tasks’ influence, later on, the controller tries to fulfill the lower-priority tasks within
the remaining solution space. Constraints such as actuator limits or friction force
can be handled within such hierarchies by solving optimization problems which
use quadratic programming approaches [50, 58].

In this thesis, a whole-body control (WBC) is formulated for the mini-cheetah
robot [12]. This control method is explained in the following section.

3.2.1 Whole-Body Impulse Control
Whole-body impulse control (WBIC) formulation is similar to existing whole-
body controllers [23, 55], with the incorporation of pre-computed reaction forces
by relaxing the floating base control inputs. This plays a vital role in dynamic
locomotion control. Figure 3.3 depicts the control overview of the WBIC.

In the formulation of WBIC, the ground reaction forces generated from a higher-
level controller, such as MPC (e.g., Cheetah 3 [21], and Mini-Cheetah [11]) are
tracked, rather than the body trajectories. These high-level controllers usually
consider the dynamics model of the system and predict the future states and con-
trol inputs that stabilize the robot. However, the prediction process requires high
computational cost, resulting in limited update frequency; hence, by introducing
simplifications on the plant model, algorithms can decide on a trade-off between
the higher update rate and more accurate control inputs. Nevertheless, the mod-
eling inaccuracies resulted from the simplifications add a fundamental limitation
in the position control.

The WBIC architecture solves this limitation by running a high-frequency feed-
back loop over the whole-body dynamics, taking into account the reaction forces of
the contact points generated at a lower update rate. However, since the WBC can
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3.2 Whole-Body Control

Figure 3.3: Floating-base body control. This figure depicts the floating-base body
control using contact reaction forces. Higher-level controller (usually MPC)
uses a simplified model of the robot and computes desired reaction forces
f r (blue). The WBIC uses the full body dynamics in high update rate and
corrects the desired f r commands of the higher-level controller (red). Picture
taken from [12].

only consider a single time step, the prediction horizon of the high-level controllers
perfectly complements the WBC. The single time step issue was addressed in [32]
and [42], which develop MPC formulation using full-body dynamics. However,
they only reached up to a 200 Hz update frequency, and the results shown are not
as dynamic compared to other controllers presented for the same robots.

The WBIC implementation, which integrates MPC and WBC to take advantage
of both worlds, is fast and reliable because the solver uses convex optimization
without getting stuck in strange local minima. The integration of the MPC with
WBC is done by modifying the formulations presented in [23] to utilize the results
of reaction forces produced by MPC in the WBC. Figure 3.4 depicts the block
diagram of the WBIC approach.

In [10], an approach to accomplish this integration is presented that attempts to
follow the CoM trajectory of the higher-level MPC controller and uses the reaction
forces determined by the higher-level controller only for regulating internal forces.
However, the WBIC is formulated to use the higher-level reaction forces as the
desired reaction forces rather than attempting to follow the corresponding CoM
trajectories.

The WBIC allows the floating base motion to differ from the higher level com-
manded trajectory by accounting for relaxation variables during body posture and
foot swing control. This relaxation will enable behaviors with uncontrollable CoM
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Figure 3.4: Whole-body impulse control block diagram. The higher-level con-
troller observes joint feedbacks and computes the reaction forces considering
long-term future controls and decides on CoM and foot position commands.
WBIC receives this information along with the current robot state (general-
ized mass matrix, foot position, etc.) and computes joint control commands
(τ , q, q̇) that are sent to the joint-level controller.

(during periods of flight e.g., jumping) to be executed by controlling the higher-
level reaction forces and ignoring the body posture trajectories.

The hierarchical tasks in the WBIC formulation can be extended to account for
additional limbs (e.g., manipulation arm); this makes the architecture flexible for
different robots. This approach can be implemented on a real robot to demonstrate
highly dynamic locomotion while maintaining the robot’s balance, even in the
presence of large disturbances. Authors of the WBIC approach claim their method
demonstrates the most agile locomotion of any quadruped robot [12]. They also
implemented this algorithm successfully using efficient dynamics engine including
rotor dynamics [54, pp. 229-243] [12].

Full-body Dynamics

The WBIC approach uses full-body dynamics with high-frequency feedback and
therefore determines more accurate torque commands than the higher-level con-
troller, with the following formulation:

A

(
q̈f

q̈j

)
+ b+ g =

(
06

τ

)
+ J⊤

c fr , (3.11)

where q̈f ∈ R6 is the acceleration of the floating base and q̈j ∈ Rnj is the vector
of joint accelerations (with number of joints defined by nj). A, b, g, τ , fr, and
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Jc are the generalized mass matrix, coriolis force, gravitation force, joint torque,
augmented reaction force and contact Jacobian, respectively.

An inverse kinematics algorithm that strictly holds task priority, computes joint
positions q, velocities q. and accelerations q... Resulted q and q

. are used within joint
controllers (as depicted in Figure 3.4) to stabilize robot posture. This is beneficial
for dynamic locomotion, since the joint controller runs in very high frequency [3].

WBIC uses operational space control to directly control the impedance, reducing
the control delay.

Prioritized Task Execution

As explained earlier in this section, a strict task hierarchy is executed by using
a null-space projection technique. Having q =

[
q⊤
f q⊤

j

]⊤
representing full

configuration space, the iterative process is formulated as [12]:

∆qi = ∆qi−1 + J†
i|pre (ei − Ji∆qi−1) , (3.12)

q
.cmd
i = q

.cmd
i−1 + Ji|pre

†
(
x
.des
i − Jiq

.cmd
i−1

)
, (3.13)

q
..cmd
i = q

..cmd
i−1 + Jdyn

i|pre

(
x
..cmd
i − J̇iq

. − Jiq
..cmd
i−1

)
, (3.14)

where (with i ≥ 1)
Ji|pre = JiNi−1,

Ni−1 = N0N1|0 · · ·Ni−1|i−2,
(3.15)

N0 = I− J†
cJc,

Ni|i−1 = I− J†
i|i−1Ji|i−1,

(3.16)

∆q0, q
.cmd
0 = 0,

q
..cmd
0 = Jdyn

c

(
−J̇cq

.)
,

(3.17)

there the position error ei = xdes
i −xi, Jc defines a contact Jacobian and is the same

as the one in Equation (3.11) Ji|pre is the projection of the i-th task Jacobian into
the null space of the prior tasks, the SVD-based2 pseudo-inverse is denoted by {·}†,
the dynamically consistent pseudo-inverse is defined as J̄ = A−1J⊤(JA−1J⊤)−1

which is used for computing acceleration (Equation 3.14), and the acceleration

2Singular Value Decomposition
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command of i-th task is defined by:

x
..cmd
i = x

..des +Kp(x
des
i − xi) +Kd(x

.des − x
.
) (3.18)

where Kp and Kd are the position and velocity feedback gains.
The computed joint commands from Equations (3.12) and (3.13) along with the

current joint positions are sent to the joint-level PD controller, and the acceleration
commands q

..cmd are used with the QP optimization (explained in the following
section) to compute accurate torque commands τ .

The purpose of the WBC is to produce accurate joint torques τ . However, the
PD joint controller, which receives q and q

., could differ with the torque command
and affect the overall performance (the difference comes from the relaxation of
floating base acceleration which is explained in the next section). For this rea-
son, the gains for the joint PD controller are set to relatively small values. The
small gains allow the torque commands to apply the desired joint torques τ effi-
ciently while the joint’s current state (position and velocity) is not too far from
the commanded one.

Quadratic Programming

The joint torque commands are computed using quadratic programming. The
QP in this formulation reduces the error in acceleration command tracking and
reaction force command tracking while satisfying inequality constraints on the
resultant reaction forces. The optimization is solved using an efficient open-source
QP solver [79]. The QP problem is formulated as:

min
δfr ,δf

δ⊤
frQrδfr + δ⊤

f Qδf

s.t.

Sf (Aq
..
+ b+ g) = SfJ

⊤
c f r (floating base dynamics)

q
..
= q

..cmd +

[
δf

0nj

]
(acceleration)

f r = f cmd
r + δfr (reaction forces)

Wf r ≥ 0 (contact force constraints),

(3.19)

where Qr and Q are the penalty matrix for reaction forces and the floating base
relaxations, respectively. Sf is the floating base selection matrix (to limit the
operations for floating base related variables), f cmd

r is the higher-level reaction force
commands generated in low frequency, W is the contact constraint matrix, Jc is
the contact Jacobian similar to Equation (3.11), and δf and δf are the relaxation
variables for the reaction forces and the floating base acceleration.
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3.2 Whole-Body Control

Relaxation of floating base acceleration causes the task accelerations to be dif-
ferent from the ones computed in Equation (3.14). This difference allows for the
base to freely move during flight phase without being controlled; However it will
introduce tracking errors to other tasks, which is why a smaller gain values for the
PD joint controllers are favored. Also, during flight phase where there is no con-
tact points with ground, the WBIC completely relaxes the floating base dynamics
rather than strictly executing the prioritized tasks (e.g., hierarchical quadratic
programming in [47]).

Finally, the joint torque commands τ j are generated using the following formu-
lation: [

τ f

τ j

]
= Aq

..
+ b+ g − J⊤

c f r. (3.20)
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In this thesis, an approach for a hybrid driving-stepping and jumping control
framework for a four-legged wheeled robot is proposed, which is able to perform a
jumping motion or stepping with different gait patterns while driving.

The wheels change the kinematics and dynamics of the robot due to their shape,
inertia tensor, mass, and free rolling along the x-axis. We tightly integrate the
wheels into the state estimator and control system of the open platform MIT mini-
cheetah open platform [11]. We achieved the aforementioned integration into the
state estimator by modifying the kinematics and dynamics model of the robot to
include the dimensions, mass, and inertia tensor of the wheels, by calculating the
exact ground contact positions and velocities, and by considering the contribution
of the rolling wheels in the state estimation.

Figure 4.1 depicts the overall diagram of our whole-body control framework. The
control module receives the user input commands and executes correspondingly
a dynamic motion: a hybrid driving-stepping motion or a hybrid driving-jump
motion. Chapter 5 describes the structure of the control module.

This chapter defines the coordinate systems in use, the robot’s orientation and
angular velocity, and the robot’s pose, and explains the robot kinematic, robot
dynamic, and state estimator modules.

Coordinate Systems

We use the notation □x with the letters G, B, Y and R for the global, body, yaw
and relative coordinate systems, respectively (e.g. Bx). The notation B□A denotes
a transformation matrix from coordinate system A to B (e.g., GRB rotation from
body to world coordinate system).

Global. The global coordinate system is a fixed inertial reference system whose
origin is on the ground where the robot starts its operation, and whose z-axis
points upward. The roll and pitch angles are 0 when the robot is up-right. The
yaw angle is 0 when the robot is facing the positive x-axis. Most of the equations
for the controller and the state estimator in this thesis use the global coordinate
system.
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Figure 4.1: General framework diagram. The measured joint position and velocities
(q̂ and q̂

.) and the IMU data are sent to the robot model modules which
compute the position and velocity of each foot (pcp and p

.
cp). The state

estimator module uses the feet information, IMU data, and the foot contact
states (s) to compute the body position and orientation state (x̂). The user
input includes the desired driving, stepping and turning velocities (vuser

d ,
vuser

g and vuser
y ) and the robot pose offsets (θuser

off and puser
off ) which are used

by the control module along with x̂ to compute joint position, velocity and
torque commands (q, q. and τ ).

Body. The body coordinate system originates at the geometric center of the body
and rotates with the robot in the global coordinate system to maintain the same
orientation as the robot.

Yaw. The yaw reference system originates from the projection of the geometric
center of the robot onto the global ground plane (z = 0). Roll and pitch coincide
with the orientation of the global coordinate system, but yaw coincides with the
orientation of the robot body. This coordinate frame is used for user commands
because it is easy for the operator to identify this reference frame by looking at
the robot.

Relative The relative reference frame is similar to the yaw reference frame, but
the orientation fully coincides with the orientation of the global coordinate system.
This reference frame is mainly used in predictive control to define the positions of
the feet relative to the kinematic center of the robot.
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Orientation and Angular Velocity

The orientation of the robot is given as a vector of Euler angles θ =
[
ϕ θ ψ

]⊤
,

which contains the roll (ϕ), pitch (θ) and yaw (ψ) angles of the robot. The trans-
formation from body to global coordinates is expressed by a sequence of rotations
as:

GRB = Rz(ψ)Ry(θ)Rx(ϕ), (4.1)

where Rn(α) represents a positive rotation of α about the n-axis. The order in
which the Euler angular rotations are defined is important [euler_angles]. The
angular velocity in the global coordinates is formulated using the rate of change θ̇,
where the first Euler angle (ϕ) undergoes two additional rotations, the second angle
(θ) undergoes one rotation, and the last Euler angle (ψ) undergoes no additional
rotations:

ω = Rz(ψ)Ry(θ)

ϕ̇0
0

+Rz(ψ)

0θ̇
0

+

00
ψ̇


=

cos θ cosψ − sinψ 0

cos θ sinψ cosψ 0

0 0 1


︸ ︷︷ ︸

R′

ϕ̇θ̇
ψ̇

 . (4.2)

By inverting the Equation (4.2) for the case where the robot is not vertically
oriented (cos θ ̸= 0), we can compute the rotational velocity in the body frame as:

θ̇ =

cosψ/ cos θ sinψ/ cos θ 0

− sinψ cosψ 0

cosψ tan θ sinψ tan θ 1


︸ ︷︷ ︸

R′−1

ω. (4.3)

Robot Pose

We define the pose of the robot parameterized by θpose and ppose for orientation and
position, respectively. The orientation pose of the robot for roll and pitch angles
is obvious, but for yaw angle we need to rotate the ground contact positions with
respect to the body so that the robot can drive and step in the actual direction
specified before applying the pose. Figure 4.2 represents different poses of the
robot.
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3
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Figure 4.2: Robot pose examples. 1. default pose (θpose = 0, zp
pose = 0.3), 2.

positive roll offset, 3. positive pitch offset, 4. positive yaw offset, 5. negative
height and pitch angle offsets, 6. positive yaw and negative height and pitch
offsets.

4.1 Dynamic Model
Whole-Body Control is a robust dynamic motion control with a general framework
that makes it easy to extend to different systems and tasks (see 3.2). In this work,
we use the WBIC (described in 3.2.1) to control the robot. The WBIC uses
a floating-base model with rigid-body dynamics for legged robots that includes
the rotor dynamics of the BLDC motors, and generates the mass matrix and
composite inertia values for each link in the robot structure [54, pp. 57-66, 229-243].
The efficient dynamics engine developed by [12] uses linear algebra optimizations
through template formatting [70]. With this efficient engine, we can achieve a
closed-loop update rate of over 500 Hz when controlling joints.

We modeled the mass and inertia of the added wheels into the rigid-body dy-
namics of the WBIC. In our setup, a wheel consists of a static part (stater) and
a rotating part, which is lighter compared to the static part. All the off-diagonal
inertia elements of the rotating part are close to zero; therefore, the total inertia
of the added wheel remains the same for any angle of the wheel joint.

With the above assumptions, we simply updated the dynamics of the shank link
to include the mass and moment of inertia tensor of the wheels. However, this
simple integration ignores the dynamic effect of the wheels during the rotational
acceleration of their moving parts. We neglected this for two main reasons: the
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mass of the wheel’s rotating part is negligible compared to the total weight of
the shank, and the wheels are mainly used for driving and maintain a constant
rotational speed relative to the commanded linear driving speed.

4.2 Kinematic Model

The mini-cheetah quadruped has a rubber ball at the end of each leg as an end
effector. The size and shape of these robber balls are small (radius of 1.5 cm);
therefore, the authors of related works [2, 1, 12, 7, 21] have previously ignored
them and considered the middle of the end effectors as single ground contact
points. However, in this work, the wheels that replaced the robber balls have a
radius of 5 cm, which is considerable compared to the shank length of 19 cm.
Thus, we can no longer consider the ground contact points in the middle of the
end effector (Figure 4.3 right).

Our method does not rely on 3D structural information about the contact sur-
face. Hence, we define the ground contact point, as shown in Figure 4.3, using the
touch down position pcp of the end effector on the arbitrary horizontal ground.
However, this assumes that the ground surface is flat. The possible errors between
the actual contact point and pcp are negligible and ignored in this work.

We define a specific geometry for the end effector as depicted in Figure 4.3,
with radius aend and width bend assuming that bend ≤ aend, giving the touch-down
position in the relative coordinate system (R) as:

pcp =

 L3S23 + L2S2

L1C1 + L3(S1C23) + L2C2S1 + rS1

L1S1 − L3(C1C23)− L2C1C2 − (rC1 + bend)

 , (4.4)

where r = aend − bend indicates the length of the last link of the chain assuming
the touch-down point, Si and Ci are the short terms for sin qi and cos qi, C23 =

C2C3 − S2S3 and S23 = S2C3 + C2S3. The highlighted terms in the equation are
resulted from end effector geometry in the kinematics.

The kinematic contribution of leg into the touch-down velocity in world frame
is given as:

p
.

cpk
= Jq

.
, (4.5)

where J is the Jacobian matrix of the kinematic chain of the leg including the end
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Figure 4.3: Robot leg kinematics. Left: Side view of a leg with a wheel as end effector.
Middle: front view of the leg. Right: the comparison between the rubber ball
and the wheels. Joints are labeled withq and shown as black circles or white
rectangles, and links are labeled with L. aend and bend are two radii defining
the geometry of the end effector, and pcp is the ground contact position.

effector geometry, given as:

J =

 0 L3C23 + L2C2 + rC1 L3C23 + rS1

L3C1C23 + L2C1C2 − L1S1 −L3S1S23 − L2S1S2 −L3S1S23

L3S1C23 + L2C2S1 + L1C1 L3C1S23 + L2C1S2 L3C1S23

 , (4.6)

where the highlighted terms refer to the end effector, based on the assumption of
touch-down described earlier. We have addressed the kinematic singularity at joint
space, which leads to two solutions for the knee joint during the inverse kinematic
operation.

We also define reff as the effective radius of the end effector used by the state
estimator (Section 4.3) and the wheel controller (Section 5.6) to accurately convert
linear velocity and force into rotational velocity and torque, and vice versa, and
formulated as a function of the hip angle in the world coordinate:

reff = aend − bend sin (q1 + ϕ), (4.7)

where ϕ is the roll angle of the body.
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4.3 State Estimator

The task of the state estimator is to estimate the position and orientation of
the robot body in the world coordinate system. A good state estimator for a
quadruped robot should be robust to different types of terrain, gaits, locomotion
modes, and travel speeds. It should also take into account the fact that the motions
are periodic over an interval and that the system interacts with the environment
through multiple intermittent ground contacts.

The legs in contact are the reference points for the state estimation. The esti-
mator relies on these reference points and solves for the position and velocity of
the body using forward kinematics and the Jacobian matrix of the leg in contact.
Clearly, the estimated position cannot be trusted if a leg is supposed to be in
contact but is actually swinging. In the opposite case, if the leg is planned to be
swinging but is not, the estimator will ignore it. Neither situation is desirable,
but both occur frequently while traversing unstructured terrain or encountering
unexpected obstacles.

The control method in this work relies on accurate state estimation of the robot
to achieve a hybrid driving stepping locomotion. Both the MPC and WBIC di-
rectly use the residual between the desired and estimated robot positions. The
MPC calculates the reaction forces and the WBIC refines the reaction forces and
finds the joint torques, both of which aim to reduce the aforementioned resid-
ual and bring the joint position close to the desired position. However, if the
estimated position is incorrect, the controllers will generate inappropriate joint
torques, resulting in an undesirable body posture that could cause the robot to
fall.

With the addition of wheels, the contact points can roll along the x-axis either
by drive commands or by disturbances. State estimation errors are larger when
driving with wheels than when stepping because the wheels are continuously turn-
ing in one direction and the errors accumulate, leading to larger deviations from
the estimated position. However, during stepping, the end effector moves to some
extent relative to the body and returns in periodic cycles, causing some errors to
cancel each other out. Therefore, accurate modeling of the wheels (as explained
in Sections 4.2 and 4.3.2) is important to achieve higher state estimation perfor-
mance.

We use a KF that combines the end effector contact positions and the compre-
hensive contact velocities (Section 4.3.2), the wheels’ rotational velocity, and the
linear acceleration values from the IMU to obtain a position estimate. Further-
more, we obtain the orientation estimate directly from the IMU hardware.
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Figure 4.4: Phase-based probability of contact. (from [20]) Various values of σ2

defining the probability of contact given the scheduled state and the per-
centage progress through the contact and swing state subphases.

4.3.1 Phase-based Contact Probability Model

While most research groups working on state estimation for walking robots use
contact/pressure sensors, the method we use in this work does not rely on such
sensors. Instead, the expected ground contact trajectory (explained in Section
5.1) is used for each end effector. At each instant, each leg of the robot as-
sumes one of two distinct states, contact or swing, defined by the Boolean vari-
able s ∈ {0 = swing, 1 = contact}. However, the true value of s is unknown to
the robot. The ground contact trajectory switches each leg between two states.
sϕ ∈ {0 = swing, 1 = contact}, which is the expected value of s at each time step
during the control cycle.

Under ideal conditions, we expect the contact state of the leg s to follow and
change simultaneously with sϕ. In reality, however, there is a small difference
between sϕ and s because we cannot assume that the ground is completely flat and
may contain unforeseen surface heights due to unseen obstacles or rough terrain.
In addition, the robot is subject to possible timing delays in its control system that
result in early or late takeoff or landing of the leg, as well as unexpected contacts
due to inaccurate tracking of the trajectory of the swing leg. Therefore, we cannot
simply trust the control system to maintain the planned contact trajectory near
the contact change times.

To address these issues, the authors of [20] created a phase-based probabilistic
model for the expectation of contact (presented in Figure 4.4). The contact and
swing phase variables ϕc, ϕc̄ ∈ [0, 1) are defined over the period of the ground
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contact trajectory as a linear function of time:

ϕc =
t−tc
Tc
, ϕc̄ =

t−tc̄
Tc̄
, (4.8)

where t is the current time, tc and Tc are the start time and duration of the contact
phase, and tc̄ and Tc̄ are similar values for the swing phase. The probability
of contact given the current contact state (sϕ) and phase values (ϕc and ϕc̄) is
formulated (taken from [20]) as:

P
(
c|sϕ, ϕ

)
=
1

2

sϕ
erf

(
ϕ− µc0

σc0
√
2

)
+ erf

(
µc1 − ϕ

σc1
√
2

)+

s̄ϕ

2 + erf
(
µc̄0 − ϕ

σc̄0
√
2

)
+ erf

(
ϕ− µc̄1

σc̄1
√
2

)
 ,

(4.9)

where sϕ chooses between stance or swing, the σ2 parameters are the variance
determined by the variability of the contact phase value, the µ parameters are the
expected phase value at the contact switch, and erf is the error function defined
for probability theory [75]. Figure 4.4 represents the contact probability for a
given scheduled leg contact state during the swing and stance phases for different
variances. The contact probability is 0 in the middle of the swing phase and 1 in
the middle of the contact phase, high at the beginning and end of the swing phase,
but low at the beginning and end of the contact phase.

4.3.2 Comprehensive Contact-point Velocity

The contact point velocity p
.

cpk
, given in Equation (4.5), takes into account the

robot kinematics and the shape and size of the end effector. However, additional
terms must be considered. The body pitch velocity θ̇, the hip velocity q̇2, and
the knee velocity q̇3, as well as the body roll velocity ϕ̇ and the hip-roll velocity
q̇1 directly force additional rotational velocity of the end effector (i.e., wheels)
along the x and y axes, respectively. These forced rotations result in an additional
velocity p

.
cpw

for the contact point in addition to the current rotational velocity
q̇4 of the wheel read by encoders. We define p

.
cpw

as the contribution of the end
effector to the global velocity of the contact point:

p
.

cpw
=
[
(θ̇C1 + q̇2 + q̇3 + q̇4)reff (ϕ̇+ q̇1)bend 0

]⊤
, (4.10)
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where reff (Equation 4.7) is the effective radius of the wheel represented in Figure
4.5. Finally, the comprehensive contact point velocity p

.
cp is written as follows:

p
.

cp = p
.

cpk
+ p

.
cpw
. (4.11)

p
.

cp accurately formulates the velocity at the contact position in world coordinates
by taking into account the kinematic shape of the end effector, the velocity feed-
back from the wheel joint, and the forced velocity terms from other joints on the
end effector.

4.3.3 Probabilistic Contact Model Fusion
The KF satisfies the requirements for performing state estimation on legged robots
and can use the contact probability (Section 4.3.1) and the various measurements
of our robot. One advantage of using probabilities instead of discrete, binary
contact states in estimation is to set a confidence value for each contact point and
update the KF covariance matrices accordingly.

We extended the state estimator of the mini-Cheetah robot [11] to accurately
include the wheels in the estimation process.

In the following, we first define the KF state vector and then further explain
the KF model and equations. The notation k|k−1 in the formulas of this section
stands for estimation at time k considering observations up to and including time
k−1. The identity matrix I3 and the zero matrix 03 are of size 3× 3, and I12 and
012 are of size 12× 12.

Filter State

The state vector of the filter must be chosen such that the corresponding prediction
and measurement equations can be stated consistently. In the approach followed in
this thesis, we compose the state vector of the quadruped robot from the position
and velocity of the body, the contribution of driving into the position and velocity
of the body, and the contact point positions for all legs relative to the body, which
take into account the kinematics of the legs. This results in the following state
vector:

x :=
(
p ṗ pw ṗw p1

cp . . .p
4
cp

)
(4.12)

where all terms of x are in the world frame, p and ṗ are the global position and
velocity of the robot, pw and ṗw are the contribution of driving with wheels into
position and velocity of the robot, and pi

cp is the touchdown position of leg i

relative to the body (Figure 4.3).
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4.3 State Estimator

Although the robot dynamics are complex, the above state vector allows us to
use a simple linear KF. The inclusion of foot contact positions in the filter state,
similar to [52], as well as the contribution of driving with wheels into position and
velocity, are key points in our filter design that allows for a simple and consistent
representation of the model equations. The KF is able to simultaneously correct for
the position of the foot contacts, the pose of the main body, and the contribution
of driving.

The KF presented represents the uncertainties of the estimated state vector via
the covariance matrix P of the corresponding state error vector δx

P = Cov(δx)
δx =

(
δp δṗ δpw δṗw δp1

cp . . . δp
4
cp

) (4.13)

Noise Covariance Update Gain

The phase-based contact probability model in Section 4.3.1 explains how a proba-
bility is assigned for each ground contact point. We use this probability informa-
tion in the KF to define the noise covariance update gain for the prediction and
correction steps. We define the contact probability matrix as follows:

Pc
12×12

=


P1
c 03 . . . 03

03 P2
c

...
...

... . . . P3
c 03

03 . . . 03 P4
c

 (4.14)

where Pi
c

3×3

= P i
(
c|sϕ, ϕ

)
I3 is a diagonal matrix of the contact probability for leg

i. The gain of the noise covariance update is then given by:

ξ
12×12

= I12 + κ(I12 − Pc), (4.15)

where κ is a hand-tuned value defined as high suspect number. For the setup
in this work, we chose κ = 120. ξ encodes the confidence value for all contact
points and is used at each prediction and correction step of the KF to update the
covariance matrices of the process and measurement noise such that only the legs
that are in contact contribute to the estimation process.
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4 Modeling and State Estimator

Prediction Model

Using the prediction equations, we propagate the state from one time step to the
next. We use the acceleration measurements of IMU in the prediction model of
the sensor fusion method (similar to [52, 44]) defined with:

u = GRB(aIMU − g), (4.16)

where aIMU is the linear acceleration read by the sensor, and R applies the orien-
tation of the body to obtain the acceleration in the global coordinate system.

The standard prediction equations for the KF are shown here as follows:

x̂k|k−1 = Fkx̂k−1 +Bkuk, (4.17)
Pk|k−1 = FkPk−1F

⊤
k +Qk, (4.18)

where x̂ is the estimate of x, P is the covariance matrix of the state vector iden-
tical to Equation (4.13), and F is the state transition matrix applying the system
dynamics and is defined as follows:

F =



I3 ∆tI3 03 03
03 I3 03 03
03 03 I3 ∆tI3
03 03 03 I3

012

012 I12


. (4.19)

B applies the body acceleration to update body velocity, and is given as:

B =
[
03 ∆tI3 03 03 03 03 03 03

]⊤
. (4.20)

Q is the covariance matrix of the process noise that encodes the confidence we
place in the accuracy of the phase-based switching model, and is defined as:

Q =



ωpI3 03 03 03
03 ωṗI3 03 03
03 03 ωpwI3 03
03 03 03 ωṗwI3

012

012 ωpcp ξ I12


, (4.21)
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where the ω parameters are the process noise values for the corresponding variables
in the state vector x.

The foot contacts are assumed to remain stationary, but in reality they may slip.
Therefore, we have included the white noise terms ωpcp in the covariance matrix
Q to account for some degree of foot slippage. In addition, the noise covariance
update gain ξ is applied to the confidence in the foot contact positions. ξ sets
the noise parameter of each foot to a very large value when it has no ground
contact. This allows the corresponding foot to shift and reset its position estimate
when it makes ground contact again, and remove the old foot position from the
estimation process. This process deals with the contact switches in the ground
contact trajectory during hybrid driving-stepping.

Correction: Measurement Model

Knowing that the prediction is likely to contain inaccuracies in the hybrid loco-
motion scheme, we can use available measurements to correct the prediction and
obtain a more educated estimate for the position. Since the wheels are integrated
into the hybrid quadruped robot, the measurement vector z includes the contact
position and kinematic contribution, as well as the driving contribution to the
contact point velocity for all legs, as follows:

z :=
(

p1
cp . . .p

4
cp p

.1
cpk

. . .p
.4

cpk
p
.1

cpw
. . .p

.4
cpw

)
, (4.22)

where all terms of z are in the global frame, pi
cp is the measured contact position

of leg i relative to the body, p.icpk
and and p

.i
cpw

are the measured linear contact
point velocity from the kinematics and driving, respectively (Equations (4.5) and
(4.10)).

The separate inclusion of the kinematic and driving contributions in the mea-
surement vector z plays a key role in the estimation process to correctly capture
the effects of stepping and driving on the position of the hybrid quadruped robot.
The correction equations of the standard KF are presented as follows:

ỹk = zk −Hkx̂k|k−1 (4.23)
Sk = HkPk|k−1H

⊤
k +Rk (4.24)

Kk = Pk|k−1H
⊤
k S

−1
k (4.25)

x̂k|k = x̂k|k−1 +Kkỹk (4.26)
Pk|k = (I−KkHk)Pk|k−1, (4.27)
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4 Modeling and State Estimator

where ỹ is the measurement residual (or innovation), S is the covariance of the
residual (or innovation covariance), and K is the Kalman gain.

R is the covariance matrix of the measurement noise, which encodes the con-
fidence we place in the accuracy of the measurements, and is defined as follows:

R = ξ


νpcpI12 012 012

012 νp
.

cpk
I12 012

012 012 νp
.

cpw
I12

 , (4.28)

where the ν parameters are the measurement noise values for the corresponding
variables in z. The noise covariance update gain ξ is applied to the measurement
confidence. Similar to the process noise covariance, ξ sets the noise parameter of
each foot to a very large value when it is not in contact with the ground, which
prevents the corresponding foot measurements from participating in the estimation
process. Therefore, we can rotate the wheels at a different speed during the swing
phase without affecting the estimation process. In Section 5.6 we talk about how
we exploit this to achieve better control.

Finally, we define the observation matrix H with the following Jacobian:

H =



I3 03 −I3 03

I3 03 −I3 03

I3 03 −I3 03

I3 03 −I3 03

−I12

03 I3 03 −I3
03 I3 03 −I3
03 I3 03 −I3
03 I3 03 −I3

012

03 03 03 I3
03 03 03 I3
03 03 03 I3
03 03 03 I3

012


. (4.29)

The experimental results presented in Chapter 6 evaluate the performance of
the hybrid driving-stepping position tracking.
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5 Control Framework
Dynamic motions such as jumps are challenging because they involve a flight phase
and require the robot’s body to deviate from ground plane—the body tilts signif-
icantly during the jump—which requires a full 3D orientation model. In addition,
a controller that anticipates the upcoming changes in the contact sequence is re-
quired to compute the ground reaction forces before the robot enters the flight
phase. For example, at the beginning of the jump, the controller should ensure
that the base of the robot has an upward velocity while it tilts backward by ap-
plying large ground reaction forces to the front feet. After the front feet leave
the ground, large reaction forces should be applied to the rear feet, resulting in
a jumping motion. The reaction forces should also be optimized considering the
flight duration so that the robot lands on the floor plane with low inclination. Af-
ter landing, the controller must apply enough force to counteract gravity without
the robot’s height and orientation deviating too far from the commanded pose.
Without knowledge of the impending contact pattern of the feet, it is very hard
to effectively stabilize these types of motions. When less than three feet are on
the ground, finding reaction forces that would simultaneously control the orienta-
tion and position of the body would be unfeasible. The resulted underactuation
is another challenge to the control of a dynamic motion. Another challenge to
locomotion is the constraints imposed by contact with the ground. The robot is
only allowed to exert a limited amount of force on its feet otherwise the robot
might slip, which limits the force that can be exerted on the body. In addition,
the forces along the z-axis cannot be negative because the robot cannot pull itself
closer to the ground.

We define a model predictive method that optimizes the future state and control
sequence to minimize the given objective function (Section 5.4). We developed the
driving-stepping and jumping behaviors to generate realistic reference trajectories
which are used by the MPC to control the robot. The MPC uses a time-varying
model of the robot that includes the shape, mass, and inertia of the wheel and
generates approximate values for the composite inertia tensor, effective mass, and
CoM of the robot for the given trajectories. The time-varying model in the MPC
is accurate for the first time step, but it is an approximation for future time steps
because it is based on the expected robot state in the future, which will change
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Footstep
Planner

Driving
Assistant

Trajectory
and Contact

Planner
MPC

WBC

Wheel
Controller

Joint
Controller

User Input

Figure 5.1: Control framework diagram. x̂ is the body state vector (position and
orientation) from the state estimation module (Section 4.3). The superscript
i ∈

{
1 . . . 4

}
denotes the leg number. The driving assistant module

dynamically defines gait cycle time (Tgait), and swing height, swing duration,
and stance leg correction velocity (ziapex, ϕi

c̄ and p
.i

assistant, respectively) for
each leg, based on the leg utility values. The user input (Figure 4.1) is
processed by the trajectory and contact planner module to generate state and
contact reference trajectories (Xref and Sref) for the prediction horizon, and
the state commands (xcmd) at the current control time. The footstep planner
module generates feet reference trajectory and commands (Pref and pi

cmd)
based on robot’s state and the information given by the driving assistant
module. The MPC module uses the reference trajectories and computes
the optimal reaction forces (f i) for all contact points. The WBC module
executes the prioritized tasks for body orientation, body position, and foot
positions using the corresponding commands received from other modules,
and generates commands for legs’ joint position, velocity, and torque (qk,
q
.

k, and τ k) as well as the refined reaction forces (f̂ i). The wheel controller
module uses the commanded foot velocities from the footstep planner and
the refined reaction forces from WBC modules to compute the rotational
speed and torque for the wheels (q.w and τw). Finally, the joint controller
module applies the joint commands to the robot.
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due to optimizations or disturbances. We enhance the control output of the MPC
method with a WBC to achieve accurate and fast joint control. Figure 5.1 shows
the diagram of the control framework.

Our framework allows different types of behaviors to be defined and incorpo-
rated into the system. Each behavior receives the higher level commands (or the
operator’s commands) and satisfies the behavior’s goals by generating the control
commands for the MPC with a low update rate (80Hz) and for the WBIC with a
high update rate (500Hz).

Control commands are generated using the trajectory, contact, and footstep
planning modules, which are discussed in more detail in this chapter, and consist
of the body state command and the trajectories for the body state, contact state,
and foot positions. These trajectories used by the MPC are defined for the horizon
length of N . The duration between each time step of the trajectory is denoted by
∆t and is determined by each behavior based on the its duration and the horizon
length. The value of N can be configured by the user based on the processing
power of the computer, and should be coarse enough for the controller to achieve
a reasonable update rate. However, for future work, N could be set dynamically
during runtime to take advantage of all available processing capacity at any given
time. In this work, we have implemented two types of behaviors:

Hybrid Driving-Stepping The goal of the driving-stepping behavior is to allow
the robot to perform arbitrary gaits while simultaneously driving with the wheels.
When the operator commands only driving (without stepping), the controller aims
for a minimum amount of corrective swing actions of each foot to perform a more
natural driving locomotion. To this end, we introduce the driving assistant in
Section 5.3.

Since the trajectories for driving-stepping behavior are periodic, the horizon
window shifts in time and maintains a constant size of N at all times.

The default pose parameters (θdef and pdef) are configured to reduce the CoT,
i.e., the body is parallel to the ground (with pitch and roll angles set to zero), and
the pose height is set manually (for our robot, 32cm).

Hybrid Driving-Jumping The goal of the driving-jumping behavior is to perform
a jumping motion while driving with wheels, which allows the robot to jump onto
a path with a different height or to overcome upcoming obstacles by jumping over
them. By maintaining the travel speed instead of stopping at a height difference
(or in front of an obstacle), the robot achieves a higher average locomotion speed.
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Unlike the driving-stepping behavior, the trajectories for the driving-jumping are
not periodic. Instead, they are executed only once by the jump motion. For this
reason, the size of the horizon window at the beginning of the jump motion is N
and gets reduced to N−s according to the elapsed time steps s of the jump motion,
keeping the time step duration ∆t constant for each step of the control. Reducing
the size of the horizon window during the jump is ideal because the controller only
operates effectively at the beginning of the jump when there are ground contacts,
but as the jump motion continues and the robot flies, the controller no longer
regulates the system, so the size of the horizon window no longer matters. Lower
body height is configured in pdef for the default pose to give the body more time
to accelerate, resulting in an increase in the maximum jump height.

In the following sections we explain the trajectory and contact planner, footstep
planner, and driving assistant modules which are responsible for generating control
commands used for the MPC and WBC modules described in Sections 5.4 and 5.5.

5.1 Trajectory and Contact Planner
The trajectory and contact planner module generates body state commands as
well as body state and contact trajectories for the duration of each behavior. To
this end, we first explain the input modifier, which aims to filter user input data
and compute acceleration commands for driving and stepping, and then discuss
the above commands and trajectories for the driving-stepping and driving-jumping
behaviors.

5.1.1 Input Modifier
User input is provided in the yaw reference frame, because expressing this informa-
tion in the yaw frame is more intuitive for the operator. User input data consists
of: desired gait velocity vuser

g , desired drive speed vuser
d , desired turning velocity

vuser
y , pose offsets θoff and poff (Section 4), locomotion information (gait), and jump

information (jump height). The gait type is set by the user and the jump height
hJ is determined based on the size of the obstacle (height and depth).

Since the desired velocity commands could be changed erratically by the user,
and the pose offset and desired gait cannot be used directly by the controller,
the input modifier converts and augments the user input data into appropriate
commands for the controller module. It takes into account the current velocities
of the robot and accelerates them toward desired velocities using filtered stepping,
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0

Figure 5.2: Input modifier. The user velocity command in red and the filtered ac-
celeration and velocity commands resulting from Equation (5.1) in orange
and blue, respectively. The operator’s velocity commands are filtered on the
right side of the graph.

driving, and turning acceleration commands ag , ad , and ay . Filtering acceleration
helps to smooths the jerk value. The filtering formulation is defined as follows:

ajk = (1− β)ajk−1
+ β

vuser
j − vjk−1

vmax
j

,
∣∣ajk

∣∣ ≤ amax
j ,

vjk = vjk−1
+ ajk∆t,

∣∣vjk

∣∣ ≤ vmax
j ,

(5.1)

acmd
j = GRYajk ,

vcmd
j = GRYvjk ,

(5.2)

where the index j ∈
{
g : stepping d : driving y : turning

}
indicates the step-

ping, driving or turning formulation, the index k is the time step, β is the filter
value, vmax and amax are the defined maximum velocity and acceleration param-
eters in the yaw reference frame, a and v are the current filtered accelerations
and velocities in the yaw reference frame, and acmd and vcmd are in the global
coordinate system rotated by GRY = Rz(ψ). The user commands only the xy-axis
speed and yaw rotation rate, so the z-axis elements of driving and stepping (vg ,
vd , ag , and ad) and xy-axis elements of turning (vy and ay) are set to zero. Fig-
ure 5.2 shows the example of the resulting smooth trajectory for acceleration and
velocity. The user only enters the offsets for the position puser

off :=
(
0 0 hoff

)
and

orientation θuser
off to the default position pdef :=

(
0 0 hdef

)
and orientation θdef

of the controller’s pose. The input modifier computes the position and orientation
for the target pose (ppose and θpose) by summing these offsets to the default pose,
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taking into account the posture limits that the robot can hold:

ppose
k = pdef + poffk

θpose
k = θdef + θoffk

, (5.3)

where poffk and θoffk are the pose offset variables at time k approaching the desired
pose offsets puser

off and θuser
off while taking into account the controller’s maximum pose

velocities p
.max and θ̇

max, as:

poffk = poffk−1
+ p

.pose
k ∆t, ip

.pose
k =


ip
.max, if ipoffk−1

< ip
user
off

0, if ipoffk−1
= ip

user
off

−ip
.max, otherwise

, (5.4)

θoffk = θoffk−1
+ θ̇

pose
k ∆t, iθ̇

pose
k =


iθ̇

max
, if iθoffk−1

< iθ
user
off

0, if iθoffk−1
= iθ

user
off

−iθ̇
max

, otherwise
, (5.5)

where left-subscript i denotes the i-th element of the vectors.

5.1.2 State Trajectory and Command
We define the body state with its orientation, position, rotational velocity and
linear velocity in the global coordinate system with:

x :=
(
θ p ω p

.)
. (5.6)

The state trajectory is the reference trajectory over the horizon window that the
predictive controller (Section 5.4) tracks, and is defined by the sequence of body
states in the global coordinate system as:

Xref :=
(
x1 . . . xN

)
. (5.7)

We design the state trajectory based on the generated commands from the input
modifier (Section 5.1.1), rather than directly using the user input, resulting in
smooth trajectories.

The state command is used for WBIC tasks (see Section 5.5) and is defined as
follows:

xcmd :=
(
θ p θ̇ p

.
θ̈ p

..)
, (5.8)

where p
.. and θ̈ are the linear and angular accelerations of the body, respectively.
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These accelerations are not directly modeled by the MPC, but are used by WBIC
to refine the output of the MPC and more accurately track the state commands.

At each iteration of the controller, we recalculate the state trajectory and ini-
tialize it with the global tracked position and heading. In the following, we first
introduce the global track of position and heading, and then explain how the hy-
brid driving-stepping and driving-jumping behaviors construct the state trajectory
and state command to satisfy their behavioral goals.

Hybrid Driving-Stepping

Global Track. We track the robot’s position and heading in the global coordinate
system by integrating the commands of the input modifier while maintaining a
maximum distance from the position and heading estimates of the state estimator
at all times (Section 4.3) by:

ptrack
k = ptrack

k−1 + (vcmd
g + vcmd

d )∆t,
∣∣∣ptrack

k − pestimate
∣∣∣ ≤ pdist

θtrack
k = θtrack

k−1 + vcmd
y ∆t,

∣∣∣θtrack
k − θestimate

∣∣∣ ≤ θdist,
(5.9)

where the index k−1 indicates the previous time step, pdist and θdist are the con-
figured maximum distance between the tracked and estimated values for position
and orientation, respectively, and vcmd is calculated in Equation (5.1). When the
robot is pushed externally, it will recover its previous position and heading, as long
as the maximum distance is not violated. In our setup, the maximum distances
are 15 cm for the position and 6 degrees for the heading.

Horizontal Compensation. In reality, the predicted reference trajectory may
differ from the executed one due to violations of the flat ground assumption or
to approximation errors resulted from the discrete-time implementation of the
dynamics (especially for the simultaneous translation and rotation velocity com-
mands). This difference becomes even larger at higher locomotion speeds. There-
fore, the reaction forces output by the MPC may not result in the desired pitch
and roll angles of the body and adversely affect the control performance.

The horizontal compensation tracks the errors in the pitch and roll angles be-
tween the desired and estimated values for the commanded velocities in real time,
and sums these errors (using leaky integration) to find the correction parameters
ϕint and θint for the roll and pitch angles, respectively, and construct the compen-
sation vector:

θcomp = α
(
ϕint θint 0

)
, (5.10)
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where α is the gain defining the effect of compensation and it is based on the
norm of commanded velocities (α ≈ ||vcmd

d + vcmd
g ||). θcomp changes dynamically

at runtime to account for the inevitable errors over the desired roll and pitch
resulted from the aforementioned causes.

Formulation. During the driving-stepping locomotion, the linear and angular
velocities of the robot body are defined as follows:

θ̇k = θ̇
pose
k + vyk

, (5.11)
p
.
k = p

.pose
k + vcmd

gk + vcmd
dk

, (5.12)

where θ̇
pose, p.pose, vy , vcmd

d , and vcmd
g are generated by iteration over Equations

(5.5, 5.4, 5.1, and 5.2).

The state trajectory is generated based on the commanded velocities and accel-
erations for driving, stepping, and turning, and the commanded orientation and
position of the target pose by the following equations:

xk =


1 0 R−1

k−1∆t 0

0 1 0 ∆t

0 0 0 0

0 0 0 0

xk−1 +


0

0

Rk−1θ̇k−1

p
.
k−1

, (5.13)

x0 =


θtrack + θpose

0 + θcomp

ptrack + ppose
0

0

0

, (5.14)

where the subscript k stands for the time step in the trajectory (1 ≤ k ≤ N),
x0 contains the current pose and the current tracked position and orientation,
Rk−1 is the rotation matrix computed similarly to R′ in Equation (4.2) from the
orientation in xk−1, θtrack and ptrack are the tracked heading and position at the
current time step, and θpose

0 and ppose
0 are given by Equation (5.3) at the current

time step.

The state command vector is constructed using the velocity and acceleration
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values in the current time step of the controller as follows:

xcmd =



θtrack + θpose
0 + θ̇0∆t

ptrack + ppose
0 + p

.
0∆t

θ̇0

p
.
0

ay
acmd

g + acmd
d


. (5.15)

Hybrid Driving-Jumping

During the hybrid driving-jumping motion, locomotion consists only of driving
without stepping, and all acceleration and velocity commands from the input mod-
ifier except the driving velocity (vcmd

d ) are set to zero. In this way, the robot follows
a constant direction and velocity towards the target.

When the robot encounters an obstacle, the jump is triggered either by the user
command (or by perception modules) at the distance to the target defined by the
jump duration TJ and the robot’s driving velocity (distance = vcmd

d TJ). At the
end of the plan, we switch back to the driving-stepping behavior after waiting for
the configured switching delay, and let the controller settle the landing.

To achieve a jumping trajectory, we accelerate the robot’s body along the z-axis
for the specified duration tacc, which should cause the robot to fly and to continue
decelerating under the influence of gravity until the end of the jumping behavior.
By adding a tilt trajectory to the body (for pitch orientation), the robot tilts back
to achieve the configured tilt angle θtilt

J for the duration ttilt before flight and tilts
forward by the end of the jump. In order for the robot to tilt forward, we need to
consider ttilt < tacc, which gives the controller enough time to apply appropriate
reaction forces before the flight phase. Although tilting does not increase the
maximum jump height, it does allow for jumping over higher obstacles since the
legs will have a higher ground clearance when passing over the obstacle. The
tilting trajectory is based on two consecutive cubic splines connected at the time
step ttilt with the pitch angle θtilt

J defining the tilt angle θtilt
k , tilt velocity θ̇tilt

k and
tilt acceleration θ̈tilt

k at each time step k.
The tilt angle (θtilt

J ), the duration of acceleration and tilt (tacc and ttilt) and the
jump height gain (kJ) are manually configured to achieve a correct jump motion.
The acceleration value during tacc is computed at every control time step with:

aJ = kJ

2
hcmd

J − ĥ

(tacc − s)2
− 2̂̇h
tacc − s

 , (5.16)
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where hcmd
J is the commanded jump height, s is the elapsed time step from the

start of the jumping behavior, and ĥ and ̂̇h are the current body position and
velocity along z-axis received from the state estimator.

The state trajectory Xref is generated using the Equation (5.13) by considering
the following formulations for the initial state, and the linear and angular velocities
of the robot body:

θ̇k = θ̇
pose
k +

[
0 θ̇tilt

k+s 0
]⊤
, (5.17)

p
.
k = p

.pose
k + vcmd

d + vk, (5.18)
vk = vk−1 + ak∆t, v0 = 0, (5.19)

x0 =
[
θ̂ p̂ 0 0

]⊤
, (5.20)

where the variables θ̇pose and p
.pose are generated by iterating over Equations (5.5,

5.4), s is the elapsed time steps of the jump motion, θ̇tilt
k+s is the first derivative of

the tilt trajectory (from splines) at time step k + s, vk is the aggregate velocity
from acceleration at time step k, θ̂ and p̂ are the current orientation and position
from state estimator, and

ak =


[
0 0 acmd

J

]⊤
, if k + s ≤ tacc[

0 0 −g
]⊤
, otherwise

. (5.21)

The state trajectory for the driving-jumping behavior applies the desired body
pose (body orientation and height) at the beginning of the motion. The time steps
required to apply the desired body pose depend on p

.max and θ̇
max (Equations (5.4)

and (5.5)) and the difference in the desired poses between the driving-stepping and
driving-jumping controllers. To reduce the required time steps, we prefer higher
values for p

.max and θ̇
max and similar default poses between the driving-jumping

and the driving-stepping behaviors.
The state command vector is constructed as follows:

xcmd =



θ̂ + θ̇0∆t

p̂+ p
.
0∆t

θ̇0

p
.
0[

0 θ̈tilt
s 0

]⊤
as


, (5.22)
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Figure 5.3: Expected jump trajectory. The height offset of the robot in green and
the tilt trajectory in blue with a spline configured as line. The robot is
expected to experience acceleration aJ in Equation (5.21) for the duration
of tacc and then gravity. the tilt angle θtilt

J is expected to be reached at ttilt
before the robot leaves the ground at ttilt.

where θ̇0 and p
.
0 are given by Equations (5.11) and (5.12) at the current time

step, as is given by Equation (5.21), and θ̈tilt
s is the second derivative of the tilting

trajectory (from splines) at the time step s.
Jumping is very dynamic, which means that the expected state trajectory may

differ from the optimized trajectory in the MPC. Therefore, we trust the state
commands (xcmd) less during the jump by setting lower penalties for floating-base
body relaxations (Section 5.5).

5.1.3 Contact Trajectory
Contact trajectory is denoted by:

Sref :=
(
s⊤1 s⊤2 . . . s⊤N

)
where si :=

(
s1
ϕ s2

ϕ s3
ϕ s4

ϕ

)
is the vector of expected contact states sϕ for all

legs at time step i, explained in Section 4.3.1.

Hybrid Driving-Stepping

The contact trajectory Sref for hybrid driving-stepping locomotion is provided by
the gait. We define a gait as a periodic sequence of contact states for all legs.
The default gaits designed for the robot are: walk, trot, pace, bound, pronk, and
amble. A feature of all of these gaits (except walk) is that the period is relatively
short, and the robot goes through a cycle in 350 to 500 milliseconds. Figure 5.4
shows the contact trajectory and duration of the default gaits. During walk, three
legs are in contact simultaneously and one leg swings. Trot is a diagonal gait with
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trot   =0.4 pace   =0.35

bound   =0.35 pronk   =0.4 amble   =0.4

FR

FL

HR

HL

FR

FL

HR

HL

walk    =1.0

Figure 5.4: Stepping contact trajectory. This figure shows the diagram of the contact
trajectory for each default gait. T gait is the configured duration of the gaits
in seconds, which is dynamically changed at runtime based on commanded
gait dynamic character (Figure 5.5) and gait frequency received from the
driving assistant module (Section 5.3). The filled areas in each row indicate
the contact for one leg. The right and left legs are shown as FR and FL for
the front legs, and HR and HL for the hind legs, respectively.

two strokes, where the diagonal pairs of legs are in swing or in contact at the same
time. Analogous to trot, in pace gait the legs on each side move together and in
bound gait the front or back legs move together. In pronk, all four legs are in the
contact or swing phase at the same time, resulting in a flight time without ground
contact. Amble is similar to pace with longer contact duration, but front legs shift
to swing phase earlier (by about 25% of the gait duration) than the hind legs.

We call a gait static when legs in contact wait until the swinging legs touch
the ground and settle before changing to the swinging phase ϕc̄. Similarly, in a
dynamic gait, the legs in contact change to the swing phase before the swinging
legs touch the ground. Dynamic gaits look more natural but cause flight times
without ground contact points. On the other hand they allow better swing control
of the swinging legs. Static gaits, however, are better suited for imperfect ground
surfaces.

In this thesis, we do not design multiple static or dynamic gaits (e.g., trot-walk
and trot-run for the trot gait), but only the default gaits mentioned above and
give them a dynamic character value dg that defines the ratio of contact phase to
swing phase duration of the gait (except for the walk gait). Negative and positive
values of dg increase the duration of the contact ϕc and swing ϕc̄ phases of all legs.
Figure 5.5 shows a discrete-time diagram of the contact trajectory for the trot gait.
Increasing dg results in decreased gait controllability because the contact phase is
shorter compared to the swing phase and control is only possible if there is at least
one ground contact point. In contrast, a lower dg increases the duration of gait’s
contact phase and results in a more robust controlled gait. This gives the operator
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Figure 5.5: Gait diagram. This figure shows the diagram of the contact trajectory
of two successive periods of trot gait with different dynamic characters (dg)
leading to trot-walk and trot-run. T is the gait’s cycle time steps or the
horizon length. The controller obtains the contact trajectory (highlighted
area in the figure) at time t0 for the size of the horizon window N .

the ability to change the value of dg at any time during the operation of the robot
based on the ground traversability.

We always include a full cycle of gait in the controller’s plan, which ensures unin-
terrupted periodic control output. Figure 5.5 represents this with the highlighted
area as the horizon window (or a full cycle of gait).

Hybrid Driving-Jumping

To construct the contact trajectory during online jumping, we define two contact
durations tfront

c and thind
c for front and hind legs, respectively, where each leg pair in

front and hind share the same contact state during the jump. Since the trajectories
for the jump motion are not periodic, the horizon window becomes shorter with
each elapsed time step.

For the robot to follow the tilting trajectory, the contact duration for the front
legs should be less than or equal to that for the hind legs (tfront

c ≤ thind
c ), otherwise

the controller cannot satisfy the desired trajectory. For example, in the case of
tacc > tfront

c , the controller generates ground reaction forces to satisfy the acceler-
ation command aJ, and since the hind legs have no contact, any reaction forces
acting on the front legs along the z-axis would interrupt the tilting trajectory.

Initially, tfront
c and thind

c are set to ttilt and tacc, respectively (Section 5.1.3) and
further adjusted to improve the jump performance.
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5.2 Footstep Planner

The footstep planner module generates foot commands and trajectories for the
duration of the defined behavior. In this section, we explain how the step offsets
are computed using the symmetry and centrifugal equations to formulate foot
trajectories and commands, and explain the generation of swing foot trajectories.

At each control step, the target landing offset for each swing foot is determined
in the relative coordinate system by extending the approach in [12] as:

poff
k = psymmetry

k + pcentrifugal
k , (5.23)

psymmetry
k =

tstance

2

(
v̂gk + vshk

)
+ k1

(
v̂gk − vcmd

gk

)
+ k2vshk

, (5.24)

pcentrifugal
k =

h

2g
p
.
k × ωk, (5.25)

where tstance is the duration of the contact phase, p.k and ωk are the linear and
angular velocities of the robot at time step k, k1 and k2 are the feedback gains
for the errors related to the linear and angular motions, respectively. vcmd

g is the
stepping velocity command from the input modifier at time step k, and v̂gk , the
estimated gait velocity (excluding driving velocity), and vshk

, the linear velocity
induced by the current yaw rate of the robot, are defined as:

v̂gk = p
.
k − vcmd

dk
, (5.26)

vshk
= ωk ×

(
R(θk)psh

)
, (5.27)

where vcmd
dk

is the driving velocity command at time k, psh is the location of the
shoulder in the body (B) coordinate system, and R(θk) is the rotation matrix from
the body angles θk at time k.

psymmetry applies the Raibert heuristic, which reduces the leg extensions during
the stepping by forcing the landing and leaving angles of the leg to be identical
[78]. The symmetric motion of the legs looks more natural, and the feedback
gain terms greatly increase the robustness of the control to external pushes. The
applied pushes change the velocity of the robot (p.), increase the error between
v̂g and vcmd

g , and subsequently target a more distant landing step location that
counteracts the acting push. This is based on the concept of the capture point,
which adjusts the placement of the foot on the ground to come to a complete
stop or change velocity without disturbing its orientation [4, 64]. We extend the
approach used in [12] by including the rotation of the robot in the psymmetry; Using
Equation (5.27), we compute the linear velocity at each shoulder location (vsh)
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resulted from robot’s angular velocity (ω̇), and use it in Equation (5.24) to obtain
more natural turning motions and increase the robustness of the control to external
yaw torques.

While driving without stepping, the vcmd
g is 0, so the psymmetry term in Equation

(5.23) results only from external pushes and yaw torques. This is ideal because
in pure driving we prefer a minimum amount of leg swings, and only perform
stepping when the robot encounters disturbances. Equation (5.23) is also effective
for jumping behavior, as it takes into account the disturbances that affect the
robot during the jump and determines the correct foot positions for landing to
increase stability after landing.

Equation (5.25) finds a target foot position (pcentrifugal) where the torque is 0.
These target landing positions make the robot look more natural when turning,
and play an important role in keeping the robot upright when a combination of
linear and turning velocities are commanded.

5.2.1 Feet Trajectory

We define the feet trajectory Pref with a sequence of block vectors containing all
foot positions in the relative coordinate system:

Pref :=



p1
1
...
p4
1



p1
2
...
p4
2

 . . .


p1
N
...

p4
N


 , (5.28)

where pi
k is the i-th foot location at the the time step k as:

pi
k = R(θk)p

i
sh + p̂i

k, (5.29)

where θk is the body orientation from the state trajectory Xref in Equation (5.7),
R(θk) rotates the local shoulder position pi

sh into the global coordinate system,
and p̂i

k is the expected foot position relative to the global shoulder position:

p̂i
k =

p̂i
k−1 − vcmd

gk ∆t, during contact phase ϕc

fswing

(
k−tc̄
Tc̄
, p̂i

tc̄ ,p
i,off
k

)
, during swing phase ϕc̄

(5.30)

where vcmd
gk is the commanded stepping velocity at time k, tc̄ and Tc̄ are the start

time and the duration of the swing phase, p̂i
tc and p̂i

tc̄ are the measured and
expected foot positions relative to the global shoulder location at the start of
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the contact and swing phases, pi,off
k is the commanded target foot offset given

by Equation (5.23) using p
.
k, θk and ωk from the state trajectory Xref, and the

function fswing (described in Section 5.2.3) defines the foot trajectory during the
swing phase.

Equation (5.29) accounts for the rolling wheels condition for the foot trajectory,
since the body position pk in the state trajectory already accounts for both the
driving and the stepping velocities (Equations (5.12) and (5.18)).

Equation (5.30) describes the motion of the i-th foot in the relative coordinate
system (R). During the contact phase, the foot moves only with the driving
velocity vcmd

dk
in the global frame, therefore it moves with the negative stepping

velocity −vcmd
gk in the relative frame, which is accumulated for the duration of the

contact. During the swing phase, the foot moves with the trajectory defined in
the function fswing towards the target landing foot location pi,off

k .

5.2.2 Feet Command

The feet command is a matrix containing the position, velocity, and acceleration
of each foot in the global coordinate system and is used for the WBIC foot tasks
to generate the joint torque commands. The i-th foot commands are:

pi
cmd = pcmd + pi

1, (5.31)

p
.i

cmd =

vcmd
d + p

.i
assistant, during contact

p
.

cmd + f ′
swing

(
t−tc̄
Tc̄
, p̂i

tc̄ ,p
i,off
t

)
, during swing

, (5.32)

p
..i

cmd =

acmd
d , during contact

p
..

cmd + f ′′
swing

(
t−tc̄
Tc̄
, p̂i

tc̄ ,p
i,off
t

)
, during swing

, (5.33)

where pi
1 if the first target position in the feet trajectory (Pref), p

.i
assistant is the

corrective velocity from the driving assistant defined by Equation (5.37), pcmd,
p
.

cmd and p
..

cmd are the position, velocity and acceleration of the robot in the state
command (xcmd) given by Equation (5.8), and f ′ and f ′′ give the velocity and
acceleration of the swing trajectory at the current phase time t.

5.2.3 Swing Trajectory

The swing trajectory is defined by the function fswing (ϕ,p1,p2), ϕ is the swing
phase (from 0 to 1), and p1 and p2 are the start and end foot positions. fswing
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uses cubic splines for each axis of motion starting from p1 and ending at ptarget:

ptarget = p2 + pplanner, (5.34)

where pplanner is the target position configured for each behavior. For jumping
behavior, the target locations of each swing foot are configured to achieve the
highest ground clearance during the jump. For the driving-stepping behavior, a
small offset on the z-axis can be configured to stop the z-swing slightly higher than
the ground, reducing the velocity on impact with the ground. Figure 5.6 shows
the swing trajectories 1.

The velocity and acceleration of the trajectory are calculated by the first and
second derivatives of the function fswing at each phase.

Swing Leg Retraction The swing leg retraction technique from [48], which is
exhibited by animals in which the swing legs move backwards before touchdown,
has motivated us to finish xy-swings earlier than z-swings. This gives the foot
enough time to reach the target velocity of 0. In the case of early touchdown due
to disturbances, this prevents the robot from pushing the leg in the direction of
locomotion.

Driving-Stepping Behavior. The z-swing trajectory for the driving-stepping be-
havior is different. Instead of one cubic spline, two quartic splines are used, con-
nected in phase ϕapex with height zapex. ϕapex, and the parameters of the quartic
splines are manually configured to accelerate the foot faster when it leaves the
ground but slower when it lands on the ground, which reduces the drag of xy-
swings when the foot is still in contact due to disturbances. We use ϕapex = 0.38

for our experiments. zapex is the swing height determined dynamically by the
driving assistant (Section 5.3.2).

5.3 Driving Assistant
Even though our method is a hybrid locomotion with stepping, we would like to
maintain the desired robot kinematics and avoid unnecessary swings of the legs
when purely driving to achieve a natural motion and reduce the energy consump-
tion of the robot due to the effort required to move the heavy wheel at the end of
each leg. However, when a foot encounters a rough or high obstacle, the driving is
interrupted and the foot must step over the obstacle to continue the locomotion.

1Live example at: https://www.desmos.com/calculator/rffmsyigqg
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10.5 10.5

10.5

10.5

Figure 5.6: Swing trajectory. Top left: z-swing trajectory for hybrid driving-stepping
behavior, reaching the apex of zapex in phase ϕapex with the blue quartic
spline and landing on the ground at ztarget via the second quartic spline.
Top right: z-swing trajectory for hybrid driving-jumping behavior with a
cubic spline. Bottom: xy-swing trajectories with shorter swing duration
compared to z-swing.

Despite the commanded stepping velocity, the turning commands and distur-
bances (i.e., external push or yaw torque) continue to force the robot to step
because the non-steerable wheels limit the robot to turn only through stepping
and the disturbances induce the foot command in Equation (5.23) to account for
the symmetry and centrifugal step sizes.

The idea of leg utility presented in [1] inspired us to propose the driving assistant
approach in this section. The leg utility value u is a measure for the usability of
a leg during the contact phase. The driving assistant minimizes leg swings when
the robot is in an ideal state, but induces leg swings when the leg utility is low.
The utility of a leg approaches 0 immediately after hitting an obstacle.

The error between the current and the targeted foot position (during the con-
tact phase) changes the desired robot kinematics and is measured in the body
coordinate system by:

pi
error := f

(
R
(
pi

cmd − p
)
− pi

cur

)
, (5.35)

where p is the current body position in the global frame, pi
cmd is the commanded

foot location from Equation (5.31), R is a rotation matrix from the global to the
body frame, pi

cur is the measured location of the foot in the body coordinate system,
and f is a low-pass filter. Filtering the above errors improves the effectiveness of
the driving assistant.
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Rolling Direction

Figure 5.7: Leg utility graph. This graph shows the leg utility value u(xe, ye) for
the filtered foot position errors on xy-axes. Since the foot in contact is
constrained to roll along x-axis without slipping on y-axis, the errors per-
pendicular to the rolling direction (y-errors) reduce the leg utility quicker
compared to the x-errors.

The leg utility value ui of the i-th leg is:

ui(xe, ye) = exp
(
−x2e
2σ2

x

+
−y2e
2σ2

y

)
(5.36)

where xe and ye are the elements of the filtered foot position error (pi
error) along

and perpendicular to the roll direction, and σ2
x and σ2

y are the configured variances
defining the influence of errors on the leg utility. Figure 5.7 represents the leg
utility graph2.

We keep the desired driving kinematics of the robot and reduce the swings by
changing the swing duration ϕc̄ and swing height zapex of each leg depending on
the utility of that leg. A higher utility of the leg decreases the swing height and
increases the feet contact duration. The increased contact durations improve the
performance of the controller by reducing the underactuation periods. When the
leg’s utility approaches 0, the leg is recovered by a larger swing duration and height
to increase its utility.

This approach is not limited to a particular gait type (i.e., trot, pace, bound,
etc.). Depending on the gait frequency, the reaction forces on each leg periodi-
cally approach 0 for the duration of the swing phase. Therefore, despite the low
swing height values, the feet can still move on the ground towards the target step
locations in two ways: by moving freely along the rolling direction with the help
of the wheels or by being pulled perpendicular to the rolling direction with little

2Live graph at: https://www.geogebra.org/3d/y9hqumya
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ground friction. This is especially useful for slow turning commands that do not
significantly reduce the utility of the legs (resulting in low swing heights), allow-
ing the robot to turn slowly without taking the legs off the ground. Section 1.1
highlights the difference of this approach and the related work in [1].

5.3.1 Stance Leg Correction
While the robot is driving, the feet in the contact phase may not follow the desired
rolling velocity due to the disturbances or imperfect control, resulting in foot errors.
We add a corrective velocity along the rolling direction to each foot during the
contact phase, which reduces the foot position error and subsequently increases
the utility of the corresponding leg without inducing any swings. The corrective
velocity is used by Equation (5.32) and is defined for the i-th foot as follows:

p
.i

assistant =
[
kp 0 0

]⊤
⊙ pi

error, (5.37)

where kp is the configured p-gain for the rolling direction, ⊙ is the element-wise
multiplication operator, and pi

error is the filtered position error defined in Equation
(5.35).

5.3.2 Dynamic Variables
The swing height command zapex for the i-th leg is defined proportional to the
utility of the leg and the gait swing height zgait

apex:

ziapex = zgait
apex

(
1− ui

)
. (5.38)

The current gait of the robot defines phase values for contact and swing (ϕi,gait
c

and ϕi,gait
c̄ for the i-th leg) based on the gait’s dynamic character dg (Figure 5.5),

which are used in the following equation to calculate the dynamic values of the
corresponding phases:

ϕi
c = ϕi,gait

c + ϕi,gait
c̄ ui,

ϕi
c̄ = ϕi,gait

c̄ (1− ui).
(5.39)

The gait frequency is increased by reducing the duration of the gait cycle T
according to the average utility of all legs, while maintaining at least the minimum
cycle time Tminimum:

T =

∑
ui

4
T gait, T > Tminimum. (5.40)
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5.4 Model Predictive Controller
The MPC (Section 3.1) considers the dynamic model of the robot over a finite
time horizon N defined by each behavior to anticipate the future periods of flight
or underactuation, and finds the optimal reaction forces for the duration of the
prediction horizon to make the robot follow the given reference trajectory Xref.

Our approach extends the work in [12] by removing the assumption of massless
legs and incorporating rolling wheels into the modeling to obtain a hybrid driving-
stepping and running quadruped. Despite using a time-varying model of the robot,
our hierarchical parallel implementation allows the model predictive controller to
have higher update rates (80 Hz compared to the previous 30 Hz). We include
the expected ω in the state trajectory provided by the selected behavior, which
improves the tracking of the reference trajectory by allowing the controller to
immediately solve for the output reaction forces that could generate such rotational
velocities (see matrix Bt in Equation (5.48)).

5.4.1 Whole-Body Kinematic Model
We use the computed trajectories (i.e., state, contact, and foot trajectories) and
use a whole-body kinematic model of the robot to generate the robot’s effective
mass (m), composite inertia tensor ( BI), and CoM offset pCoM.

At each time step k, the robot’s orientation θk, foot positions pi
k, and contact

state sk are determined from the state trajectory Xref, feet trajectory Pref, and
contact trajectory Sref, respectively. The angles of the leg joints computed from
the inverse kinematics over the foot positions with respect to the body are used
in a forward kinematics to translate the inertia tensor and CoM of each limb in
the robot to its parent frame of reference and determine the composite inertia
and average CoM. This process is performed for all links to obtain the composite
inertia and CoM of the entire robot at time step k.

The mass of the end effector (i.e., the wheel) for a leg in the swing phase changes
the CoM significantly, but for a leg in the contact phase, the wheel is on the ground
and its mass is not important. Therefore, we set the mass of the wheel to 0 during
the contact time to obtain a realistic model (with the effective mass m) at each
time step.

5.4.2 Time-Varying Dynamic Model
We extend the approach presented in [12] by using the whole-body kinematic model
from the previous section, by obtaining a reduced single rigid body at each time
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step k of the prediction horizon and by modeling its dynamics for the predictive
controller. Similar to formulation in [12], the resulting lumped mass model for
each time step k follows the following dynamics:

mkp
..
k =

nc,k∑
i=1

f i
k − g, (5.41)

d
dt(Ikω) =

nc,k∑
i=1

ri
k × f i

k, (5.42)

where p
..
k, f i

k and cg are the vectors representing the acceleration, reaction force
and gravitational acceleration of the robot in the global coordinate system, mk

and Ik are the effective mass and the composite inertia tensor of the whole body
in the global frame, nc,k is the number of contacts, ω is the angular velocity of the
body in the global coordinate system, and ri

k is the moment arm representing the
position of the i-th contact point with respect to the CoM of the robot:

ri
k = pi

k − pCoM
k . (5.43)

Equation (5.42) shows the relationship between the rate of change of angular
momentum and the reaction forces at the contact points. By assuming small
off-diagonal terms for the inertia tensor, we approximate Equation (5.42) as [12]:

d

dt
(Ikω) = Ikω̇ + ω × (Ikω) ≈ Ikω̇. (5.44)

Ideally, the rotational velocity of the robot is only significant for yaw during
the driving-stepping behavior and for pitch during the jumping behavior, which
reduces the nonlinearity of the orientation dynamics. However, we use the θk in
the state trajectory (Xref) to linearize the orientation dynamics at each time step
k, which defines how ω in the global frame affects the local rotational velocity θ̇

of the robot during the prediction horizon. We also rotate the inertia tensor of the
body with the same known angles:

θ̇ ≈ R̃(θk)ω, (5.45)

GIk ≈ R(θk) BIkR(θk)
⊤, (5.46)

where R̃ is the same as R′−1 in Equation (4.3) for the known roll, pitch, and yaw
body angles, θ̇ and ω are the values used by the optimizer during the minimization
process, R is the rotation matrix from the body to the world frame generated by
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the known orientations, and BIk is the inertia tensor at time step k generated from
the whole-body model.

The continuous dynamics of the time-varying model is defined in [21] as:

d
dt


θ

p

ω

p
.

 =


03 03 R̃(θ) 03

03 03 03 I3
03 03 03 03

03 03 03 03



θ

p

ω

p
.

+


03 . . . 03

03 . . . 03

GI[r
1]× . . . GI[r

4]×
I3/m . . . I3/m



f 1

...
f 4

+


0

0

0

g⊤

 ,
(5.47)

where the skew-symmetric matrix [r]× is the cross-product matrix of r that sat-
isfies r × f = [r]×f . We add the extra gravity term to the state and rewrite
Equation (5.47) to bring the dynamics into the practical state space form:

d
dtxt = At (θ)xt +Bt

(
r1, r2, r3, r4, GI,m

)
ut, (5.48)

where At ∈ R13×13 and Bt ∈ R13×12. The addition of gravity increases the state
dimensions to 13 (from 12) and sets the value of At in the last column and row
to 1, defining the effect of gravity on the rate of body velocity along the z-axis.
This form depends only on the orientation of the robot θk, the moment arm ri

k

(i ∈ {1 . . . 4}) of each contact, the composite inertia tensor GIk, and the effective
mass mk of the model for each time step k. Since these are computed in advance
the dynamics become linear time-varying, leading to a convex formulation for the
model predictive control [21].

5.4.3 QP Formulation

We apply the LTV-MPC formulation in Equation (3.4) to construct the QP using
the approach given in [21]. The matrix Dk is set to select the forces corresponding
to the feet during the swing phase at time step k, in order to constrain the reaction
forces for the legs during the swing phase to be 0. The matrix Ck is used to select
the forces corresponding to the feet during the contact phase at time step k, with
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the following inequality constraints for each foot:

0 ≤ fz ≤ fmax,

−µfz ≤ ±fx ≤ µfz,

−µfz ≤ ±fy ≤ µfz,

(5.49)

where fmax is the configured maximum force the robot can exert, and µfz terms
define a square pyramid approximation of the friction cone. Qk and Rk are the
positive diagonal matrices of the weights that penalize the deviation from the
reference trajectory xk at each time step and the amount of applied control value,
respectively. We use similar penalty matrices for the entire prediction horizon. The
controller in this form attempts to find a sequence of control inputs that guides
the system along the state trajectory, balancing tracking accuracy and control
overhead while respecting the constraints [21].

By assuming a time-invariant system between each time step (for the duration
of ∆t), we compute the approximated matrices Ak and Bk at each time step k

of the prediction horizon from the At (θ) and Bt

(
r1, r2, r3, r4, GI,m

)
matrices in

Equation (5.48) using the corresponding values given by the state trajectory and
the Equations (5.43) and (5.46). We convert these matrices to a zero-order hold
discrete time model using the state transition matrix in Equation (5.48):

d
dt

[
x

u

]
=

[
Ak Bk

0 0

]
︸ ︷︷ ︸

M

[
x

u

]
. (5.50)

The discrete time matrices Ât and B̂t are computed by solving the following block
matrix exponential: [

Âk B̂k

0 I

]
= e∆tM, (5.51)

where ∆t is the duration between each time step and M is the block matrix defined
in Equation (5.50). The discrete time form of the dynamics is expressed by:

xk+1 = Âkxk + B̂kuk. (5.52)

The B̂ matrix is inaccurate by design because it is based on the time-varying
model computed according to the commanded trajectories for the behavior while
the resulted optimized state trajectory from the MPC differ from the commanded
one. In the presence of external or terrain disturbances, the robot may deviate
significantly from the reference trajectory, resulting in a more inaccurate B̂ matrix
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at further time steps and making the approximation in Equation (5.52) inaccurate.
However, the B̂ matrix at the first time step is computed based on the current state
of the robot and is always accurate. Since the MPC control loop runs periodically
at high update rates (about 80 Hz), the reference trajectory is always recalculated
based on the perturbed robot to compensate for the perturbation.

The QP formulation is achieved by the formulation explained in Section 3.1.3
using the discrete time matrices Â and B̂.

5.5 Whole-Body Controller
The task of the whole-body controller is to refine the reaction forces from the MPC
and generate the joint position, velocity and torque commands (q, q. and τ ∈ R12)
for all feet according to the robot state and the output commands (body and foot
commands) for the behavior (see Sections 5.1 and 5.2).

We use the WBIC explained in Section 3.2.1 by including the prioritized tasks
for body orientation, body position, and swing foot positions. The feet during the
contact phase are used to create the contact Jacobian Jc to initialize the null space
N0 in Equation (3.16), which is updated after the execution of each task.

Equation (3.18) defines the acceleration for the above tasks using the state
and foot commands produced for the behavior (see Sections 5.1 and 5.2), and
the configured gains Kp and Kd. The body orientation task uses the θ, θ̇, and θ̈

commands in the xcmd state command vector, the body position task uses p, p. and
p
.. in Equation (5.8), and the swing foot position task uses pi

cmd, p
..i

cmd, and p
..i

cmd
foot commands in Equations (5.31), (5.32), and (5.33). For each of these tasks,
the gains Kp and Kd are configured separately for each behavior. The jumping
behavior sets a larger gain for body position along the z-axis for the corresponding
elements of the gain matrices, while the driving-stepping behavior sets larger gains
for the foot tasks.

The joint space is configured with 6 degrees for the orientation and position
of the floating-base and with 12 degrees for the joint positions of all feet. The
execution of the above prioritized tasks solves the joint positions q, velocities q

.
and accelerations q

.. using the Equations 3.12, 3.13 and 3.14.
The WBIC receives the reaction forces calculated by the MPC and uses the

resulted floating-base accelerations mentioned above, to solve the QP problem in
Equation (3.19) and find the optimized reaction forces. Finally, the feet joint
torque τ is calculated by Equation (3.20).

For each behavior, we configure the weight matrices Qr and Q differently for
the reaction forces and the floating-base relaxations in Equation (3.19). For the
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jumping behavior, we penalize the floating-base relaxations with a smaller Q than
for the driving-stepping behavior. This is because the optimized trajectory of the
MPC deviates more from the expected reference trajectory of the jumping behavior
than for the stepping-driving behavior.

5.6 Wheel Controller
The wheel joints are controlled by a DI controller that follows the input velocities.
However, the low resolution of the encoders (84 pulses per revolution) does not
allow perfect velocity control, resulting in unwanted wheel motion and reducing the
effectiveness of the controller. We solve this problem by converting the reaction
forces from the WBC to the wheel joint torque τ and passing it to the joint
controller. The wheel joints are controlled based on the linear velocity of the
corresponding foot and the reaction forces received from the WBC:

τ =
[
reff 0 0

]⊤
·Rf i, (5.53)

q̇ =
[

1
reff

0 0
]⊤

·Rp
.i

cmd, (5.54)

where reff is the effective radius of the wheel from Equation (4.7), R is a rotation
matrix to convert from the global to body reference frame, f i is the current reaction
force from WBC, and p

.i
cmd is the commanded foot velocity from Equation (5.32).

Since the wheel joint velocities are set according to the foot velocities, the track-
ing of swings along the rolling direction is greatly improved and even allows the
robot to step along its x-axis with 0 swing height. If the wheel collides with a
surface during the swing, it continues the x-swing to bypass the height differences
without additional swing heights.
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6 Evaluation
We modified the hardware of the MIT Mini Cheetah open platform described in
Chapter 1 by adding wheels and shank links. The joints of this robot produce a
torque of 2.1 Nm for the wheel, 27 Nm for the knee, and 18 Nm for other joints.
These torques are sufficient for the robot to jump with a weight of 12.5 kg.

We transferred the open-source software version of the above robot to the ROS
echo system, which meets our requirements for the tests in this chapter. We per-
formed the tests on real hardware and simulated them in the MuJoCo multibody
simulator to accurately simulate the contact dynamics and rolling friction of the
additional wheels.

The robot performed the commanded pose offsets (Section 4) shown in Figure
6.1, and the applied yaw offset allowed the robot to walk in the commanded
direction while facing in a different direction according to the requested yaw offset
angle. However, due to the non-steerable wheels, the rolling direction always
matches robot’s yaw pose, resulting in errors from the commanded direction while
driving, which are corrected by additional stepping.

We evaluated several contributions of this work and presented the results in
several diagrams. In the following, we discuss the evaluations presented and refer
to the corresponding graphs.

The tracking accuracy of the state estimator is demonstrated in Figure 6.2,
which compares our contribution to the state estimator with the previous work in
[11]. We set the robot in the simulator to walk forward and turn left at the same
time, and compared the true value received from the simulator with the estimated
values for the robot’s position and velocity.

The previous method ignores the shape of the end effector assuming that its size
is negligible. However, the rubber ball at the end of each leg has a radius of 2.5 cm,
which is considerable compared to the 19 cm length of the shank link. The errors
in leg position and velocity resulted from the assumption above, accumulates over
time decreasing the estimation accuracy.

The above errors gets more pronounced with the wheels with a radius of 5 cm.
Our method, accurately computes the ground contact point position and veloc-
ity considering the shape of the wheel (Section 4.2) and the effect of other joint
velocities and the robot’s angular velocity into the velocity of the contact point,
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Figure 6.1: Hardware pose offset. This figure shows the modified hardware of Mini
Cheetah robot performing different poses according to the pose offsets com-
manded by the user. With the yaw pose offset (in the second row images),
the robot still walks and drives in the actual commanded direction before
the offset.

resulting an accurate position and velocity estimations shown in Figure 6.2.
The driving assistant plays an important role in controlling the robot to demon-

strate a natural driving style and reduce the energy consumption of the robot. It
steers the robot along the rolling direction of the wheels and minimizes the num-
ber of swings by manipulating the gait characteristics (gait frequency, foot swing
heights, and duration of foot contact).

The transition of gait characteristics is seamless and executed simultaneously
with the gait commands requested by the user. When the robot receives pushes or
yaw torques while driving with wheels, the leg utilities immediately decrease, so
the driving assistant responds by allowing a lower gait frequency (Equation 5.40)
and more swing height and duration (for each leg using the Equations 5.39 and
5.38).

Figure 6.3 demonstrates the seamless transition described above, which allows
the robot’s agile locomotion to take control of the perturbed robot, maintain its
balance, and perform corrective steps to follow the commanded track.

Figure 6.4 shows the foot height trajectory for the front-right and rear-rightlegs
during a jump motion performed in the simulation.

The driving assistant is also responsible for recovering a stuck foot. As shown in
Figure 6.5 , if a wheel encounters a large obstacle while the robot drives forward,
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Figure 6.2: State estimator evaluation graph. This figure compare the accuracy
of state estimation in tracking with the true values (in the simulator) for
our method in the top row and the published version for the Mini Cheetah
in the bottom row. In this experiment the robot walks forward turns left
simultaneously. The shape of the end effector needs to be modeled. In
previous work, the center of the rubber ball was assumed to be the contact
point and its shape was ignored. With our method, the exact ground contact
point between the end effector and the ground is calculated (Section 4.2) and
the effect of the angular velocity of the body and the velocity of other joints
on the velocity of the ground contact point (Section 4.3.2) is accurately
computed to achieve accurate position and velocity tracking for our robot.
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the error in the desired foot position increases, resulting in a lower leg utility
(Equation 5.36) and subsequently a higher swing height and longer swing duration.
This process, also with the help of wheel control (Section 5.6), helps the stuck foot
to recover and overcome the obstacle.

We demonstrate the output of the time-varying RBD model used for the MPC
in Figure 6.6. As shown, the effective mass, inertia, and CoM of the robot differ
significantly depending on the gait.

The computation of the composite inertia tensor and CoM required inverse
kinematics calculations over the future foot positions to first determine the joint
positions and then apply the whole-body kinematics model. This process has to
be repeated for the number of segments of the prediction horizon at each iteration
of the control loop. However, since the computation of the composite inertia is
considerably cheaper compared to the optimization of QP, the increased compu-
tational cost was not negligible.

Although we used a time-varying RBD model and updated the WBC controller
with 500 Hz, we were still able to achieve an update rate of over 80 Hz for the MPC
loop, which is three times higher compared to the results on the open-source Mini
Cheetah platform. This is due to the hierarchical implementation of the software.
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Figure 6.3: Drive assistant output on perturbed robot. This figure shows the
robot while driving forward (the robot is held in the center of the image and
the background shifts backward) under the control of the driving assistant
(Section 5.3). While driving without walking commands, the controller sets
a high gait frequency with the swing heights and durations near 0. When the
robot is disturbed, it immediately reacts accordingly and performs the side-
step shifts generated by Equation (5.23) to balance the robot and maintain
its current track.
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z

0

0.35

Figure 6.4: Jumping motion. The top graph shows the height of the front right foot
in red and hind right foot in magenta. The generated reference trajectory for
the jumping motion (Section 5.1.2) is passed to the MPC, which optimizes
the trajectory and issues commands for the reaction force. The WBC plays
an important role in keeping the roll and pitch velocity of the body close to
zero.
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Figure 6.5: Drive assistant with stuck wheel. This figure shows the robot driving
forward (starting at the top left and ending at the bottom right) under the
control of the driving assistant (Section 5.3) with full contact duration for
all feet until the right front wheel hits a large obstacle and gets stuck. The
leg utility value decreases due to the error in the target foot position and
therefore increases the swing height (Equation 5.38) and duration for the
foot while the other feet remain in contact. The stalled wheel swings over
the obstacle (second row left) to land on the ground after the obstacle.
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Figure 6.6: Time-varying model output. This figure shows the time-varying rigid-
body model of the robot (Section 5.4.2) walking forward at a speed of 0.4 m/s
in the trotting, bounding, pronking, and pacing gaits. The first row shows
graphs for the effective mass trajectory. The plots in th second row show the
trajectory of first diagonal element of the composite inertia (Ixx). The third
row shows the CoM of the robot for the x, y, and z axes in blue, green, and
red, respectively. The last row shows the x- and z-trajectories of the feet for
the duration of one gait cycle: the position of the front and rear right foot
on the x-axis in orange and blue, and the corresponding foot positions on
the z-axis in olive and dark blue.80



7 Conclusion
In this thesis, we integrated wheels and leg mass into the control framework of a
hybrid quadruped robot to enable driving-steping and driving-jumping behaviors,
and we achieved agile and long-range navigation for a hybrid quadruped robot
over difficult terrain.

Although the works discussed in Chapter 2 mostly assume massless legs in their
methods, in this work the wheels are heavy and large relative to the robot and
could no longer be ignored. Therefore, we included the shape and size of the wheels
in the kinematic model of the robot to obtain the exact ground contact point
and velocity, which proved to be helpful in increasing the accuracy of the state
estimation. We formulated the state estimation problem to include the velocities
of the wheel joints and their contribution to the overall position of the robot in the
filter state. This method allowed the simultaneous correction of the body position
and the position of the foot contacts.

The presented time-varying RBD for the MPC proved to be successful in improv-
ing the accuracy of the robot in tracking the reference trajectories, especially for
the non-symmetric gaits (i.e. walking). The improvement was more pronounced
for more dynamic trajectories, e.g., jumping or simultaneous driving and turning.
The predictive controller optimizes the given reference trajectory by trading off
control effort and tracking accuracy, resulting in a different trajectory. To keep
the optimization convex for our time-varying dynamics model, we needed to pro-
vide the body orientation and foot positions in advance for the duration of the
prediction horizon. This requirement made it even more important to generate
more accurate reference trajectories that would be close to the optimized trajec-
tory. Therefore, we explained our methods for generating reference trajectories for
locomotion and jumping with higher accuracy.

The driving assistant was able to minimize the number of swings, thus reducing
the energy consumption of the robot. The robot was able to drive while keeping
all legs in contact, and kept the legs in the desired positions by making small
swings. It was able to free a stuck foot behind a large obstacle by stepping over it,
and respond to disturbances by taking steps while driving with the wheels. The
robot could drive while turning slowly with very small swings. Stepping commands
requested by the user were executed simultaneously with seamless transitions of
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the gait properties (frequency, swing height, and swing duration).
Our approach, to the best of our knowledge, demonstrates a quadruped robot

that can jump while driving with wheels for the first time.
In future work, terrain information will be used in planning the jumping mo-

tion and determining the target foot positions. The target foot positions can be
tracked by the control framework with a relaxed area for the controller to shift
the target foot position to optimize it for its balance. The trajectory generated for
the jumping motion requires the involvement of the user to adjust the parameters.
However, these will be optimized using an offline optimization method considering
an accurate dynamics model of the robot.
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