
�����������������������
������
�������������
�����������������������
 �����

	���������
����������
��������

���������!������

Rheinische
Friedrich-Wilhelms-Universität Bonn

Master Thesis

Quadrupedal Footstep Planning Using Learned
Motion Models of a Black-Box Controller

Author:
Ilyass Taouil

First Examiner:
Prof. Dr. Sven Behnke

Second Examiner:
Prof. Dr. Maren Bennewitz

Supervisor:
Daniel Schleich

Date: April 12, 2022

Declaration

I hereby declare that I am the sole author of this thesis and that none other than
the specified sources and aids have been used. Passages and figures quoted from
other works have been marked with appropriate mention of the source.

Place, Date Signature

Bonn
, 12104122 Rolled

Abstract
Autonomous robotic systems are increasingly entering new domains and applica-
tions, including search and rescue, inspection, and logistics. However, for such
systems to be valuable in real-world scenarios, they must be able to autonomously
navigate irregular terrains efficiently and robustly. As the real world presents itself
unstructured and unknown.

Legged robots in particular offer a high degree of mobility and versatility com-
pared to their wheeled counterparts, allowing them to practically go anywhere. In
fact, legged locomotion has the potential to adapt to different types of terrain by
deliberately stepping on discontinuous locations. In order to achieve this, such sys-
tems must be able to reason about the local terrain patch being traversed to find
suitable stepping locations, which tend to be sparser in complex terrains compared
to flat ones.

In this thesis, we present a local motion planning pipeline that enables quadrupeds
to traverse irregular terrains consisting of different obstacles, such as steps and
gaps. We do so by extending the capability of a walking controller that is able to
track high-level reference velocities, but is unable to generate on-demand trajec-
tories and torques for target footstep locations. More precisely, we learn a set of
motion models for the controller that map high-level velocity commands to CoM
and footstep displacements. We then integrate the learned models with a foot
costmap computed from the output of an elevation mapping algorithm, and use a
variant of the A∗ algorithm to plan the CoM trajectory, footstep sequences, and
corresponding high-level velocity commands.

We evaluate the method in simulation in three different environments, and
present an evaluation of its performance compared to a blind whole-body-control
locomotion. Our planner outperforms a blind locomotion in the number of unsafe
contacts, minimum feet distances kept from closest obstacles, and terrain traversal
success.

Contents
1 Introduction 1

2 Problem Formulation 3
2.1 Approach and Contributions . 3
2.2 Components . 4

2.2.1 Whole-Body Controller . 4
2.2.2 Elevation Mapping . 5
2.2.3 Discrete Planning . 7

3 Related Work 9
3.1 Traditional Approaches . 9
3.2 End-to-End Approaches . 10
3.3 Hybrid Approaches . 11

4 Method 13
4.1 Prediction Models . 14

4.1.1 Data Acquisition . 15
4.1.2 Footstep Extraction . 16
4.1.3 Dataset Generation . 18
4.1.4 Training . 20

4.2 Planning . 21
4.2.1 Height Map Processing . 21
4.2.2 Models Interface . 25
4.2.3 Logic . 26

5 Evaluation 33
5.1 Models Evaluation . 33

5.1.1 CoM Models . 33
5.1.2 Footstep Models . 36

5.2 Planner Evaluation . 39
5.2.1 Staircase Environment . 40
5.2.2 Gaps Environment . 45
5.2.3 Waypoint Environment . 49

vii

Contents

6 Conclusions 53

Appendices 55

viii

1 Introduction
Autonomous systems are continuously entering new domains and applications in-
cluding manufacturing, search and rescue, inspection, and logistics. Significant
leaps have been made in making these systems operational, demonstrating enor-
mous potential for the future.

On the other hand, for such systems to be deployed on all sorts of settings —be
it natural, urban, or industrial— they must be able to robustly navigate difficult
terrains, as the real world presents itself unstructured and unknown. Therefore, an
appropriate sensory suite that allows a robotic system to perceive the environment,
localize within it, and execute the planning and control frameworks in real-time
is required. Thanks to the progress made in hardware design, compute capability,
and control algorithms in the last years, mobile robotic systems have come a step
closer to being able to be deployed on all sorts of scenarios, including ones that
present themselves with hurdles, unexpected obstacles, and irregularities in the
terrain [2].

Legged systems in particular offer high mobility and versatility that enables
them to overcome different obstacle sizes and patterns, such as stairs and gaps,
while not suffering the same limitations of their wheeled counterparts. These in-
clude the need of large wheel diameters to overcome obstacles, and a stable ground
support for the continuous rolling motion. In comparison, legged locomotion can
adapt to the terrain through a selective and deliberate stepping maneuver at dis-
continuous locations [9], at the cost of added layers of complexity compared to the
powerful simplicity of wheeled systems.

Many legged systems have been developed through the years for research pur-
poses. These include bipedal human scale robots, like Atlas [17], WALK-MAN
[40], and Valkyrie [28]. However, bipedal locomotion is generally still behind the
current performance of multi-legged platforms, in terms of speed and energy effi-
ciency [2]. Examples of multi-legged systems such as quadrupeds that showcase
better locomotion performances than most humanoids include the HyQ2Max [36],
ETH’s ANYmal [12], Boston Dynamics’ Spot [7], and Unitree Robotics’ AlienGo
[32].

The structure of the thesis is as follows: Chapter 2 describes the problem formu-
lation, gives a high level overview of the approach, states the assumptions made,

1

1 Introduction

and briefly introduces third party components used in the proposed method. Chap-
ter 3 presents the main paradigms available in the literature relevant to this work.
Chapter 4 explains in detail the overall approach of the thesis. Chapter 5 presents
the metrics used for the evaluation and the results obtained. Finally, Chapter
6 summarizes the method presented in the thesis and offers a reflection on its
limitations and possible extensions of the work.

2

2 Problem Formulation
Legged locomotion has the ability to adapt to different types of terrain by de-
liberately stepping on discontinuous locations. In planar and obstacle free envi-
ronments footholds can be chosen freely as long as they respect the stability and
kinematic constraints of the system. On the other hand, it is only in challenging
terrains that legged robots’ potential can start to unveil. In such scenarios, the
legged system must be able to reason about the surrounding local area in order
to select the best contact locations, which are inherently sparser compared to flat
terrains.

This thesis addresses the development of perceptive locomotion skills for legged
robots whose Whole-Body Controller (WBC) is unable to generate on-demand
trajectories and torques given target feet locations. The AlienGo robot is an
example of such system. Its internal controller determines the required footstep
locations to keep the robot balanced given a reference velocity command, but it
does so in a purely reactive manner using proprioceptive sensory data to maintain
stability. We therefore seek to extend the capabilities of such quadrupeds by
planning high-level velocity commands that will result in safe footstep locations in
order to navigate complex terrains. To do so, we use exteroceptive sensory data
and a set of learned motion models for the robot’s internal controller treated as a
black-box.

2.1 Approach and Contributions
The proposed solution is formulated as a motion planning problem that aims at
finding the Center of Mass (CoM) trajectory, footstep sequences, and correspond-
ing velocity commands that allow the AlienGo robot to autonomously navigate an
irregular terrain. We design the planner to work locally. Hence, we leave global
trajectory planning to third party algorithms whose output can be fed to our local
planner. Furthermore, we do not assume any prior information about the terrain,
which has to be sensed and reconstructed in real-time for the purpose of planning.

The motion planner has several modules to it. A set of trained motion models
that map velocity commands —fed to the walking controller— to footstep and

3

2 Problem Formulation

CoM displacements in order to predict the next CoM and feet poses. A modi-
fied elevation mapping algorithm —that uses a linear filter to approximate the
cell’s height instead of a Gaussian distribution— that reconstructs the geometri-
cal representation of the environment as a 2.5D grid map, and from which a foot
costmap is computed describing which terrain locations are desirable to step onto
and which are not. Finally, a search algorithm that integrates the trained motion
models and foot costmap is used to plan locally optimal footstep sequences.

We therefore contribute with a computationally efficient local motion planner
able to plan safe footstep locations for any legged system using learned motion
prediction models and real-time perception.

2.2 Components
We identify three main components which are essential for the success of our
approach, but which have not been developed for the purpose of this thesis: a
walking controller that keeps the robot stable during motion, an elevation mapping
algorithm that builds a geometric reconstruction of the local environment, and
a graph search algorithm for the planning process. These modules are briefly
introduced below as they form the basis of this work.

2.2.1 Whole-Body Controller
The AlienGo robot comes with an internal Whole-Body Controller (WBC) that
maintains the system stable while in motion. The controller is able to balance
using different dynamic gaits while being able to handle different terrain conditions
and slopes. On the other hand, AlienGo’s controller is closed-source and is only
available with the real system. Hence, the controller proposed by Raiola et al. [29]
is used for simulation and development purposes given its open-source nature. In
this subsection, we briefly introduce the concept of Whole-Body Control, and give
an overview of the controller presented in [29].

Growing research interest in robotics has led robots to become increasingly
proficient in performing many different tasks. Running, jumping, stair climbing,
and object manipulation being some of them. However, each of these tasks is
addressed individually most of the times and this imposes a limitation to the
real world usage of such systems. The ability of a robot to simultaneously and
successfully execute multiple actions is an ongoing area of research. Whole-Body
Control has been proposed as a promising research direction that aims to define a
small set of low-dimensional rules that are enough to guarantee the execution of

4

2.2 Components

any single task or simultaneous tasks whenever feasible, while exploiting the full
capabilities of the entire body [37].

Typical WBC formulations for legged robots design controllers and planners for
the locomotion problem in a loosely coupled fashion [19, 42], where the controller
typically needs the CoM trajectory to ensure the stability during locomotion. This
requires a state estimation algorithm to obtain the CoM’s position and linear
velocity [4, 25]. However, planning trajectories for the CoM is not trivial due to
drifts introduced by the state estimation and the fact that multiple constraints
have to be satisfied in the CoM planning process [29].

The controller described in [29] builds on top of Hierarchical Cartesian Impedance
control with Quadratic Programming (QP) optimization approaches [15, 21]. It
extends on them by proposing a novel locomotion framework that avoids the spec-
ification of a task for the CoM in terms of planning and control making the frame-
work planner-free. This has the advantage of not requiring an input from a state
estimation algorithm in order to obtain the CoM’s position and linear velocity.
This simplifies the formulation of the locomotion framework as the robot’s con-
straints are not further limited by the CoM trajectory planning. Moreover, the
controller keeps the robot in a kinematically appealing configuration by keeping
the joints far from their limits, while maintaining good leg mobility and being
robust on rough terrains. In order to reach these results the controller uses priori-
ties. This is a strategy to deal with conflicting tasks, where some are more critical
than others. The strategy ensures that the high priority tasks are achieved at the
expense of the lower priority ones.

2.2.2 Elevation Mapping
The ability to perceive and map an environment is key to allow mobile robotic
systems to navigate a complex terrain safely and efficiently. Fankhauser et al.
[11] proposed a terrain mapping algorithm which is independent from any global
localization relying solely on a relative state estimate and on-board sensor measure-
ments. In classical world-centric mapping approaches the map is always associated
with an inertial frame, requiring an accurate global localization to obtain a glob-
ally consistent map. Therefore, to remove the need of a global localization, the
authors formulated the mapping approach as robot-centric, where the mapped ter-
rain is associated with the current pose of the robot instead of an inertial frame.
The robot-centric map is always a local representation of the surrounding terrain,
where the regions inside the robot’s current field of view have the highest accuracy,
while older parts of the map accumulate uncertainty.

The underlying structure of the proposed elevation mapping algorithm is a grid-

5

2 Problem Formulation

based 2.5D height map representation of the terrain, where each cell (x, y) in
the map describes the terrain height and variance at that location. Due to the
simplicity of the grid map structure this type of terrain representation allows for
better scalability and an efficient data access and processing, which is essential for
our planning problem. The height map reconstruction consists of three phases: a
measurement update, a motion update, and a fusion process.

Measurement Update. In the measurement update phase the latest range
sensor measurements, consisting of spatially transformed 3D points from the sensor
frame to the map frame, are used to update the height map. Each measurement
is mapped to its corresponding 2D cell in the grid and its value is updated using
a Gaussian probability distribution p̃ ∼ N (p,σ2

p) with mean p and variance σ2
p.

To obtain the variance σ2
p of the height measurement the Jacobians for the sensor

measurement JS and the sensor frame rotation JΦ are derived and used for the
variance computation. If multiple measurements with different heights fall into
the same 2D cell, the highest elevation is kept for the update, and the other
measurements are dropped.

Motion Update. During the motion update phase, which happens whenever
a motion of the robot relative to the inertial frame occurs, the elevation map data
needs to be updated as it is defined relative to the pose of the robot. Therefore, the
mean and variance values of each cell would have to undergo an update depending
on the uncertainty of the motion as well as on the estimates of the surrounding
cells. However, performing such a computation for each cell is computationally
expensive. Instead, the elevation map structure is extended with an additional
layer where the 3 × 3 spatial covariance matrix for each cell is stored, and the
full computation is left out until required. The diagonal values of the covariance
matrix store the variance of the height estimate, as well as the approximation of
the horizontal uncertainty brought by the grid discretization defined as (d/2)2,
where d is the length of the grid cell size.

Fusion Process. In the map fusion phase, which can be triggered on request,
the elevation map data is fused to obtain a more accurate representation of the
terrain. Here, the mean height estimate of each cell is computed as the weighted
mean from all cells within a 2σ confidence ellipse in the xy − plane. The lower
and upper confidence bounds of the height estimation are also inferred from the
surrounding cells within the 2σ confidence ellipse.

The above method is made available by the authors as an open-source ROS
package [1]. For the purpose of this thesis, we use a modified version of this
software that approximates the height value at each cell through a linear filter
instead of a Gaussian distribution. Therefore, we do not require computing the
expensive Jacobians which take significant CPU resources. For a similar reason,

6

2.2 Components

we also do not make use of the fused elevation map, but instead work directly with
the raw height map.

2.2.3 Discrete Planning
There is a fundamental need in robotics to have a set of algorithms that convert
high-level specifications of general tasks from humans into low-level descriptions of
how to move. Motion planning and trajectory planning are usually used to describe
these kinds of problems [22].

Planning problems involve a state space that captures all possible situations in
which a robot can find itself, defined as the minimum set of parameters that can
uniquely identify the robot’s position in the world. All planning problems involve
a sequence of decisions that must be applied over time in order to generate actions
that affect the state. Ultimately, the general framework of a motion planning
problem entails starting in some initial state and trying to reach a destination
goal through a careful action selection.

One of the main challenges in developing practical path planners is that the
robot control space and trajectories are continuous. Much of the prior work for
discrete state spaces neglects this fact, ultimately producing paths that are non-
smooth and that generally do not satisfy kinematic feasibility. Typical discrete
state space approaches make use of the A∗ [14] algorithm. A∗ is a graph search
algorithm that seeks to find a path between a start and a goal node having the
minimum cost through an iterative and optimal path extension. It does so by
expanding the node, and hence the overall path, whose cost is the minimum. The
costs used to decide which node n to expand are two: g(n) and h(n). g(n) is the
cost of the path from the start node to n with minimum cost found so far by A∗,
and h(n) is an admissible heuristic that estimates the cost of an optimal path from
n to a goal node.

The method proposed in [6] addresses the problems mentioned above by using
a variant of the A∗ algorithm applied to the kinematic state space of the vehicle,
but with a modified state-update rule that captures the continuous state space of
the system in the search nodes of A∗. In fact, for each discrete node corresponding
to the center of the cell the corresponding continuous state space is associated.
The method also applies a non-linear optimization that leads to a local optimum
to improve the quality of the solution obtained in the state-update step. The path
obtained is not guaranteed to be the minimal-cost solution due to its continuous-
coordinates states merging. However, the solution is guaranteed to be smooth
instead of piecewise-linear as in the case of conventional A∗.

In this thesis, the motion planner is formulated discretely using the A∗ algorithm

7

2 Problem Formulation

with the modified state-update rule presented in [6] but without the non-linear
optimization, in order to find the locally best state configuration for the quadruped
to overcome challenging terrains.

8

3 Related Work

3.1 Traditional Approaches
Kolter et al. [20] presented one of the first terrain aware control pipelines. The
pipeline is based on three components: a high-level planner, a low-level planner,
and a low-level controller. The high-level planner computes a foot costmap de-
scribing the safety of a terrain location through a linear combination of features
extracted from the terrain. This is then used to find a set of footsteps that min-
imizes the traversal cost. The low-level planner plans the trajectories for the
CoM and swinging feet in order to achieve the desired footsteps computed by the
high level planner. The low-level controller executes the trajectories via inverse
kinematics and a PD controller. Kalakrishnan et al. [18] proposed a similar ar-
chitecture that applies learning to compute the foot costmap without the need of
terrain feature engineering. The approach has several modules to it. A terrain
reward map generator that learns a foothold ranking function from expert demon-
strations. An approximate body path planner that plans a body path through the
terrain. A footstep planner that computes the next four optimal footholds using a
greedy search. A pose finder that generates the body pose given the swinging feet
locations. A body trajectory generator that generates a smooth body trajectory.
A foot trajectory planner that generates the swinging leg motions. Finally, a PID
controller to track and execute desired trajectories. Both methods assume a static
gait locomotion, a pre-scanned environment, and a motion capture based state es-
timation. Fankhauser et al. [10] introduced a perceptive rough-terrain static gait
locomotion planner where footholds are selected from a binary foothold score map.
The quality metrics used to compute the costmap with respect to the terrain are
the slope and curvature, height standard deviation, and uncertainty interval. The
costmap is then used by the planner to find the next feasible footstep using an iter-
ated search over the nominal foothold search space. A pose optimizer then checks
the kinematic feasibility of the foot location. Finally, a collision-free trajectory is
computed for the swinging leg. The approach reconstructs the terrain in real-time
as a 2.5D grid map, and uses a proprioceptive-based state estimation. Jenelten
et al. [16] presented a foothold optimizer locomotion planner that finds locally
optimal footholds in a height map generated in real-time, without the constraint

9

3 Related Work

of a static gait locomotion. The task is split into four independent batch-search
optimizations, one for each foot. Each optimization executes a batch search over
neighboring cells of the nominal foot. Each iterated cell has an assigned objec-
tive cost to it, based on defined objectives and constraints criteria. The optimal
footholds are the ones with the smallest cost.

3.2 End-to-End Approaches
Gangapurwala et al. [13] presented a model-based and data-driven approach to
quadrupedal planning and control over uneven terrains. A Reinforcement Learning
(RL) based footstep planning policy is trained that maps the robot state and
terrain information to 2D feet location. Additionally, a domain adaptive tracker
policy and recovery control policy are incorporated with the footstep planning.
The former corrects aggregate errors in the joint trajectories execution to reach the
planned footholds with corrective torques. The latter stabilizes the system in case
of perturbations or unexpected events with desired joint positions. To account
for terrain information in the footstep planning, exteroceptive feedback in the
form of a local elevation map is encoded in the robot state along with the robot’s
proprioceptive sensory information. The encoding process is sped up by using a
pre-trained convolutional neural network. Miki et al. [24] presented an encoder
based solution that integrates both exteroceptive and proprioceptive perception.
An encoder is trained in simulation end-to-end in three stages. First, a teacher
policy is trained with RL to follow a given target velocity over randomly generated
uneven terrains with random disturbances, while having privileged access to all
information. Then, a student policy is trained to mimic the teacher policy’s actions
without access to privileged information. Thereby building a belief state about
the unobserved information using a recurrent encoder. Height samples extracted
from the elevation map can then be combined with proprioceptive data and fed
to the network to obtain actuation commands. Tsounis et al. [41] presented a
set of trained neural network policies that combine model-based motion planning
and RL. A two-level hierarchical approach comprising a Gait Planner (GP) and
a Gait Controller (GC) is used. Both components are RL based policies trained
end-to-end. The GP uses proprioceptive and exteroceptive data to generate a
finite sequence of support phases. The GC is a policy serving as a hybrid motion
planner and controller, that uses the computed support phases in order to output
joint position references and respective joint torques. Peng et al. [27] presented a
similar two-level hierarchical control framework for bipedal locomotion. First, low-
level controllers operating at fine timescale are trained in order to achieve robust

10

3.3 Hybrid Approaches

walking patterns that satisfy stepping-target and style. Then, high-level controllers
are learned that plan at the timescale of steps by invoking desired footstep targets
from the low-level controllers. Terrain map information are directly used by both
controllers for the decision making.

3.3 Hybrid Approaches
The closest approaches to ours are the ones from Chestnutt et al. [5], and Schmitz
et al. [35]. In [5], the authors presented a footstep planner for the humanoid robot
ASIMO to navigate towards a goal while avoiding obstacles and unsafe stepping
locations. The footstep choices are based on the current state of the robot, and
are computed using the A∗ search algorithm in order to find the optimal sequence
of footstep locations up to a pre-defined planning horizon. Given the robot’s level
of control —that does not allow to specify desired foot locations—, the authors
develop a motion model that is able to map the robot’s state to the 2D displace-
ment of the swinging leg using recorded data from a motion capture system. The
environment is represented as a 2D grid where each entry describes if the location
is a safe stepping space or not. The search of optimal actions is performed with
the A∗ algorithm using three heuristic costs. A footstep validity cost that accounts
for the desirability of the step, a step cost that describes the effort of the swinging
motion, and the estimated running cost which is the estimated remaining cost to
the goal. In [35], the authors presented a method that generates ball approach
trajectories for humanoids using footstep planning with the A∗ algorithm. A set
of pre-computed footstep sequences are used to learn a fast online policy in order
to meet the requirements of resource constrained devices. To achieve this, the
authors use a footstep prediction model [34] to map a gait velocity vector to a
step location for the swinging foot in the Cartesian space. Using a small discrete
set of actions, a near optimal trajectory to the target states is computed using
a simple Euclidean distance heuristic. The computed trajectories are then used
to train the online policy that outputs the desired velocity command to reach
the next footstep location. By a successive recall of the policy the same footstep
sequence that was initially planned with A∗ will be reproduced. The footstep pre-
diction model used in the search estimates the Cartesian location and orientation
of the next footstep given the same inputs that control the walking controller of
the robot. The footstep prediction model is learned using recorded data from a
motion capture system, obtained by sending random walking speeds and direc-
tion to the robot’s walking controller. The recorded data is then post-processed
to extract footstep data used for model fitting, where a footstep is defined as a

11

3 Related Work

step where the feet have approximately the same height and velocity. Then, three
independent one-dimensional functions are fitted in order to predict the foot pose
in the xy − plane as well as orientation. Linear regression is used to fit all three
functions due to the strong linear character in the recorded data. Magana et al.
[23] presented a real-time dynamic foothold adaptation strategy based on visual
feedback. The proposed method adjusts the landing position of the feet in a fully
reactive manner, through a corrective trajectory along the swing phase, generated
by a reactive controller framework, using the input of a self-supervised foothold
classifier convolutional neural network.

12

4 Method

Figure 4.1: Overview of the method.

In this chapter, the motion planning pipeline, whose overview is shown in Fig.
4.1, is explained in its details. At a high level the pipeline consists of five blocks. A
models interface that uses the learned motion models to predict the robot’s CoM
and swinging feet displacements. An elevation mapping module that reconstructs
the local terrain traversed as a 2.5D grid map in real-time. A map processor
that receives as input the generated height map of the terrain and processes it to
compute a foot costmap describing safe and unsafe stepping locations. A planner
module that implements the A∗ variant algorithm and integrates it with the mod-
els interface and map processor to plan local footstep sequences and corresponding
high-level velocities. Finally, a controller interface that receives a high-level ve-
locity command and generates respective joint trajectories and torques.

We develop and integrate the various modules using the Robot Operating System
(ROS) [31] middleware and its communication paradigm. The elevation mapping
runs on its own ROS node and publishes the elevation map at a frequency of 30Hz,
while the planner, models interface, and map processor are executed on a different
node. However, the map processor runs on a separate thread and makes available
the required terrain information via caching.

13

4 Method

4.1 Prediction Models
The AlienGo’s internal controller uses proprioceptive sensory data in order to
maintain balance. The controller is able to generate joint trajectories and torques
for a given high-level velocity command, but is unable to do the same for target
feet locations. This, ultimately hinders the capability of the system to navigate
complex terrains.

Therefore, we propose to learn a set of motion models that can predict the
robot’s CoM and feet displacements given the current state of the robot and a
velocity command. These models can then be used to plan a sequence of footsteps
and its respective high-level commands that allow the quadruped to safely navigate
irregular terrains.

The motion models are necessarily mapping functions that map an input vector
to displacement quantities for the CoM and moving feet. More precisely, such
mappings are fundamentally regression tasks as we seek to predict continuous
values representing the displacements. As such, we define the models as a set of
regression problems and use machine learning to learn the mappings.

There are different approaches that can be used to learn our models. One possi-
bility is to build a mapping table, where for each velocity command we assign the
mean displacement that the CoM and swinging feet would undergo. Although such
an approach might work for simple terrains, it comes with a significant disadvan-
tage as ambiguities cannot be easily modeled. For example, given the same input
vector it could be that the respective displacements vary depending on the velocity
at which the robot is moving at or other correlated variables. We could extend
the table to include all possible mapping combinations, but it is intractable to do
so. A more general approach could be to use a Neural Network (NN) [3]. This is
a biologically inspired method that can learn arbitrary high dimensional functions
in order to fit the data using gradient descent optimization techniques. However,
for the purpose of our planning problem using a NN is not the best option, as it
cannot be easily interpreted due to the black-box nature of the algorithm. Mak-
ing it difficult to understand which predictors are statistically more significant.
Moreover, due to the strong linear character between the velocity commands and
displacement quantities, a better approach is found in Regression Analysis (RA)
[39] methods. RA is a statistical process that estimates the relationship between
the dependent variable or response, and the independent variables or predictors.
One of the most common form of RA is Multivariate Linear Regression (MLR)
[38], where a complex linear combination in the form of a first-degree polynomial
that fits the data is computed. The strong linear character of the data, powerful
simplicity of the MLR method, ease of integration and quick computation, and the

14

4.1 Prediction Models

ability to deal with prediction ambiguities through complex linear combinations,
makes MLR the best option to train the motion models.

We define the CoM models to predict the absolute displacement of the CoM
with respect to the world frame. Similarly, we also define the footstep models to
predict the absolute displacements of the swinging feet with respect to the world
frame. However, we also evaluate the possibility of predicting the relative pose of
the moving feet with respect to the CoM. An empirical evaluation for all models
and a comparison between the two possible prediction choices for the footstep
models is given in Chapter 5.

The input used for the CoM and swinging feet predictions is the same and
consists of: the previous velocity command, the current velocity command, the
CoM velocity, and the relative feet poses with respect to the CoM. The velocity
commands are a 3-dimensional vector Vcmd = [Vx, Vy, VΘ] whose components are:
a linear velocity in x or forward speed, a linear velocity in y or lateral speed, and
an angular velocity around the z axis or rotational speed. The CoM velocity is a
6-dimensional vector describing the linear and angular velocities of the robot. The
relative feet poses are an 8-dimensional vector consisting of the 2D position in the
xy − plane for each foot with respect to the CoM.

Finally, in order to train the motion models and learn the underlying behavior
of the robot, representative data samples need to be collected and processed for
the training. In the coming sections we present the overall pipeline for the training
process. This consists of the following steps: data acquisition, footstep extraction,
dataset generation, and training.

4.1.1 Data Acquisition
The data acquisition step consists of gathering the quadruped’s high-level state
information, while it executes various motion commands, so that we can generate
the dataset to train the motion models. The data collection happens on a simulated
flat terrain, as shown in Fig. 4.2, with the assumption that the controller behavior
does not drastically change on steeper terrains. Furthermore, we acquire data for
a set footstep height of 6.5cm.

To acquire the data we use the robot’s controller interface that receives a 3-
dimensional velocity command as input. Based on this interface, we define a
strategy to gather the data such that they reflect all possible behaviors of interest
to the planning process. This entails exhausting all possible input permutations
that can be commanded to the robot in terms of movement types and velocity mag-
nitudes. In particular, the movements considered are: forward movements, lateral
movements, and rotational movements. Backward movements are not considered

15

4 Method

as the robot does not have back sensors that allow a safe backward motion. The
velocity magnitudes, representing the percentage of the maximum velocity to use,
range from 0.1 to 1.0 for forward movements, and from 0.1 to 0.9 for non-forward
movements as the controller looses stability at 1.0. We use a step size of 0.1 to
create the set of velocities.

For the robot to efficiently overcome irregular terrains that include steps and
gaps, it has to continuously move between acceleration, deceleration, and constant
speed patterns. Acceleration and deceleration phases are necessary to overcome
unsafe stepping locations. For example, in the case of a large gap the robot would
have to decelerate while approaching the hole, only to then accelerate taking a
big enough step to overcome the gap. Constant speed patterns are also necessary
in case of continuous and obstacle-free terrain patches, where the robot can move
as fast as possible commanding constant velocities. Therefore, the motion models
must be able to predict the displacements for all three patterns. To do so, we
acquire data that include continuous, accelerating, and decelerating behaviors for
all movements of interest and velocity magnitudes. More precisely, for each move-
ment and each velocity magnitude a continuous velocity command is fed to the
controller for 2 minutes while high-level state information are gathered. Similarly,
for each movement and starting velocity magnitude, we command an acceleration
to each higher velocity magnitude for 1.5 seconds, followed by a deceleration to
the starting velocity magnitude of 1.5 seconds. This alternation continues for 2

minutes and is repeated for each allowed velocity magnitude.
The commands are sent to the controller at a frequency of 1KHz. Every logged

sample consists of the velocity command sent, the state estimation of robot’s CoM,
the CoM velocity vector, and the relative 2D pose of each foot with respect to the
CoM.

4.1.2 Footstep Extraction
The acquired high-level state information is a high frequency time series of data
samples. However, what we are interested in for the training of the models is
footsteps. These are transitions between feet configurations where one of the
diagonally opposite foot-pair swings in order to move the robot in the commanded
direction. Therefore, we define a footstep as a feet configuration where each foot
is in contact with the ground at the end of the swinging transition.

In the footstep extraction step, we seek to find all instances belonging to the data
samples acquired that match the given footstep definition. We can identify such
instances using force or height information of each foot, as well as a combination
of these. More precisely, when the height difference between the feet is minimal

16

4.1 Prediction Models

Figure 4.2: Simulated terrain in Gazebo [30] where the data is acquired.

or the sensed force at each foot is significant, the end of a footstep is identified.
Using a combination of height and force measurements would be necessary if

the extraction process is carried on data acquired on uneven terrains. As only
using a height difference constraint would not be sufficient to identify a footstep
because the feet can be in contact at different heights. Similarly, only using force
measurements can cause a lot of misdetections.

However, we acquire the data on a flat terrain, assuming that the walking con-
troller does not drastically change its behavior in terms of CoM and swinging
feet displacements when navigating uneven terrains. Thus, we only use height
measurements for the extraction process. Given a sequence S of collected data, a
sample s ∈ S is a footstep if the difference between the absolute height differences
of the front-left and rear-left as well as the front-right and rear-right is below a
threshold ε:

(|hfl − hfr|− |hrl − hrr|) < ε,

where hfl, hfr, hrl, and hrr are respectively the front-left foot height, front-
right foot height, rear-left foot height, and rear-right foot height. We use a height
difference threshold ε of 0.002m.

Furthermore, due to irregularities in the kinematic configuration adopted by the
quadruped in simulation, the above criterion is not enough to detect the end of a
footstep. This is because in order to correct the irregular posture the controller
commands corrective trajectories that might break the cyclic alternation of the

17

4 Method

swinging pair or that does not allow the moving feet to reach the set footstep
height. If enough of these instances are present in the dataset used for the train-
ing, it could hinder the models’ accuracy. Therefore, while performing the footstep
extraction, additional criteria are imposed. Namely, whenever the minimal height
difference criterion is met, we also check that the swinging pair is diagonally oppo-
site and that the maximum footstep height reached is in line with the set footstep
height in the controller. These measures help to filter out footsteps that are con-
sequences of irregular behaviors. Moreover, as we use an inequality constraint for
the height criterion, there exist multiple instances that meet it. Hence, a minimum
time has to pass before another footstep can be extracted. This time is defined as
1/fsw where fsw is the swing frequency.

Figure 4.3: Examples of extracted footsteps on a time series of foot heights plotted using
PlotJuggler [8]. The top row represents detected footsteps with a boolean
value of 1. The remaining rows are respectively the heights of the front-left
foot, rear-left foot, front-right foot, and rear-right foot with respect to the
CoM.

4.1.3 Dataset Generation
Once the footsteps are extracted, an additional step is required before being able
to train the models. This entails generating the input dataset X and the label
dataset Y used for training and testing the models.

18

4.1 Prediction Models

The dataset X is the same for all models, and contains all required information
for the prediction. Given any two consecutive footsteps fi and fi+1, the set of
predictors fed to the models at time i to predict the displacements brought by the
footstep transition at time i + 1 is: the velocity command at time i, the velocity
command at time i+1, the relative 2D positions of the feet with respect to the CoM
at time i, and the CoM velocity state at time i. The two velocity commands allow
the model to learn to differentiate between continuous and accelerating patterns.
The relative 2D positions of the feet are fundamental to the predictions, as a
different step size might be taken based on the feet configuration. The CoM
velocity improves the accuracy of the models in situations of ambiguity. Such as
when the same two consecutive velocity commands and feet positions would yield
different displacements based on the current speed of the robot. The input dataset
X is obtained by aggregating the input vector described above for each consecutive
footstep pair identified in the extraction process.

The label dataset Y contains the CoM and feet displacements for each pair of
sequential footsteps. Given any two consecutive footsteps fi and fi+1, the CoM
displacement vector ∆CoM = [∆XCoM ,∆YCoM ,∆ΘCoM] is given by the difference
between odomi+1 and odomi. Where odomi+1 and odomi are the odometry esti-
mates of the robot’s CoM at time i + 1 and i, defined as 3D vectors describing
the (x, y) position and Θ orientation of the CoM with respect to the world frame.
Similarly, the displacement for each swinging foot ∆Fswing = [∆Xfs,∆Yfs] is com-
puted by taking the difference between the foot pose at time i + 1 and time i. A
foot pose is defined as the relative 2D vector describing the (x, y) coordinate of
the foot with respect to the CoM. However, as we are interested in the absolute
displacement of the swinging feet, and not the relative one, the CoM movement
has to be accounted for. Therefore, the respective CoM displacement is added to
the displacements of the swinging feet.

When computing the displacements for both the CoM and moving feet, the
CoM rotation with respect to the world frame has to be considered. As in the case
of significant rotation around the z-axis of the robot, the displacement vectors
for all non-rotational motions would have a significant component in both the x

and y direction, which is wrong. Hence, before computing the displacements, the
odometry estimates used to compute the CoM movement are rotated by applying
the inverse of the rotation matrix ROI , which represents the rotation of the world
frame I relative to the robot reference frame O. There is no need to apply the
same rotation to the feet poses as these are always relative to the CoM and not
the world frame.

19

4 Method

4.1.4 Training
The aim of the motion models is to accurately predict the displacements of the
CoM and swinging feet given a set of predictors. Due to behavioral differences for
the CoM depending on which diagonal foot-pair is swinging, two separate models
are identified, one for each foot-pair. Similarly, we also identify four different
models for the feet, one per foot, in order to account for intrinsic differences in
their behaviors.

For each CoM model, three separate models are trained for the x, y, and Θ

displacements. For each foot, two separate models are trained for the x and y

displacements. A total of 14 models are trained.
Given a strong linear relationship between velocity commands and the mean

displacements as well as low standard deviations for the mean values, for all
movements of interest and velocity magnitudes, a Multivariate Linear Regression
method is used to fit the data. This consists of a complex linear combination of
the predictors in the form of a first-degree polynomial. Fig. 4.4, 4.5, 4.6, 4.7,
and 4.8 show the linear relationships between the velocity magnitudes and mean
displacements for the CoM and feet, for all movements of interest. However, we
only show the displacements for the most significant axis. For example, for the
forward movement we only show the mean and standard deviation for the x axis,
as this is the direction with a meaningful displacement.

We use 80% of the data to fit the linear regression models. The remaining
20% is used to evaluate the accuracy of the learned models. The training and
testing dataset are further split into two subsets, one for each swinging foot-pair.
Depending on which model is being trained the corresponding subset is used for
the fitting. A total of approximately 19000 data points are used for training.

20

4.2 Planning

(a) Mean CoM ∆X. (b) Std. deviation CoM ∆X

(c) Mean footstep ∆X. (d) Std. deviation footstep ∆X

Figure 4.4: CoM and footstep mean displacement and standard deviation for a forward
motion.

4.2 Planning
The motion planning process consists of finding high-level velocity commands that
can be fed to the quadruped’s controller in order to overcome complex terrains.
To do so, we utilize a variant of the A∗. The graph search algorithm searches
over a discrete set of velocities and uses the trained motion models and terrain
information to find safe footstep sequences and respective velocity commands.

In this section, we explain the process used to obtain relevant information about
the traversed terrain. Furthermore, we also present how we integrate the motion
models, the terrain information, and the graph search algorithm together.

4.2.1 Height Map Processing
The elevation mapping algorithm provides a 2.5D height map representation of
the local environment patch being traversed by the robot. The goal of the map
processing module is to polish the raw height map values from erroneous or missed
measurements, and compute a similar grid structure describing which cell locations

21

4 Method

(a) Mean CoM ∆Y . (b) Std. deviation CoM ∆Y

(c) Mean footstep ∆Y . (d) Std. deviation footstep ∆Y

Figure 4.5: CoM and footstep mean displacement and standard deviation for a right
lateral motion.

(a) Mean CoM ∆Y . (b) Std. deviation CoM ∆Y

(c) Mean footstep ∆Y . (d) Std. deviation footstep ∆Y

Figure 4.6: CoM and footstep mean displacement and standard deviations for a left
lateral motion.

22

4.2 Planning

(a) Mean CoM ∆Θ. (b) Std. deviation CoM ∆Θ

(c) Mean footstep ∆Y . (d) Std. deviation footstep ∆Y

Figure 4.7: CoM and footstep mean displacement and standard deviation for a clockwise
motion.

(a) Mean CoM ∆Θ. (b) Std. deviation CoM ∆Θ

(c) Mean footstep ∆Y . (d) Std. deviation footstep ∆Y

Figure 4.8: CoM and footstep mean displacement and standard deviations for a counter
clockwise motion.

23

4 Method

are safe to step onto and which are not. An example of a typical processing results
in simulation is shown in Fig. 4.9.

The ROS middleware, and its message transport protocol, is used to subscribe
to the output published by the elevation mapping node. At every received height
map the respective data is stored into a cache. The cache gives a flexible way
to store the incoming data with the possibility of extracting specific height map
messages based on a desired timestamp. Although in our case we always use the
latest height map received. All computational steps in this module are delegated
to a separate thread to avoid blocking the main footstep planning logic.

At every thread cycle the latest height map is retrieved from the cache and is
converted to an OpenCV [26] matrix structure. This conversion is necessary in
order to apply common 2D computer vision techniques to the grid data using the
OpenCV library. In particular, we apply in consecutive order a dilation filter, an
erosion filter, a median filter, and a sobel filter.

The dilation operator fills sparse regions in the grid map using neighboring cell
height values. The output of the dilation is then filtered by an erosion operator in
order to remove extraneous sensor measurements. The erosion output is further
filtered by a median filter that smooths the grid map while preserving the borders.
A sobel filter operator then computes the gradients in the x and y direction used
to compute the magnitude of the overall gradient at each grid location. We then
clip the obtained magnitudes around a defined threshold to either 0 or 1 in order
to create a foot costmap. A value of 1 signifies a safe stepping location, while a
value of 0 an unsafe one.

However, directly using this costmap is not enough to guarantee that the robot
is not going to step in precarious locations, as the costmap only carries information
of where sharp edges appear in the grid map, but does not take into account the
robot’s foot radius. Moreover, due to errors in the prediction or inaccuracies in the
robot’s motion, the quadruped might not precisely step at the desired locations.
Therefore, we introduce an additional buffer zone that marks neighboring locations
to high gradient magnitude cells as unsafe to avoid stepping too close to the edges.

The buffer zone is obtained by first computing a distance transform, which
is a 2D matrix where each (x, y) cell carries the L2 distance to the closest cell
with a value of 1 in the foot costmap. These distances are then used to create a
new buffered foot costmap, where each cell location whose distance to the closest
obstacle is less than a defined minimum distance is considered an unsafe stepping
location.

This buffered costmap is generated for every processed height map and is added
as an additional layer to the grid map data structure from the elevation mapping
algorithm. Similarly, we also store the output of the median filter in a separate

24

4.2 Planning

layer. Both layers can be easily accessed by the planner in order to check if a
predicted footstep location is valid and if the maximum footstep height allowed is
respected.

Figure 4.9: (Top) The simulated terrain in Gazebo. (Middle) The raw elevation map,
generated by the mapping algorithm, color coded based on the elevation
values. (Bottom) Our processing output that colors in red unsafe locations
to step on, and in black safe ones using a minimum obstacle distance of 2cm.

4.2.2 Models Interface
To be able to use the trained models within the planning process these have to be
made available through some sort of interface.

25

4 Method

The ROS middleware offers a possible solution to this with its service protocol.
This, can receive a prediction request and return the predicted displacements as a
response. However, the overhead introduced by such a protocol is substantial, with
one prediction call taking up to 1 second. Yielding it unusable for our planning
time constraints.

Another possible solution is to use a ROS subscription protocol instead, where
we would publish whenever needed the set of predictors for the prediction pro-
cesses and obtain in return the CoM and swinging feet displacements over a topic.
However, this would required creating a separate node for the models interface
which comes at the cost of an increased communication overhead. Although, it is
not as severe as the service protocol.

Therefore, we opt to tightly integrate the motion models using a C++ interface.
More precisely, we extract the 15 parameters for each fitted model, one parameter
for every predictor plus the intercept, and store them in a vector structure. When-
ever a prediction is needed, the models’ vector structures of interest are fetched,
and the respective model displacement can be obtained by a simple dot product
with the predictors input vector. The aggregated output of the dot products is
an 11-dimensional vector storing the displacements of the CoM and swinging feet.
This output can then be used to update the CoM and feet poses in the world frame
accordingly.

By using a C++ interface, we are able to perform multiple prediction calls
with minimal computation time and communication overhead thanks to the tight
integration of the models with the planner.

4.2.3 Logic
In this section, we give an overview of the logic behind the motion planning
pipeline. First, we describe the input parameters of the planner. Then, we ex-
plain the main steps of the planning procedure, whose pseudo-code is shown in
Algorithm 1.

The motion planner receives as input 6 parameters: the previous velocity com-
mand, the start robot pose, the goal robot pose, the current CoM velocity, and the
relative feet poses with respect to the CoM.

The previous velocity command corresponds to the last executed high-level ve-
locity. In the case of an idle start —i.e. the robot is not moving— the previous
velocity is considered 0 for all components. The start robot pose, which describes
the current CoM pose, is obtained by extracting the latest state estimate from the
odometry cache. The goal pose, that represents the destination to be reached by
the robot, is obtained directly from the user. Both the start and goal poses are

26

4.2 Planning

defined as 3D vectors describing the (x, y) coordinates and the Θ rotation of the
robot in the world frame. The relative feet poses are obtained from the kinematic
tree of the robot.

The start and goal poses are then converted to height map grid coordinates
in order to obtain the respective row and column entries in the grid map for the
two poses. This is in order to facilitate boundary violations and duplicate node
expansion checks during the search process. Additionally, before the search process
can start, a state representation for the expanded node is created that contains all
required information for the prediction processes, the footstep validity checks, and
the path reconstruction. This consists of 7 attributes: the respective parent node
state representation, velocity command, costs, CoM grid coordinates, CoM world
coordinates, relative feet coordinates with respect to the CoM frame, and relative
feet coordinates with respect to the world frame.

The search process is carried in the world frame, where we search over a state
lattice graph unrolled from the initial robot state representation. Moreover, by
iterating over each allowed velocity command, we build a graph describing the
evolution of the robot’s states. Where each node corresponds to a state represen-
tation and each edge corresponds to a state transition as predicted by the absolute
motion models. The process to build this graph consists of four main steps: CoM
prediction, footstep prediction, footstep validity check, and cost update.

CoM Prediction. Given an expanded node’s state representation or state, in
the CoM prediction step we compute the next CoM pose in the world frame using
the output of the CoM motion models and the state’s CoM pose in the world frame.
The CoM models used are chosen based on which foot-pair is swinging next, which
we derive by observing the state’s relative feet poses with respect to the CoM. If
the expanded state, updated with the new CoM pose, is already present in the
visited list of our search process —i.e. the same CoM grid coordinates, current
velocity command, and CoM rotation were expanded before— or if it violates
the boundaries of the map, we stop the search and move to the next iteration.
Otherwise, we move to the next step.

Footstep Prediction. During the footstep prediction, we compute the pre-
diction of the next swinging feet locations. Similarly to the CoM prediction, we
choose which footstep models to use based on which foot-pair is going to swing
next. The absolute displacements obtained by the footstep prediction are added
to the state’s relative feet coordinates with respect to the world frame to obtain
the predicted moving feet world frame locations. The support feet are considered
to have no displacement. The obtained moving feet locations are then checked for
validity.

Footstep Validity Check. In the footstep validity check, we make sure that

27

4 Method

the predicted swinging feet locations are valid. We define a footstep to be valid if
two conditions uphold. First, the predicted feet locations need to fall on safe cells in
the buffered costmap. Second, the height difference between the pre-prediction and
post-prediction moving feet locations need to be less than the maximum footstep
height allowed. To carry out these checks the height map processor module is
used. The map processor takes as input the world coordinates of the swinging
feet before the prediction and after the prediction. These are then converted to
their corresponding grid coordinates in order to access the respective height value
in the processed height map, and assess if the footstep height is within the limit
allowed. Moreover, we use the same grid coordinates to check that the predicted
feet locations do not fall on an unsafe cell using the buffered costmap. If any of the
two conditions is false, the footstep is considered invalid and we stop the search in
order to move to the next iteration. Otherwise, we move to the last step.

Cost Update. In the final step, we compute the costs for the predicted state
transition node and construct a new state representation for it, which we either add
or substitute into the graph. The heuristic costs computed are two: a Euclidean
distance cost in order to move in the direction of the goal, and a feet configuration
cost in order to maximize the feet distances to the closest unsafe cell. In fact,
solely relying on the Euclidean cost and the footstep validity check might cause the
robot to step too close to the edges due to prediction errors or motion inaccuracies.
However, by maximizing the feet distances we can mitigate such errors. The feet
configuration cost is set to 0 if the swinging foot distance to the closest unsafe cell
is above a set maximum distance. Otherwise, the foot cost (Cfoot) is the difference
between the set maximum distance (Dmax) and the respective foot distance (Dfoot)
as shown below:

Cfoot =

{
Dmax −Dfoot, if Dfoot < Dmax.

0, otherwise.
.

We aggregate the computed foot cost for each swinging foot to obtain the total
feet configuration cost. We use a maximum distance (Dmax) of 7cm for the cost
computation. The total cost for the state transition node is given by adding the
Euclidean and feet configuration costs together. Once the total cost is computed,
we can construct the state representation for the new node by filling in the re-
spective attributes. We then check if the node’s state representation is already
present in the graph. This is done by comparing the CoM grid coordinates, cur-
rent velocity command, and CoM rotation attributes of the new state with each
state present in the graph. If the new state has a match in the graph, we compare
the states’ total cost and keep the state with the least cost. Otherwise, we simply

28

4.2 Planning

add it to the graph.
The search process continues in an iterative way by repeating the steps ex-

plained above for each expanded node. We always expand the node with the least
aggregated cost. The search stops either when the expanded node is the goal, a
footstep horizon has been planned for, or all the states in the graph are expanded.

Finally, if a path is found, the planner outputs a sequence of state representa-
tions describing the CoM trajectory, footstep sequences, and respective velocity
commands. This sequence is obtained by following the last expanded state’s par-
ent attribute recursively. We then use a simple control strategy that executes
the very first velocity command and re-plans the next footstep horizon as soon as
the feet are back in contact with the ground. If no path was found, the returned
sequence is empty, and we simply bring the robot to an idle position.

29

4 Method

Algorithm 1 Overall logic of the motion planning pipeline.
1: procedure Footstep Planning(vprev, start, goal, vCoM , feet)
2: f ← 0
3: sstart ← construct initial-state representation
4: S ← {sstart}
5: n← expand least-cost state representation from S
6: if n == goal or f == horizon or S == ∅ then return path
7: end if
8: for each velocity do
9: for each movement do

10: CoM Prediction:
11: Predict CoM for state n
12: if invalid CoM then
13: goto 9.
14: end if
15: Footstep Prediction:
16: Predict footstep for state n
17: Footstep Validity Check:
18: if footstep height > max height or invalid feet locations then
19: goto 9.
20: end if
21: Cost Update:
22: Construct state transition representation n

′

23: Compute total cost for n
′

24: if n
′ is a duplicate in S then

25: keep state with lowest cost
26: else
27: S ← S ∪ n

′

28: end if
29: f ← f + 1
30: goto 5.
31: end for
32: end for
33: end procedure

30

4.2 Planning

(a)

(b)

(c)

Figure 4.10: Examples of online footstep re-planning with a horizon of 4. Orange marker
represent the front-left foot, pink markers represent the front-right foot,
green markers represent the rear-left foot, and blue markers represent the
rear-right foot. Red regions correspond to inflated unsafe cells, while black
regions correspond to safe cells.

31

5 Evaluation
In this chapter, we evaluate the motion models and the motion planning pipeline
presented in Chapter 4. All experiments are executed on a system equipped with
an AMD Ryzen 9 3900X@3.8GHz and an NVIDIA GeForce RTX 3060 Ti with
8GB of RAM.

First, we present an empirical evaluation of the prediction models and offer a
comparison between the different design choices that led us to the final models.
Afterwards, we evaluate the full motion planning pipeline using the Gazebo simu-
lator on two types of environments and six different scenarios containing different
obstacles. Including steps of different widths and heights as well as various gap
lengths.

5.1 Models Evaluation
In this section, we evaluate and compare empirically the various design choices
concerning the trained linear regression models. We use two metrics for the eval-
uation: the R2 score and the Mean Absolute Error (MAE). The R2 score is a
percentage value between 0 and 100 that describes the proportion of the variance
in the dependent variable that is predictable from the independent variables. The
MAE is the average of the absolute errors between the ground truth and predicted
displacements.

5.1.1 CoM Models
We identify four possible design choices for the CoM models predictors. In the
first design choice (C1), we only use the current velocity command and the most
significant feet coordinates for the CoM’s component displacement to be predicted.
For example, only the x coordinates of the feet are used to predict the CoM
displacement in x, and only the y coordinates of the feet are used for the y and
Θ components. This is due to the underlying behavior of the motions, where
in order to obtain a substantial CoM displacement in x, there needs to be a
substantial displacement of the moving feet in x. Similarly, to obtain a substantial
CoM displacement in y or Θ, there needs to be a substantial displacement of the

33

5 Evaluation

moving feet in y. In the second design choice (C2), we drop the assumption that
the displacement is only influenced by the most significant axis, and we use the
full feet poses to predict all CoM components. In the third design choice (C3),
we introduce the previously commanded velocity as an additional input to better
model discontinuous motion patterns. Finally, in the fourth design option (C4)
we also include the CoM velocity of the robot to deal with prediction ambiguities.

We carry out the evaluation and comparison of the CoM design choices in a
cascading hierarchical manner as shown in Fig. 5.1. We start by comparing the
first two design choices against each other. We then pick the best model design
based on the R2 and MAE scores, and use it for comparison against the third
design choice. The best model out of this comparison is finally used for the last
evaluation against the fourth design choice.

We only present the results for one of the swinging foot-pair for each comparison,
in this case the front-left and rear-right pair, as the results are similar.

Figure 5.1: CoM models design choices comparison flow.

34

5.1 Models Evaluation

Including Full Feet Poses

Table 5.1: Comparison of design option 1 and 2. We state the R2 and MAE values
for the prediction of the CoM.

Partial Feet Poses Full Feet Poses
Component R2 (%) MAE (mm) R2 (%) MAE(mm)
X 97.0 3.81 97.1 3.78
Y 95.0 4.76 96.3 3.78
Θ 94.0 2.80 94.2 2.88

Table 5.1 compares the R2 and MAE values of the CoM models for the first
two design choices, where both predictor sets consist of the currently commanded
velocity command, but differ in which feet poses coordinates are used for the CoM’s
component prediction. It is evident from the results that using the full pose of
the feet improves the dependence between the input and output variables for all
three components. The average error also decreases when considering the full feet
pose, with the exception of the Θ component where it slightly increases. Overall,
the second design option performs better than the first one. This is most likely
due to the fact that there exist slight deviations in the CoM displacement caused
directly by the least significant foot coordinate. Hence, by introducing the full
feet poses the predictors are better suited to predict more reliably such deviations.
We therefore use the model definition using the full feet poses for the subsequent
comparison.

Including Previous Velocity

Table 5.2: Comparison of design option 2 and 3. We state the R2 and MAE values
for the prediction of the CoM.

W/o Prev. Vel. With Prev. Vel.
Component R2 (%) MAE (mm) R2 (%) MAE(mm)
X 97.1 3.78 97.2 3.70
Y 96.3 3.78 96.4 3.69
Θ 94.2 2.88 96.3 2.03

Next, we compare the second and third design choices. Table 5.2 shows that
introducing the previous velocity command improves both the R2 and MAE scores

35

5 Evaluation

for all components. This can be attributed to the fact that having both previous
and current velocity commands facilitates the prediction of accelerating and decel-
erating patterns in the data. Therefore, we use the model definition of the third
design option for the last comparison.

Including CoM Velocity

Table 5.3: Comparison of design option 3 and 4. We state the R2 and MAE values
for the prediction of the CoM.

W/o CoM Vel. With CoM Vel.
Component R2 (%) MAE (mm) R2 (%) MAE(mm)
X 97.2 3.70 98.1 3.62
Y 96.4 3.69 97.9 3.53
Θ 96.3 2.03 96.9 1.86

Finally, in Table 5.3 we compare the third and fourth design choices for the
predictors. We note how adding the CoM velocity vector to the predictors set
improves the model significantly. This might be explained by the fact that possible
ambiguities in the components prediction are mitigated by adding the current CoM
velocity. More precisely, given the last and current velocity command and the
current feet configuration of the robot, the CoM displacement can differ depending
on the velocity at which the robot is currently moving. Therefore, we use the model
definition of the fourth design option as our final prediction model for the CoM.

5.1.2 Footstep Models
Similarly to the CoM models evaluation, we identify four possible design choices
for the footstep prediction models which we compare in a hierarchical fashion. In
the first design choice, we consider only the current velocity command and the
swinging feet poses, with the assumption that the swinging feet displacements
only depend on the moving feet poses. In the second design choice, we drop the
previously made assumption and use both the swinging and support feet poses. In
the third design option, we add the previous velocity command to better model
acceleration patterns. In the fourth and final design choice, we also include the
CoM velocity vector to better deal with prediction ambiguities.

Furthermore, in contrast to the CoM models, the footstep prediction models
can have two possible prediction outputs. A relative prediction and an absolute
prediction. The relative prediction outputs a relative 2D foot pose with respect

36

5.1 Models Evaluation

to the CoM, whereas the absolute prediction outputs a displacement relative to a
world frame.

Therefore, we first evaluate the design choices for the case of the absolute predic-
tion. Then, we compare the best absolute model found with the respective relative
model, where we keep the same predictors for both models and only change the
output accordingly.

Given that the footstep models share similar results, we only present the eval-
uations for one foot model. In this case, for the front-left (FL) foot.

Including All Feet Poses

Table 5.4: Comparison of design option 1 and 2. We state the R2 and MAE values
for the prediction of the front-left foot.

Swing Feet Poses All Feet Poses
Component R2 (%) MAE (mm) R2 (%) MAE(mm)
X 98.7 5.76 99.2 4.49
Y 98.7 4.39 98.8 3.91

Table 5.4 compares the R2 and MAE values of the FL footstep model for the first
two design choices. Both include the current velocity command, but the former
uses only the swinging feet poses while the latter uses both the swinging and sup-
port feet poses. The inclusion of both swinging and supporting feet poses increases
the R2 scores and decreases the MAE for both components of the model. This can
be explained by the fact that the swinging feet displacements are dependent on
the displacements of the previous swinging pair. For example, if the displacement
of the previous step was too small due to inaccurate motion execution, the current
step will also be adapted to respect the kinematic constraints and maintain sta-
bility. Therefore, we use the model that includes all feet poses for the subsequent
comparison.

Including Previous Velocity

Next, we compare the second and third design choices. Table 5.5 shows that
introducing the previous velocity command improves both the R2 and MAE values
for all predicted components of the foot. Similarly to the CoM models, this is due
to the fact that by including both the previous and current velocity command the
footstep model is better suited to deal with accelerating and decelerating patterns

37

5 Evaluation

Table 5.5: Comparison of design option 2 and 3. We state the R2 and MAE values
for the prediction of the front-left foot.

W/o Prev. Vel. With Prev. Vel.
Component R2 (%) MAE (mm) R2 (%) MAE(mm)
X 99.2 4.49 99.4 3.33
Y 98.8 3.91 99.0 3.15

in the dataset. Hence, we use the model definition of the third design option for
the last comparison.

Including CoM Velocity

Table 5.6: Comparison of design option 3 and 4. We state the R2 and MAE values
for the prediction of the front-left foot.

W/o CoM Vel. With CoM Vel.
Component R2 (%) MAE (mm) R2 (%) MAE(mm)
X 99.4 3.33 99.5 3.29
Y 99.0 3.15 99.4 2.86

Finally, in Table 5.6 we compare the third and fourth design options. We note
how introducing the CoM velocity vector in the predictors set improves both the
R2 and MAE values for all the predicted components. Once again, similarly to
the CoM models, the addition of the CoM velocity helps to improve ambiguous
instances where given the same set of predictors the displacement of the com-
ponents also depends on the velocity at which the robot is currently moving at.
Therefore, we use the predictors defined by the fourth design choice as the final
set of independent variables used for the footstep models.

Relative Prediction vs Absolute Prediction

Table 5.7 shows the comparison between a relative and absolute footstep predic-
tion, where we use the same set of final predictors for both models but change the
output predicted, as explained at the beginning of this section. Both R2 and MAE
values are significantly worse for the relative model. This is because in order to
predict the next relative foot pose with respect to the CoM, we need to implicitly
predict the next CoM. Which is more difficult compared to predicting the foot and

38

5.2 Planner Evaluation

Table 5.7: Comparison between relative and absolute footstep prediction. We state
the R2 and MAE values for the prediction of the front-left foot.

Relative Pred. Absolute Pred.
Component R2 (%) MAE (mm) R2 (%) MAE(mm)
X 97.5 3.77 99.5 3.29
Y 95.9 3.04 99.4 2.86

CoM displacements separately. Therefore, we utilize an absolute model definition
for our footstep prediction task.

5.2 Planner Evaluation

In this section, we evaluate the motion planning pipeline on three simulated envi-
ronments to test its capability to climb stairs, overcome gaps, and follow a global
plan trajectory. In the first environment, the robot has to climb up and down three
different staircase scenarios, where the step width or height varies. In the second
environment, the quadruped needs to traverse discontinued flat terrains with gaps
of varying length on which it cannot step. Finally, in the third environment, we
simulate the input of a global plan in order to showcase lateral movements.

For each terrain, we present the planning times, CoM prediction errors, and
footstep prediction errors for our planner. Moreover, we also compare the perfor-
mance of the planner against a reactive WBC locomotion at different velocities,
ranging from 0.2 to 1.0 with a step size of 0.2 describing the percentage of the
maximal velocity to be used. In this comparison, we show the number of unsafe
contacts for each foot and the minimum distance recorded over all feet to the clos-
est obstacle. We define an unsafe contact to be any foot location whose distance
to the closest unsafe cell is less than 1.5cm in the xy − plane from the center of
the foot. For each experiment, we always start the quadruped at the origin of the
simulated scenario.

All presented results for the planner are obtained using a planning horizon of
two steps. Furthermore, the motion models used for the evaluation are trained
using footstep data with a maximum step height of 6.5cm, as described in Sec.
4.1.1.

39

5 Evaluation

5.2.1 Staircase Environment
The first environment consists of three different staircase scenarios, as shown in
Fig. 5.2. All three scenarios have 12 steps up and down but differ in the step
width or height as shown in Table 5.8.

Table 5.8: Step parameters for each scenario of the Staircase Environment.
Scenario Step Width Step Height
Scenario 1.1 4.2cm 33cm
Scenario 1.2 4.2cm 25cm
Scenario 1.3 5cm 20cm

The step width and height for each scenario are chosen in order to increase the
complexity of the scenarios, while respecting the limitations of the controller. In
fact, for steeper slopes or larger step heights, the controller is not able to maintain
stability.

40

5.2 Planner Evaluation

(a) Scenario 1.1

(b) Scenario 1.2

(c) Scenario 1.3

Figure 5.2: The three scenarios evaluated for the Staircase Environment. All consisting
of 12 steps up and down but different step width or height as shown in Table
5.8.

Planning Times

Table 5.9 shows the average and maximum planning times of three runs for each
staircase scenario. All planning times are below 6ms, while on average, the next
footsteps were generated within 1.5ms to 2ms. Hence, the planner is able to
plan the next footstep horizon before the feet get out of contact with the ground,
which happens on average after 9ms since the last footstep finishes. Furthermore,
the fluctuations in the runtimes are mainly due to the CPU load of the system
as several necessary software components are running during the experiments,
including Gazebo and RViz [33].

41

5 Evaluation

Table 5.9: Average and maximum planning times for the Staircase Environment.
Experiment Average Maximum
Run1 (Scenario 1.1) 2004.25µs 5848µs
Run2 (Scenario 1.1) 1997.63µs 4998µs
Run3 (Scenario 1.1) 1956.81µs 4055µs

Run1 (Scenario 1.2) 2273.80µs 5321µs
Run2 (Scenario 1.2) 1678.04µs 3664µs
Run3 (Scenario 1.2) 1588.28µs 5903µs

Run1 (Scenario 1.3) 1577.04µs 2681µs
Run2 (Scenario 1.3) 2074.84µs 5911µs
Run3 (Scenario 1.3) 1636.82µs 3311µs

Prediction Errors

Table 5.10: Average CoM prediction errors in its X, Y, and Θ components for
Scenario 1.1, Scenario 1.2, and Scenario 1.3.

Mean Absolute Error
Experiment X Y Θ

Run1 (Scenario 1.1) 2.53cm 1.18cm 0.00388rad
Run2 (Scenario 1.1) 2.43cm 1.19cm 0.00376rad
Run3 (Scenario 1.1) 2.62cm 1.34cm 0.00355rad
Run1 (Scenario 1.2) 2.64cm 1.22cm 0.00322rad
Run2 (Scenario 1.2) 2.55cm 1.18cm 0.00321rad
Run3 (Scenario 1.2) 2.33cm 1.38cm 0.00333rad
Run1 (Scenario 1.3) 2.92cm 1.50cm 0.00315rad
Run2 (Scenario 1.3) 3.13cm 1.71cm 0.00326rad
Run3 (Scenario 1.3) 3.24cm 1.52cm 0.00324rad

The MAE between the predicted and real CoM poses after every velocity com-
mand execution, for each staircase scenario run, is shown in Table 5.10. Similarly,
we also present the MAE between the predicted and real swinging feet locations,
averaged over all feet and all steps of the corresponding run, in Table 5.11. The
MAE error for both models notably increased in the X and Y components com-
pared to their respective test set MAE, shown in Table 5.3 for the CoM model
and Table 5.6 for the front-left footstep model. Moreover, the prediction errors
are substantially different between the first two scenarios and the third one. This

42

5.2 Planner Evaluation

Table 5.11: Footstep prediction errors averaged over the feet in the X and Y com-
ponents for Scenario 1.1, Scenario 1.2, and Scenario 1.3.

Mean Absolute Error
Experiment X Y
Run1 (Scenario 1.1) 1.37cm 1.09cm
Run2 (Scenario 1.1) 1.25cm 1.08cm
Run3 (Scenario 1.1) 1.47cm 1.03cm
Run1 (Scenario 1.2) 1.49cm 1.11cm
Run2 (Scenario 1.2) 1.31cm 1.05cm
Run3 (Scenario 1.2) 1.20cm 1.09cm
Run1 (Scenario 1.3) 1.86cm 1.44cm
Run2 (Scenario 1.3) 1.80cm 1.72cm
Run3 (Scenario 1.3) 1.83cm 1.56cm

is due to the difference between the scenario where we train the models and the
scenario where we use these models. The former is a flat terrain while the lat-
ter is a set of non-flat terrains. The Θ component for the CoM does not change
significantly as it is not affected by the elevation change of the scenarios.

Planner vs WBC

Table 5.12 compares our planner and a blind WBC locomotion at different ve-
locities. The number of unsafe contacts for the blind locomotion decreases as
the velocity gets higher. At higher velocities, the robot executes larger footsteps.
Thus, the number of required footsteps reduces and so does the probability of
stepping on unsafe cells. However, the minimum distances for the blind WBC
locomotion remain constantly low and close to 0 at all velocities. This is because
the WBC does not consider the terrain, but only uses proprioceptive information.
On the other hand, our planner performs better compared to a blind locomotion.
In particular, the number of unsafe contacts drastically reduces as information
about the terrain is now used by the planner. Moreover, even in the occasion
where the safety distance of 1.5cm is not respected by the planner due to errors
in the prediction or inaccuracies in the motion execution, the minimum distance
to an obstacle is never below 1cm from the center of the foot.

In Fig. 5.3 we show a top-down view example of predicted (green) and real
(blue) CoM and footstep sequences for Scenario 1.3. The red regions correspond
to inflated edges and represent a safety area. Therefore, directly stepping inside

43

5 Evaluation

Table 5.12: Comparison of the number of unsafe contacts and the minimum
recorded distance over all feet between our planner and a blind WBC
locomotion at different velocities for Scenario 1.1, Scenario 1.2, and
Scenario 1.3. Experiments marked with an asterisk (∗) signify a failed
traversal of the terrain.

Unsafe Contacts Min. Dist.
Planner FL Foot FR Foot RL Foot RR Foot All Feet

Sc
en

ar
io

1.
1

Ours (Run1) 0/78 0/78 0/78 0/78 1.81cm
Ours (Run2) 1/79 0/79 1/79 0/78 1.28cm
Ours (Run3) 0/78 0/78 0/78 0/78 2.82cm
WBC (v=0.2) 11/201 19/201 13/201 19/201 <0.01cm
WBC (v=0.4) 11/92 1/92 12/92 2/92 <0.01cm
WBC (v=0.6) 2/61 5/61 8/61 3/61 <0.01cm
WBC (v=0.8) 3/45 2/45 3/45 3/45 <0.01cm
WBC (v=1.0) 2/37 3/37 2/37 4/37 <0.01cm

Sc
en

ar
io

1.
2

Ours (Run1) 1/57 0/57 0/57 0/57 1.10cm
Ours (Run2) 0/58 0/58 0/58 0/58 3.38cm
Ours (Run3) 0/57 0/57 0/57 0/57 2.26cm
WBC (v=0.2) 13/164 16/164 16/164 15/164 <0.01cm
WBC (v=0.4) 8/75 6/75 6/75 4/75 <0.01cm
WBC (v=0.6) 6/61 8/61 6/61 8/61 <0.01cm
WBC (v=0.8) 2/49 2/49 3/49 2/49 <0.01cm
WBC (v=1.0) 4/37 1/37 1/37 4/37 <0.01cm

Sc
en

ar
io

1.
3

Ours (Run1) 0/39 0/39 1/39 0/39 1.00cm
Ours (Run2) 0/40 1/40 1/40 0/40 1.20cm
Ours (Run3) 0/40 2/40 0/40 0/40 1.03cm
WBC (v=0.2) 12/145 14/145 15/145 13/145 <0.01cm
WBC (v=0.4) 8/67 7/67 6/67 5/67 <0.01cm
WBC (v=0.6) 5/44 5/44 4/44 6/44 <0.01cm
WBC (v=0.8) 1/34 3/34 4/34 1/34 <0.01cm
WBC (v=1.0)∗ 2/21∗ 1/21∗ 1/21∗ 1/21∗ <0.01cm

these zones does not necessarily result in a fall or slip.

44

5.2 Planner Evaluation

Figure 5.3: Top-down view example of predicted (green) and real (blue) CoM trajectory
and footstep sequences for Scenario 1.3. Red regions correspond to inflated
edges, and directly stepping on such zones does not signify a fall or slip.

5.2.2 Gaps Environment
In the second environment we test the planner’s ability to deal with gaps of varying
sizes, while taking in consideration the physical capabilities of the quadruped which
can overcome gaps of at most 12.5cm width. Fig. 5.4 shows the two scenarios
belonging to the second environment.

Both scenarios consist of discontinued elevated terrain blocks with a height of
18cm, but differ in the number of blocks and gaps sizes range as shown in Table
5.13. We set the maximum gap size to 9cm as we consider a security margin of
1.5cm at edges. Hence requiring a total stepping length of 12cm, which is slightly
below the kinematic constraints of the robot.

Table 5.13: Scenarios parameters for Gaps Environment.
Scenario Number of Gaps Gaps Size Range
Scenario 2.1 5 7cm - 9cm
Scenario 2.2 14 1.5cm - 7.1cm

Planning Times

The average and maximum planning times for the Gaps Environment are shown
in Table 5.14. The results are similar to the Staircase Environment, with the
exception of slightly higher average runtimes. However, this is only due to the
CPU load slightly affecting the planning times. The highest average and maxi-
mum planning times are 2.3ms and 5.9ms respectively, which is sufficient to finish
planning before the next footstep execution starts.

45

5 Evaluation

(a) Scenario 2.1

(b) Scenario 2.2

Figure 5.4: The two scenarios evaluated for the Gaps Environment, each with a different
number of gaps and gaps sizes as shown in Table 5.13.

Table 5.14: Average and maximum planning times for Scenario 2.1, 2.2, and 2.3.
Experiment Average Maximum
Run1 (Scenario 2.1) 2118.52µs 4721µs
Run2 (Scenario 2.1) 2208.13µs 4384µs
Run3 (Scenario 2.1) 1965.48µs 5492µs

Run1 (Scenario 2.2) 1819.34µs 4231µs
Run2 (Scenario 2.2) 2356.31µs 5987µs
Run3 (Scenario 2.2) 2008.11µs 4986µs

Prediction Errors

The MAE between the predicted and real CoM pose for the Gaps Environment
is shown in Table 5.15. Similarly, we show the MAE between the predicted and
real swinging feet locations averaged over all feet in Table 5.16. Both models’
prediction errors decrease compared to the Staircase Environment for the X and
Y components, while the Θ component remains mostly unvaried. This is because
the scenarios evaluated in the second environment are flat, thereby obtaining a

46

5.2 Planner Evaluation

Table 5.15: Average CoM prediction errors in its X, Y, and Θ components for
Scenarios 2.1 and 2.2.

Mean Absolute Error
Experiment X Y Θ

Run1 (Scenario 2.1) 1.19cm 1.15cm 0.00201rad
Run2 (Scenario 2.1) 1.29cm 1.18cm 0.00199rad
Run3 (Scenario 2.1) 1.15cm 1.12cm 0.00200rad
Run1 (Scenario 2.2) 1.17cm 1.14cm 0.00192rad
Run2 (Scenario 2.2) 1.26cm 1.11cm 0.00193rad
Run3 (Scenario 2.2) 1.14cm 1.10cm 0.00199rad

Table 5.16: Footsteps prediction errors averaged over the feet in the X and Y
components for Scenarios 2.1 and 2.2.

Experiment X Y
Run1 (Scenario 2.1) 1.06cm 1.01cm
Run2 (Scenario 2.1) 0.998cm 1.02cm
Run3 (Scenario 2.1) 1.05cm 0.998cm
Run1 (Scenario 2.2) 0.992cm 0.999cm
Run2 (Scenario 2.2) 1.05cm 1.03cm
Run3 (Scenario 2.2) 1.01cm 1.00cm

similar controller behavior to the scenario in which we trained the motion models.
However, the models’ errors for the two scenarios are still higher compared to the
MAE of the respective test sets. This can be explained by the frequent acceleration
patterns that happen over a smaller timescale than what we considered in the
training set, corresponding to 1.5s.

Planner vs WBC

Table 5.17 presents the number of unsafe contacts and the minimum recorded
distance over all feet to the closest unsafe cell, for all scenarios. All executed
experiments for the blind WBC locomotion, for both scenarios, result in a failed
traversal as the robot always steps inside the gaps. Therefore, we report the
statistics of the trajectory part before the failure, where we note how a blind
locomotion leads to stepping very close to the edges of the gaps. On the other
hand, our planner is able to successfully traverse all terrains on all three distinct
runs, with very few unsafe contacts and a minimum distance of 1.1cm from the

47

5 Evaluation

Table 5.17: Comparison of the number of unsafe contacts between our planner and
a blind WBC locomotion carried at different velocities for Scenario 2.1
and 2.2. Experiments marked with an asterisk (∗) signify a failed
traversal of the terrain.

Unsafe Contacts Min. Dist.
Planner FL Foot FR Foot RL Foot RR Foot All Feet

Sc
en

ar
io

2.
1

Ours (Run1) 0/44 0/44 0/44 0/44 3.37cm
Ours (Run2) 0/44 0/44 0/44 0/44 4.86cm
Ours (Run3) 0/45 0/45 0/45 0/45 3.91cm
WBC (v=0.2)∗ 2/14∗ 0/14∗ 0/14∗ 0/14∗ 1.06cm∗

WBC (v=0.4)∗ 1/9∗ 0/9∗ 0/9∗ 0/9∗ <0.01cm∗

WBC (v=0.6)∗ 1/8∗ 1/8∗ 1/8∗ 0/8∗ <0.01cm∗

WBC (v=0.8)∗ 0/6∗ 0/6∗ 0/6∗ 0/6∗ 2.37cm∗

WBC (v=1.0)∗ 0/4∗ 0/4∗ 0/4∗ 0/4∗ 2.53cm∗

Sc
en

ar
io

2.
2

Ours (Run1) 1/57 0/57 0/57 0/57 1.10cm
Ours (Run2) 0/58 0/58 0/58 0/58 3.38cm
Ours (Run3) 0/57 0/57 0/57 0/57 2.26cm
WBC (v=0.2)∗ 1/16∗ 0/16∗ 0/16∗ 0/16∗ <0.01cm∗

WBC (v=0.4)∗ 0/9∗ 0/9∗ 1/9∗ 0/9∗ <0.01cm∗

WBC (v=0.6)∗ 0/6∗ 0/6∗ 1/6∗ 0/6∗ <0.01cm∗

WBC (v=0.8)∗ 0/5∗ 0/5∗ 0/5∗ 0/5∗ 2.40cm∗

WBC (v=1.0)∗ 0/4∗ 0/4∗ 0/4∗ 0/4∗ 2.54cm∗

center of the foot on the most difficult scenario (Scenario 2.2).
Fig. 5.5 shows a top-down view of the CoM trajectory and footstep sequences for

Scenario 2.2. The red regions correspond to inflated edges, and directly stepping
on such zones does not signify a fall or slip.

48

5.2 Planner Evaluation

Figure 5.5: Predicted (green) and real (blue) CoM trajectory and footstep sequences for
Scenario 2.2. Red regions correspond to inflated edges, and directly stepping
on such zones does not signify a fall or slip.

5.2.3 Waypoint Environment
In the third and final environment, we test the planner on a course of mixed
obstacles where we simulate a global planner input in order to showcase lateral
stepping motions. Fig. 5.6 shows the scenario belonging to the third environment.

Figure 5.6: The scenario evaluated for the Waypoint Environment.

Planning Times

Table 5.18: Average and maximum planning times for Scenario 3.1.
Experiment Average Maximum
Run1 (Scenario 3.1) 2005.12µs 4333µs
Run2 (Scenario 3.1) 2350.56µs 4734µs
Run3 (Scenario 3.1) 2420.14µs 5892µs

49

5 Evaluation

The average and maximum planning times for the Waypoint Environment,
shown in Table 5.18, does not differ from the planning times of the two previous
environments. In fact, we note a similar range of values with the highest average
and maximum planning time of 2.4ms and 5.9ms respectively. Once again, such
times are sufficient to finish the planning before the next footstep sequence starts.

Prediction Errors

Table 5.19: Average CoM prediction errors in its X, Y, and Θ components for
Scenario 3.1.

Mean Absolute Error
Experiment X Y Θ

Run1 (Scenario 3.1) 0.997cm 0.862cm 0.00203rad
Run2 (Scenario 3.1) 1.02cm 0.834cm 0.00199rad
Run3 (Scenario 3.1) 1.01cm 0.863cm 0.00201rad

Table 5.20: Footsteps prediction errors averaged over the feet in the X and Y
components for Scenario 3.1.

Experiment X Y
Run1 (Scenario 3.1) 0.983cm 0.968cm
Run2 (Scenario 3.1) 0.986cm 0.971cm
Run3 (Scenario 3.1) 0.991cm 0.972cm

The last evaluated environment has the lowest MAE for the CoM and swinging
feet predictions among all environments, as shown in Table 5.19 and 5.20 respec-
tively. This is because compared the to the Staircase Environment, the Waypoint
Environment is mostly flat, thereby not affecting much the controller behavior.
Moreover, compared to the Gaps Environment, the Waypoint Environment does
not require as many acceleration patterns, as the majority of the traversed terrain
is flat.

Planner vs WBC

Table 5.21 presents the number of unsafe contacts and the minimum distance
recorded to the closest unsafe cell over the feet for the last evaluated scenario.
The results are similar to the Staircase Environment, where all runs for the blind

50

5.2 Planner Evaluation

Table 5.21: Comparison of the number of unsafe contacts between our planner and
a blind WBC locomotion executed at different velocities for Scenario
3.1.

Unsafe Contacts Min. Dist.
Planner FL Foot FR Foot RL Foot RR Foot All Feet

Sc
en

ar
io

3.
1

Ours (Run1) 0/88 0/88 0/88 0/88 3.37cm
Ours (Run2) 0/87 0/87 0/87 0/87 4.86cm
Ours (Run3) 0/89 0/89 0/89 0/89 3.91cm
WBC (v=0.2) 8/254 7/254 9/254 9/254 <0.01cm
WBC (v=0.4) 7/111 6/111 4/111 5/111 <0.01cm
WBC (v=0.6) 3/81 4/81 2/81 3/81 <0.01cm
WBC (v=0.8) 5/56 4/56 3/56 4/56 <0.01cm
WBC (v=1.0) 2/33 2/33 3/33 2/33 <0.01cm

WBC locomotion reach successfully the destination, but with a high number of
unsafe contacts and low minimum distances. On the other hand, our planner
is also able to successfully traverse the scenario, but with significantly less unsafe
contacts and fairly high minimum distances. In fact, the number of unsafe contacts
for each foot is 0, and a minimum recorded distance of 3.31cm.

Fig. 5.5 shows a side view of the CoM trajectory and footstep sequences for
Scenario 3.1. The red regions correspond to inflated edges, and directly stepping
on such zones does not signify a fall or slip.

Figure 5.7: Side-view example of predicted (green) and real (blue) CoM trajectory and
footstep sequences for Scenario 3.1. Red regions correspond to inflated edges,
and directly stepping on such zones does not signify a fall or slip.

51

6 Conclusions
This thesis presented a method that allows quadrupeds to navigate irregular ter-
rains, including steps and gaps, by extending the capability of a WBC that is able
to track high-level velocity commands, but is unable to generate trajectories and
torques for target footstep locations.

We achieve this by formulating the method as a local motion planning problem,
whose task is to plan the CoM trajectory, footstep sequences, and relative high-
level velocity commands that allow the quadruped to traverse the terrain. The
planner uses a set of learned motion models, a foot costmap, and a variant of
the A∗ algorithm. The motion models are linear regression functions that map
an input vector consisting of the the previous and current velocity commands,
the relative feet position with respect to the CoM, and the CoM velocity to the
respective absolute displacements of the CoM and swinging feet. We use the output
of a modified elevation mapping algorithm that reconstructs a local patch of the
traversed terrain in real-time as a 2.5D grid to compute the foot costmap. The
foot costmap describes which cells are safe to step onto using gradient information
extracted from the height map. The motion models and the costmap are then
integrated with a variant of the A∗ algorithm that uses a modified state-update
rule where we associate the continuous state of the robot with the discrete cell.
We use two costs for the search. A heuristic Euclidean cost to guide the CoM
towards the goal, and a footstep margin cost that seeks to maximize the swinging
feet distances from the closest unsafe cell location.

We evaluated our method on three different environments. A Staircase Environ-
ment, consisting of three staircase scenarios with different step width and height.
A Gaps Environment, containing two scenarios consisting of a series of elevated
and discontinued flat terrains with gaps of varying sizes. And a Waypoint Environ-
ment, composed of a mixed obstacle course scenario where we simulated a global
planner input and showcased lateral stepping motions. We compared our planner
with a reactive WBC locomotion, and showed that our method is able to safely
navigate all scenarios while never getting too close to unsafe regions. On the other
hand, a blind-reactive locomotion failed all scenarios of the Gaps Environment and
constantly stepped on unsafe regions on the remaining environments.

We also found some limitations to the presented method. First of all, the planner

53

6 Conclusions

is as good as the controller. Meaning that if the controller is not able to keep
stability on different slopes or handle sharp velocity changes, the proposed method
would not benefit the system. Secondly, the planner requires accurate training data
in order to model the controller behavior for the terrain types to be traversed.
Including learning separate models for each significant change in elevation, as
assuming that the controller behavior does not change for very steep slopes can
lead to meaningful prediction inaccuracies.

There are also possible extensions to the method. First, we could integrate a
global planner in our approach that computes at lower frequencies intermediate
waypoints which can be fed to the local planner. Second, we can introduce a
trajectory collision checking that makes sure the swinging feet trajectories are not
colliding with the environment. Finally, we could learn several motions models for
different footstep heights, and condition our method on the terrain height ahead.
This would have the benefit to improve the prediction accuracy but also yield a
more energy efficient navigation, as we would use high footstep heights only when
required.

54

List of Figures

4.1 Overview of the method. 13
4.2 Data acquisition terrain example 17
4.3 Examples of extracted footsteps on a time series of foot heights plot-

ted using PlotJuggler [8]. The top row represents detected footsteps
with a boolean value of 1. The remaining rows are respectively the
heights of the front-left foot, rear-left foot, front-right foot, and
rear-right foot with respect to the CoM. 18

4.4 CoM and footstep mean displacement and standard deviation for a
forward motion. 21

4.5 CoM and footstep mean displacement and standard deviation for a
right lateral motion. 22

4.6 CoM and footstep mean displacement and standard deviations for
a left lateral motion. 22

4.7 CoM and footstep mean displacement and standard deviation for a
clockwise motion. 23

4.8 CoM and footstep mean displacement and standard deviations for
a counter clockwise motion. 23

4.9 Processed raw elevation map . 25
4.10 Examples of online footstep re-planning with a horizon of 4. Or-

ange marker represent the front-left foot, pink markers represent
the front-right foot, green markers represent the rear-left foot, and
blue markers represent the rear-right foot. Red regions correspond
to inflated unsafe cells, while black regions correspond to safe cells. 31

5.1 CoM models design choices comparison flow. 34
5.2 The three scenarios evaluated for the Staircase Environment. All

consisting of 12 steps up and down but different step width or height
as shown in Table 5.8. 41

5.3 Top-down view example of predicted (green) and real (blue) CoM
trajectory and footstep sequences for Scenario 1.3. Red regions
correspond to inflated edges, and directly stepping on such zones
does not signify a fall or slip. 45

55

List of Figures

5.4 The two scenarios evaluated for the Gaps Environment, each with
a different number of gaps and gaps sizes as shown in Table 5.13. . 46

5.5 Predicted (green) and real (blue) CoM trajectory and footstep se-
quences for Scenario 2.2. Red regions correspond to inflated edges,
and directly stepping on such zones does not signify a fall or slip. . 49

5.6 The scenario evaluated for the Waypoint Environment. 49
5.7 Side-view example of predicted (green) and real (blue) CoM tra-

jectory and footstep sequences for Scenario 3.1. Red regions corre-
spond to inflated edges, and directly stepping on such zones does
not signify a fall or slip. 51

56

List of Tables

5.1 Comparison of design option 1 and 2. We state the R2 and MAE
values for the prediction of the CoM. 35

5.2 Comparison of design option 2 and 3. We state the R2 and MAE
values for the prediction of the CoM. 35

5.3 Comparison of design option 3 and 4. We state the R2 and MAE
values for the prediction of the CoM. 36

5.4 Comparison of design option 1 and 2. We state the R2 and MAE
values for the prediction of the front-left foot. 37

5.5 Comparison of design option 2 and 3. We state the R2 and MAE
values for the prediction of the front-left foot. 38

5.6 Comparison of design option 3 and 4. We state the R2 and MAE
values for the prediction of the front-left foot. 38

5.7 Comparison between relative and absolute footstep prediction. We
state the R2 and MAE values for the prediction of the front-left foot. 39

5.8 Step parameters for each scenario of the Staircase Environment. . . 40
5.9 Average and maximum planning times for the Staircase Environment. 42
5.10 Average CoM prediction errors in its X, Y, and Θ components for

Scenario 1.1, Scenario 1.2, and Scenario 1.3. 42
5.11 Footstep prediction errors averaged over the feet in the X and Y

components for Scenario 1.1, Scenario 1.2, and Scenario 1.3. 43
5.12 Comparison of the number of unsafe contacts and the minimum

recorded distance over all feet between our planner and a blind
WBC locomotion at different velocities for Scenario 1.1, Scenario
1.2, and Scenario 1.3. Experiments marked with an asterisk (∗)
signify a failed traversal of the terrain. 44

5.13 Scenarios parameters for Gaps Environment. 45
5.14 Average and maximum planning times for Scenario 2.1, 2.2, and 2.3. 46
5.15 Average CoM prediction errors in its X, Y, and Θ components for

Scenarios 2.1 and 2.2. 47
5.16 Footsteps prediction errors averaged over the feet in the X and Y

components for Scenarios 2.1 and 2.2. 47

57

List of Tables

5.17 Comparison of the number of unsafe contacts between our planner
and a blind WBC locomotion carried at different velocities for Sce-
nario 2.1 and 2.2. Experiments marked with an asterisk (∗) signify
a failed traversal of the terrain. 48

5.18 Average and maximum planning times for Scenario 3.1. 49
5.19 Average CoM prediction errors in its X, Y, and Θ components for

Scenario 3.1. 50
5.20 Footsteps prediction errors averaged over the feet in the X and Y

components for Scenario 3.1. 50
5.21 Comparison of the number of unsafe contacts between our planner

and a blind WBC locomotion executed at different velocities for
Scenario 3.1. 51

58

Bibliography
[1] ETH Zurich Autonomous Systems Lab Robotic Systems Lab Anybotics.

“Https://github.com/anybotics/elevationmapping.” In: ().
[2] C Dario Bellicoso, Marko Bjelonic, Lorenz Wellhausen, Kai Holtmann, Fabian

Günther, Marco Tranzatto, Peter Fankhauser, and Marco Hutter. “Advances
in real-world applications for legged robots.” In: Journal of field robotics 35.8
(2018), pp. 1311–1326.

[3] Chris M Bishop. “Neural networks and their applications.” In: Review of
scientific instruments 65.6 (1994), pp. 1803–1832.

[4] Michael Bloesch, Marco Hutter, Mark A Hoepflinger, Stefan Leutenegger,
Christian Gehring, C David Remy, and Roland Siegwart. “State estimation
for legged robots-consistent fusion of leg kinematics and imu.” In: Robotics
17 (2013), pp. 17–24.

[5] Joel Chestnutt, Manfred Lau, German Cheung, James Kuffner, Jessica Hod-
gins, and Takeo Kanade. “Footstep planning for the honda asimo humanoid.”
In: Proceedings of the 2005 ieee international conference on robotics and au-
tomation. IEEE. 2005, pp. 629–634.

[6] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel.
“Practical search techniques in path planning for autonomous driving.” In:
Ann arbor 1001.48105 (2008), pp. 18–80.

[7] Boston Dynamics. Spot. 2022. url: https://www.bostondynamics.com/
products/spot.

[8] Davide Faconti. Plotjuggler. 2022. url: https://www.plotjuggler.io/.
[9] Péter Fankhauser. “Perceptive locomotion for legged robots in rough terrain.”

PhD thesis. ETH Zurich, 2018.
[10] Péter Fankhauser, Marko Bjelonic, C Dario Bellicoso, Takahiro Miki, and

Marco Hutter. “Robust rough-terrain locomotion with a quadrupedal robot.”
In: 2018 ieee international conference on robotics and automation (icra).
IEEE. 2018, pp. 5761–5768.

[11] Péter Fankhauser, Michael Bloesch, and Marco Hutter. “Probabilistic terrain
mapping for mobile robots with uncertain localization.” In: Ieee robotics and
automation letters 3.4 (2018), pp. 3019–3026.

59

Bibliography

[12] Péter Fankhauser and Marco Hutter. “Anymal: a unique quadruped robot
conquering harsh environments.” In: Research features 126 (2018), pp. 54–57.

[13] Siddhant Gangapurwala, Mathieu Geisert, Romeo Orsolino, Maurice Fallon,
and Ioannis Havoutis. “Rloc: terrain-aware legged locomotion using rein-
forcement learning and optimal control.” In: Arxiv preprint arxiv:2012.03094
(2020).

[14] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the
heuristic determination of minimum cost paths.” In: Ieee transactions on
systems science and cybernetics 4.2 (1968), pp. 100–107.

[15] Enrico Mingo Hoffman, Arturo Laurenzi, Luca Muratore, Nikos G Tsagarakis,
and Darwin G Caldwell. “Multi-priority cartesian impedance control based
on quadratic programming optimization.” In: 2018 ieee international confer-
ence on robotics and automation (icra). IEEE. 2018, pp. 309–315.

[16] Fabian Jenelten, Takahiro Miki, Aravind E Vijayan, Marko Bjelonic, and
Marco Hutter. “Perceptive locomotion in rough terrain–online foothold op-
timization.” In: Ieee robotics and automation letters 5.4 (2020), pp. 5370–
5376.

[17] Matthew Johnson, Brandon Shrewsbury, Sylvain Bertrand, Tingfan Wu,
Daniel Duran, Marshall Floyd, Peter Abeles, Douglas Stephen, Nathan Mertins,
Alex Lesman, et al. “Team ihmc’s lessons learned from the darpa robotics
challenge trials.” In: Journal of field robotics 32.2 (2015), pp. 192–208.

[18] Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, Michael Mistry, and Stefan
Schaal. “Fast, robust quadruped locomotion over challenging terrain.” In:
2010 ieee international conference on robotics and automation. IEEE. 2010,
pp. 2665–2670.

[19] Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, Michael Mistry, and Ste-
fan Schaal. “Learning, planning, and control for quadruped locomotion over
challenging terrain.” In: The international journal of robotics research 30.2
(2011), pp. 236–258.

[20] J Zico Kolter, Mike P Rodgers, and Andrew Y Ng. “A control architecture
for quadruped locomotion over rough terrain.” In: 2008 ieee international
conference on robotics and automation. IEEE. 2008, pp. 811–818.

[21] Arturo Laurenzi, Enrico Mingo Hoffman, Matteo Parigi Polverini, and Nikos
G Tsagarakis. “Balancing control through post-optimization of contact forces.”
In: 2018 ieee-ras 18th international conference on humanoid robots (hu-
manoids). IEEE. 2018, pp. 320–326.

[22] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

60

Bibliography

[23] Octavio Antonio Villarreal Magana, Victor Barasuol, Marco Camurri, Luca
Franceschi, Michele Focchi, Massimiliano Pontil, Darwin G Caldwell, and
Claudio Semini. “Fast and continuous foothold adaptation for dynamic lo-
comotion through cnns.” In: Ieee robotics and automation letters 4.2 (2019),
pp. 2140–2147.

[24] Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen
Koltun, and Marco Hutter. “Learning robust perceptive locomotion for quadrupedal
robots in the wild.” In: Science robotics 7.62 (2022), eabk2822.

[25] Simona Nobili, Marco Camurri, Victor Barasuol, Michele Focchi, Darwin
G Caldwell, Claudio Semini, and Maurice F Fallon. “Heterogeneous sensor
fusion for accurate state estimation of dynamic legged robots.” In: Robotics:
science and systems. 2017.

[26] Opencv. 2022. url: https://opencv.org/.
[27] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne.

“Deeploco: dynamic locomotion skills using hierarchical deep reinforcement
learning.” In: Acm transactions on graphics (tog) 36.4 (2017), pp. 1–13.

[28] Nicolaus A Radford, Philip Strawser, Kimberly Hambuchen, Joshua S Mehling,
William K Verdeyen, A Stuart Donnan, James Holley, Jairo Sanchez, Vienny
Nguyen, Lyndon Bridgwater, et al. “Valkyrie: nasa’s first bipedal humanoid
robot.” In: Journal of field robotics 32.3 (2015), pp. 397–419.

[29] Gennaro Raiola, Enrico Mingo Hoffman, Michele Focchi, Nikos Tsagarakis,
and Claudio Semini. “A simple yet effective whole-body locomotion frame-
work for quadruped robots.” In: Frontiers in robotics and ai (2020), p. 159.

[30] Open Robotics. Gazebo. 2022. url: http://gazebosim.org/.
[31] Open Robotics. ROS. 2022. url: https://www.ros.org/.
[32] Unitree Robotics. Aliengo. 2022. url: https://www.unitree.com/products/

aliengo/.
[33] Rviz. 2022. url: http://wiki.ros.org/rviz.
[34] Andreas Schmitz, Marcell Missura, and Sven Behnke. “Learning footstep

prediction from motion capture.” In: Robot soccer world cup. Springer. 2010,
pp. 97–108.

[35] Andreas Schmitz, Marcell Missura, and Sven Behnke. “Real-time trajectory
generation by offline footstep planning for a humanoid soccer robot.” In:
Robot soccer world cup. Springer. 2011, pp. 198–209.

[36] Claudio Semini, Victor Barasuol, Jake Goldsmith, Marco Frigerio, Michele
Focchi, Yifu Gao, and Darwin G Caldwell. “Design of the hydraulically ac-
tuated, torque-controlled quadruped robot hyq2max.” In: Ieee/asme trans-
actions on mechatronics 22.2 (2016), pp. 635–646.

61

Bibliography

[37] IEEE Robotics Automation Society. Wbc-ieee. 2022. url: https://www.
ieee-ras.org/whole-body-control.

[38] Xiaogang Su, Xin Yan, and Chih-Ling Tsai. “Linear regression.” In: Wiley
interdisciplinary reviews: computational statistics 4.3 (2012), pp. 275–294.

[39] Alan O Sykes. “An introduction to regression analysis.” In: (1993).
[40] Nikolaos G Tsagarakis, Darwin G Caldwell, Francesca Negrello, Wooseok

Choi, Lorenzo Baccelliere, Vo-Gia Loc, J Noorden, Luca Muratore, Alessio
Margan, Alberto Cardellino, et al. “Walk-man: a high-performance humanoid
platform for realistic environments.” In: Journal of field robotics 34.7 (2017),
pp. 1225–1259.

[41] Vassilios Tsounis, Mitja Alge, Joonho Lee, Farbod Farshidian, and Marco
Hutter. “Deepgait: planning and control of quadrupedal gaits using deep
reinforcement learning.” In: Ieee robotics and automation letters 5.2 (2020),
pp. 3699–3706.

[42] Alexander W Winkler, Carlos Mastalli, Ioannis Havoutis, Michele Focchi,
Darwin G Caldwell, and Claudio Semini. “Planning and execution of dy-
namic whole-body locomotion for a hydraulic quadruped on challenging
terrain.” In: 2015 ieee international conference on robotics and automation
(icra). IEEE. 2015, pp. 5148–5154.

62

