
Institute for Computer Science
Department VI
Autonomous Intelligent Systems

Rheinische
Friedrich-Wilhelms-

Universität Bonn

Rheinische
Friedrich-Wilhelms-Universität Bonn

Bachelor Thesis

Dynamic UAV Trajectory Planning using
Multi-Resolution A*

Author:
Björn Seine

First Examiner:
Prof. Dr. Sven Behnke

Second Examiner:
Dr. Marcell Missura

Date: June 12, 2022

Declaration

I hereby declare that I am the sole author of this thesis and that none other than
the specified sources and aids have been used. Passages and figures quoted from
other works have been marked with appropriate mention of the source.

Place, Date Signature

Abstract
Autonomous operation of unmanned aerial vehicles (UAVs) in obstacle-rich envi-
ronments requires algorithms that can quickly generate dynamically feasible, ef-
ficient trajectories. Generally, search-based algorithms become significantly more
expensive with increasing dimensionality of the search space, making them unfea-
sible for frequent replanning of higher order trajectories.

We investigate using Multi-Resolution A*, an improvement of the A* algorithm
that plans on several levels of resolution simultaneously, to quickly calculate tra-
jectories in a 6D search space. Trajectories are modeled as a series of motion
primitives generated by applying constant acceleration for a fixed time interval.
Resolution levels are differentiated by the duration of their motion primitives, and
we decide for each expansion at what resolution we expand. We develop several
policies for that choice as well as functions to detect and limit search stagna-
tion. Finally, we compare the performance of our design choices to each other,
and compare our method to A* searches at different resolutions and to a local
multiresolution approach.

Contents
1 Introduction 1

2 Problem Definition 3

3 Related Works 5

4 Method 9
4.1 Resolution Levels and State Lattice 9
4.2 Multi-Resolution A* . 11
4.3 Goal Queue . 14
4.4 Queue Choice Functions . 14
4.5 Stagnation Detection . 16

5 Evaluation 19
5.1 Goal Queue: . 20
5.2 Queue Choice Functions . 21
5.3 Stagnation Detection . 23
5.4 Comparison to A* at different Resolutions 25
5.5 Comparison to Local Multiresolution State Lattices 28

6 Conclusion 31

Appendices 33

vii

1 Introduction
Unmanned aerial vehicles (UAVs) are being used for an increasing number of tasks,
including exploration, inspection, or delivery in a wide variety of settings. Many
of these tasks require autonomous navigation in unknown or partially unknown
environments. To enable this, algorithms capable of calculating fast, dynamically
viable trajectories within a short time frame are required. This is a difficult task,
since the search times required by traditional search algorithms like A* tend to
increase exponentially with the dimensionality of the search space. Many existing
methods circumvent this issue by planning in a 3D position space and refining the
solution into a dynamically feasible trajectory; however, the optimal trajectory
may differ significantly from the optimal 3D path.

Liu et al. [5] propose a search-based method to generate resolution-complete (i.e.
optimal in the discretized search space) higher order trajectories. This approach is
based on short-duration motion primitives generated by applying constant control
inputs for a short time period. They generate a state lattice graph by unrolling
these motion primitives from a start state, and extract optimal trajectories from
the graph using A*. However, due to the high dimensionality of the search space,
this approach is computationally expensive, making it unfeasible for frequent re-
planning of long paths at a fine resolution.

Du et al. [2] propose Multi-Resolution A* (MRA) to increase the speed of A*
searches by planning at multiple levels of resolution simultaneously, allowing for
fast search progress using coarse resolutions without sacrificing the ability to pre-
cisely plan using a fine resolution where required. We apply MRA to the motion
primitive-based approach proposed by Liu et al. [5] to allow for fast calculation
of efficient second-order trajectories. We develop and test several functions that
determine the resolution at which each expansion is executed, along with several
minor design adjustments. We also implement several methods to deal with search
stagnation.

In this thesis, we will first define the problem we aim to solve (Chapter 2). We
will then discuss a variety of existing approaches to motivate our work (Chapter
3). Afterwards, we will introduce the basic structure of our method, followed by a
discussion of specific design choices we made (Chapter 4). This is followed by an
evaluation of our design choices, leading into a comparison to an A* approach using

1

1 Introduction

different resolutions and a local multiresolution approach proposed by Schleich
and Behnke [8] (Chapter 5). Finally, we discuss the results of our work, as well as
potential future improvements to be investigated (Chapter 6).

2

2 Problem Definition

We begin by defining the problem we aim to solve. For comparability, we base our
notation on the works of Schleich and Behnke [8] and Liu et al. [5].

Our goal is to find an efficient second-order trajectory between two given states
for an unmanned aerial vehicle (UAV) within a reasonable time frame. We are
specifically planning for multicopters, which can change their acceleration vector
without significant dynamic restrictions. Our approach is not directly applicable
to winged UAVs as their flight dynamics do not match our model.

We model the state s of the UAV as a 6-tupel s = (p, v) ∈ R6 consisting of a 3D
position p and 3D velocity v. While higher order representations could be used
to model the dynamics of a real system even more closely, we restrict ourself to
second-order systems to limit the dimensionality of the search space. We do not
model the orientation (yaw) of the vehicle as it is not relevant for the planning
task; it can be calculated in a post-processing step based on the desired trajectory.
Additionally, we assume that the velocity component of the goal state is zero. This
restriction permits us to use simpler heuristic functions which can be computed
more quickly. However, the core concept of our method also allows for goal states
with non-zero velocities.

Trajectories are modeled as a chain of motion primitives, generated by applying
a constant acceleration u for a short time interval τ from an initial state s. The
corresponding motion primitive Fu,s linking s to the successor state s′ = Fu,s (τ)

can be expressed as a time-parameterized polynomial

Fu,s (t) =

(
p+ tv + t2

2
u

v + tu

)
, for t ∈ [0, τ] . (2.1)

We define a finite control set U ⊂ R4 of controls composed of discrete accelera-
tion vectors and corresponding time intervals. By unrolling the motion primitives
generated by these controls from an initial state s0 = (p0, v0), we generate a state
lattice graph G (S, E), where S denotes the resulting set of discretized states, and
E denotes the set of motion primitives connecting the states. Fig. 2.1, taken from
[5], shows a 2D example of motion primitives extending from an initial state based
on different acceleration controls.

3

2 Problem Definition

Figure 2.1: Motion primitives (magenta) resulting from application of nine different ac-
celeration controls (black arrows) to an initial state x0 with non-zero ve-
locity towards the right. Red squares mark the position components of the
discretized states. Image taken from [5].

We restrict the permissible velocity components to a free space Vfree = [−vmax, vmax]
3

based on the system’s dynamics, not allowing velocities along individual axes to
exceed a maximum velocity vmax. The free position space Pfree ⊂ R3 is similarly
restrained based on the map borders, known obstacles as well as safety margins
around obstacles. Let Xfree ⊂ R6 be the free region of the state space, that is
the space of states s = (p, v) with position components p ∈ Pfree and velocity
components v ∈ Vfree. Thus, Xfree := Pfree × Vfree = Pfree × [−vmax, vmax]

3.
A motion primitive Fu,s (t) is valid if Fu,s (t) ∈ X free for all t ∈ [0, τ]. A path

from an initial state s0 to a goal state sgoal in the state lattice graph G is valid if
every motion primitive on the path is valid.

We define the cost of a motion primitive as the weighted sum of the control
effort and the primitive duration:

C(Fu,s) = ∥u∥22τ + ρτ, (2.2)

with the weight ρ = 2. The cost of a path is the sum of the primitive costs.
The goal is to find a valid path between an initial state s0 and a goal state

sgoal with low costs within a short planning time frame. In the interest of short
planning times we allow for slightly suboptimal paths.

4

3 Related Works
Many tasks for which modern UAVs are being used require autonomous navigation
in large, initially unknown or partially unknown environments including dynam-
ically changing obstacles. For this purpose, algorithms that can quickly generate
fast, collision-free, dynamically feasible trajectories are necessary. This is a chal-
lenging task due to the vast number of possible trajectories.

Sampling-based approaches such as Rapidly-exploring Random Tree Star (RRT*)
can be used to quickly produce feasible solutions to a trajectory generation prob-
lem and can improve on the solution quality with additional computation time.
Karaman et al. [4] propose one such algorithm, as do Zhang et al. [9]. However,
due to the random nature of sampling-based approaches, the initial solution is
likely far from optimal, and the time required to reach an acceptable solution may
be too long for frequent replanning.

Traditional search-based algorithms typically require exponentially more time
with increasing dimensionality of the search space, which makes them ill-suited
to the generation of higher order trajectories. For this reason, many existing
approaches first plan a path in 3D space and then refine this path into a viable
trajectory. Jamieson and Biggs [3] generate smooth trajectories following a series
of waypoints, though they do not consider obstacle avoidance. Cimurs and Suh
[1] generate locally time-optimal trajectories from a path planner output using
Bezier curves, their method includes obstacle avoidance. Because these approaches
do not take the system dynamics into account, the resulting trajectory may be
significantly slower than the optimal trajectory, and also require significantly more
effort (resulting in a reduced operational time for the UAV). Fig. 3.1 taken from
[5] illustrates the impact of ignoring system dynamics.

Liu et al. [5] propose a search-based approach that plans trajectories as series of
short duration motion primitives, formed by applying a constant control input for a
fixed time. The motion primitives induce a finite state lattice discretization on the
state space, which then allows an optimal trajectory to be calculated by a graph
search algorithm. The authors use A* search to calculate their solution. Because
they include the system dynamics in the search instead of a post-processing step,
they can generate resolution-complete (meaning optimal in the discretized search
space) trajectories. However, this approach results in a very high dimensional

5

3 Related Works

Figure 3.1: Generating trajectories based on the shortest path (red trajectory) can result
in slow, high-effort trajectories, while a planner that takes system dynamics
such as initial velocity (blue arrow) into account can produce significantly
smoother and faster trajectories (magenta). Image taken from [5].

search space. Because of this, the A* search is too slow for frequent replanning of
longer trajectories.

Schleich and Behnke [8] propose a local multiresolution approach to improve on
the planning times required by [5]. Building on the motion primitives formulation
proposed by Liu et al. , they propose a local multiresolution state lattice that uses
motion primitives with a longer duration at greater distances from the UAV. By
allowing certain sub-optimal expansions (Level-Based Expansion Scheme), this
approach can significantly improve the required search times, allowing for fre-
quent replanning of longer trajectories. This approach sacrifices some path quality
through the local multiresolution as well as the level-based expansion scheme. Ad-
ditionally, local multiresolution allows planning at a fine resolution only in the
proximity of the UAV. While this is usually not a problem in unknown terrain be-
cause sensor-based knowledge of distant obstacles is not precise enough to enable
precise planning, in partially known terrain the ability to plan trajectories through
small openings and to precise destinations would be beneficial.

Du et al. [2] propose Multi-Resolution A* to accelerate the search speed of
A* while maintaining bounded suboptimality for the solution. They use multiple
resolution levels simultaneously, with nodes being shared among all resolution
levels that include the node. Each resolution level maintains a separate priority
queue, and a node that is expanded at a given resolution is only closed at that
resolution. The finest resolution level (”anchor level”) includes all nodes and acts
as an optimal A* search, which is used to guarantee bounded suboptimality of the
search result. Coarser resolutions function as suboptimal A* searches since they
sort their priority queues by a weighted sum g + wh. A queue choice function
determines which queue should be expanded from at any given time, while a

6

condition tied to the anchor level search ensures bounded suboptimality. We will
discuss the Multi-Resolution A* algorithm in more detail in Sec. 4.2. By applying
Multi-Resolution A* to the approach proposed by Liu et al. [5], we hope to match
or exceed the performance achieved by Schleich and Behnke [8] without sacrificing
planning resolution at a distance from the UAV. Measures of performance are
trajectory costs and planning times.

7

4 Method

Our method aims to apply the work by Du et al. [2] to 6D trajectory planning
using short-duration motion primitives as described by Liu et al. [5], with the
goal of shortening planning times sufficiently for frequent replanning. We define
our resolution levels as proposed in [8], with the exception that we do not reduce
the velocity resolution. In the following sections, we will detail the changes and
improvements implemented to facilitate this intent.

We will first discuss how we define our resolution levels and state lattice graph
(Sec. 4.1). Next, we will explain the basic structure of the Multi-Resolution A*
algorithm (Sec. 4.2). This is followed by a discussion of our Goal Queue, a modi-
fication designed to ensure a path can be found even when primarily planning at
a coarse resolution that does not include any states in the goal area (Sec. 4.3).
Afterwards, we discuss our policies determining the resolution for each expan-
sion (Sec. 4.4). Finally, we discuss our options for detecting stagnating searches
due to local minima, along with countermeasures designed to prevent unnecessary
expansions in such a case (Sec. 4.5).

4.1 Resolution Levels and State Lattice

As detailed in Chapter 2, the search space is discretized and the state lattice
constructed based on short-duration motion primitives, generated by applying
constant acceleration for a fixed time interval.

Our approach is based on the idea of planning on multiple levels of resolution in
tandem, allowing fast search progress using a coarse resolution while preserving the
ability to plan at a finer resolution where required. We define multiple resolution
levels differentiated by their control sets Un ⊆ U and the states included in the
level Sn ⊆ S. We call the finest resolution level ”anchor level” and assign it the
index 0.

For a given resolution level n, the control set Un is formed by allowing accel-
erations of ±un or 0 along individual axis for a fixed time τn. For non-anchor
resolution levels, the acceleration is halved and the time interval doubled when

9

4 Method

compared to the previous level:

un := 0.5nu0, τn := 2nτ0, for n > 0. (4.1)

The 6D search space is discretized based on the position- and velocity resolutions
∆p_min and ∆v_min at anchor resolution level. These result directly from the
acceleration u0 and time step τ0 at anchor resolution:

∆p_min =
1

2
τ 20u0 , ∆v_min = τ0u0 (4.2)

Choosing an acceleration u0 = 2.0m/s2 and time step τ0 = 0.5s at anchor resolution
gives us ∆p_min = 0.25m and ∆v_min = 1.0m/s.

The state space Sn of a given resolution level n consists of those states whose
position components lie on a grid with resolution 2n∆p_min and whose velocity
components lie on a grid with resolution ∆v_min. It can easily be seen that with
this definition, the state space of a coarser resolution Sn+1 is a subset of that of
the next finer resolution, Sn. We do not limit the velocity resolution for coarser
resolution levels as to not restrict the state space too much.

Start and goal poses are rounded so their positions and velocities lie on the
anchor level grids. As described in Chapter 2, we generate the state lattice graph
G (S, E) by unrolling motion primitives from the start state sstart ∈ S0. S = S0
denotes the set of discretized states, and E denotes the set of motion primitives
connecting the states. For a given state s ∈ S0, the motion primitives originating
from it are defined by the control sets Un for all resolution levels n with s ∈ Sn. It
should be noted that a resolution n motion primitive Fu,s originating from s ∈ Sn
and using controls u ∈ Un does not necessarily end in a state s′ = Fu,s (τn) in Sn;
however, s′ is guaranteed to be in S0.

In the interest of computational efficiency, we reformulate these ideas to use
integer based calculations for all operations besides collision checking. States are
saved based on the anchor space discretization, meaning one positional unit is
equivalent to ∆p_min, and a velocity unit is ∆v_min. Controls are saved as a 5-
tupel (x, y, z, t, d) , with u = (x, y, z)3 ∈ {−1, 0, 1}3. The real acceleration ureal
can be calculated as ureal = uu0/d, the real time step as τreal = tτ0. The successor
s′ = (p′, v′) can be calculated as(

p′

v′

)
=

(
p+ 2tv + t2u/d

v + ut/d

)
(4.3)

. In our work t and d are both equal to 2n at resolution n, but different values

10

4.2 Multi-Resolution A*

could be used to allow for different controls at given resolutions. The control set
must conform to the maximum acceleration allowed by system dynamics, in our
set that is guaranteed if 0 does not exceed the limit.

Within a given resolution level, not all states are connected by a chain of mo-
tion primitives. Notably, at anchor resolution, a motion primitive changes the
(discretized) position along one axis by an even amount if and only if the velocity
component along that axis also changes by an even amount. To address this, we
change our goal position to a goal region formed by all states with the same ve-
locity as the goal state and whose discretized position component only differs by
one along each axis; that is to say, the goal position’s 26-neighborhood.

4.2 Multi-Resolution A*

Algorithm 1 Multi-Resolution A* (adjusted from [2])
1: procedure Main
2: g(sstart) = 0; g(sgoal) =∞
3: bp(sstart) = bp(sgoal) = null
4: goal = sgoal
5: for i = 0, ..., n-1 do
6: OPENi ← ∅
7: CLOSEDi ← ∅
8: if i ∈ GetSpaceIndices(sstart) then
9: Insert sstart in OPENi with Key(s, i).

10: while OPENi ̸= ∅ for at least one i ∈ {0, ..., n− 1} do
11: i← ChooseQueue()
12: if i > 0 then
13: if g(goal) ≤ OPENi.MinKey() then
14: Return path pointed by bp(g(goal))
15: else
16: s = OPENi.Pop()
17: ExpandState(s, i)
18: Insert s into CLOSEDi

19: else
20: if g(goal) ≤ w2 ∗OPEN0.MinKey() then
21: Return path pointed by bp(g(goal))
22: else
23: s = OPEN0.Pop()
24: ExpandState(s, 0)
25: Insert s into CLOSED0

11

4 Method

Algorithm 2 Key & Expand State (adjusted from [2])
1: procedure Key(s, i)
2: if i = 0 then
3: return g(s) + h(s)
4: else
5: return g(s) + w1h(s)

6: procedure ExpandState(s, i)
7: for all s′ ∈ Succs(s, i) do
8: if s′ was never generated then
9: g(s′) =∞; bp(s′) = null

10: if g(s′) > g(s) + c(s, s′) then
11: g(s′) = g(s) + c(s, s′); bp(s′) = s
12: for all i ∈ GetSpaceIndices(s′) do
13: if s′ /∈ CLOSEDi then
14: Insert/Update s′ in OPENi with Key(s′, i)
15: if s′ = sgoal or s′ ∈ 26Neighborhood(sgoal) then
16: if g(s′) < g(goal) then
17: goal = s′

As mentioned in Chapter 3, the Multi-Resolution A* algorithm [2] forming the
basis of our method is designed to perform a search on several resolution levels in
tandem to accelerate the search. Alg. 1 demonstrates the main algorithm, using
n resolution levels.

We save nodes in a vector in order of their creation, and a hashmap maps
their state to their index. For each node, we also remember at which resolutions
it has been expanded. In the pseudocode this is represented as lists CLOSEDi

for readability, though our implementation saves the information directly in each
node.

We use a separate priority queue OPENi for each resolution level. Nodes in
the priority queues are sorted by Key(). As shown in Alg. 2, at anchor resolution
the key of a node s is the sum of the path costs g(s) to s and the the estimated
goal distance h(s), whereas at coarser resolutions the key is the weighted sum
g(s) + w1h(s). Our code also allows a weight at anchor resolution, which is used
to run a bounded suboptimal A* search for evaluation. If two nodes have identical
keys, the tie is broken by h(s). We use the Linear Quadratic Minimum Time
heuristic suggested by Liu et al. [5].

In Lines 2-9 in Alg. 1 we prepare the search by initializing g values and back
pointers for the start and goal node as well as OPEN and CLOSED for each
resolution, and inserting sstart into the queues at all resolutions which include

12

4.2 Multi-Resolution A*

sstart. The variable goal represents the node in the goal region which has the
smallest g value; it initially points at sgoal with a g value of infinity and is updated
whenever we find a cheaper path to a state in the goal region.

The algorithm terminates if all priority queues are empty or one of the comple-
tion criteria in Line 13 or 20 are met.

In Line 11, the algorithm chooses the priority queue which should be expanded
next. Several options for the queue choice policy will be discussed in Sec. 4.4. By
limiting expansions based on the anchor queue, the algorithm guarantees that the
solution returned is within the suboptimality bound w2 of the optimal solution
at anchor resolution. The search at anchor resolution is equivalent to a pure A*
search, and another queue may not be expanded if the top element’s key is more
than a factor w2 larger than the key of the anchor queue’s top element. Lu et
al. [2] check this suboptimality condition in Line 12, however, we instead include
it in ChooseQueue(). This enables us to make a more informed choice and also
simplifies the implementation of several policies.

Depending on wether anchor resolution (Lines 20-25) or another resolution
(Lines 13-18) was chosen for expansion, the algorithm now checks a slightly differ-
ent termination criterium, comparing the top key of the chosen queue with the cost
of the current best solution. If the algorithm does not terminate, the top element
of the chosen queue is removed and expanded at the corresponding resolution, then
marked as closed for this resolution.

The expansion process is detailed in Alg. 2. The successors Succs(s, i) of state
s at resolution i are calculated by applying the controls u ∈ Ui to s and checking
if the resulting motion primitive is valid as defined in Chapter 2. If a successor
has not been generated before, its g value and back pointer are initialized.

If we have found a cheaper path to a successor s′, its g value and back pointer
are updated. The successor is then inserted into the queues at all resolutions i

with s′ ∈ Si, unless it was already expanded at that resolution. Because searching
for and removing a node from a queue would be computationally expensive, we
simply insert s′ with the new key and ensure that a node is only expanded at
a given resolution once, even if it is inserted into the queue multiple times. We
achieve this by cleaning up the queues at the start of ChooseQueue(), discarding
the top elements until we reach a node which has not yet been expanded at that
resolution. If s′ is in the goal region and its g value is smaller than the cost of our
current best path, we also update goal.

13

4 Method

4.3 Goal Queue
Due to the limited control set Un as well as the restricted state space Sn at a given
resolution, searches often can’t reach the goal pose on a given resolution level,
particularly at coarser resolutions. We already discussed that we extend the goal
state to a goal region; however, to make this useful for coarse resolutions, the goal
region would need to be extended to an impractical size. Instead, we implement
a special ”goal queue” to reach the goal with anchor resolution motion primitives
once we are close to the goal.

When generating a new node, we check if its h value is smaller or equal to a
predefined value dgoal; if it is, we consider that node to be close to the goal. The
threshold is defined based on the maximum cost Cmax of an anchor level motion
primitive and a configurable weight wclose:

dgoal := wcloseCmax = wclose((3u
2
0 + ρ0)τ0). (4.4)

We choose wclose = 3. When using coarser resolutions, it may be necessary to
increase wclose or define dgoal differently.

When an expansion updates the g value of a node that is close to the goal and
has not been expanded at anchor level yet, we add that node to the goal queue,
which is sorted exactly like the anchor queue.

If the goal queue is not empty, we expand from it instead of a queue chosen
by ChooseQueue() in lines 11-25 in Alg. 1. We remove the top element from
the goal queue, expand the node at anchor resolution, and mark it as closed at
anchor resolution. We then increment a counter indicating how many goal queue
expansions we have performed since the last regular expansion. If the counter
exceeds a configurable limit, we clear all remaining entries in the goal queue.
Finally, if the goal queue is empty, we reset the counter to 0.

4.4 Queue Choice Functions
The choice of which resolution level should be expanded next significantly influ-
ences the performance of the algorithm, both in terms of solution quality as well
as planning time. Therefore, we implement and test several queue choice policies.

As mentioned in Sec. 4.2, we require that the queue chosen by our queue choice
function fulfills a suboptimality condition to guarantee bounded suboptimality for
the solution returned by the algorithm. Specifically, a queue OPENi may not be
expanded if the top element’s key is larger than w2 times the key of the anchor
queue’s top element. We say a resolution level or queue is valid or a valid choice

14

4.4 Queue Choice Functions

if it does not violate the suboptimality condition, and the queue is not empty.

Round Robin (RR, RR-a, wRR): The simplest policy is Round Robin (RR),
cycling through all resolution levels and expanding them if they are valid. Starting
at the last expanded resolution, we increase the resolution by one - wrapping
around to anchor resolution if we have reached the coarsest level - until we find
a valid resolution. However, because the anchor search is an optimal A* search,
it makes progress at a significantly lower rate than searches where the key is a
weighted sum, assuming the heuristic function underestimates the real costs. The
effect is compounded by the fact that anchor resolution motion primitives cover
the shortest amount of distance. For these reasons, it is advisable to only expand
at anchor resolution if required by the suboptimality condition. Therefore, we
implement a Round Robin policy that excludes anchor resolution, unless no non-
anchor resolution is valid. In that case we default to expanding at anchor level
(RR-a). We also experiment with a weighted Round Robin (wRR) approach where
resolution level i would be expanded 2i times before switching to the next resolution
level, assuming the queue is valid. The intention is to favor coarse resolution
searches which make progress towards the goal quickly without eliminating the
path cost improvements gained from finer resolutions. However, our experiments
show no noticeable improvement over RR-a.

Coarsest First (CF): If the search space is mostly free, it is to be expected
that a coarse resolution search requires significantly less expansions than finer
searches to find a path to the goal, though that path is likely to have increased
costs compared to the optimal path. For this reason we test a Coarsest First
(CF) policy, expanding at the coarsest valid resolution. This policy may produce
significantly more expensive trajectories than alternatives if the coarsest resolution
is insufficient to approximate the optimal trajectory, for example if the optimal
trajectory moves through a gap between obstacles that is not covered by a motion
primitive at the coarsest resolution. Issues also arise from the fact that the goal
region is likely not reachable using the coarsest resolution alone; this problem is
hopefully counteracted by the Goal Queue introduced in Sec. 4.3.

Smallest Heuristic First (SHF, SHF-a): The final queue choice function tested
is Smallest Heuristic First (SHF), expanding from the valid queue with the small-
est h value of its top element. The intuition behind this policy is that the search at
this resolution is likely closest to finding a path to the goal, so SHF is expected to
produce shorter search times. We also test a Smallest Heuristic First policy exclud-
ing anchor (SHF-a), expanding from the anchor queue only if no other resolutions

15

4 Method

are valid.

4.5 Stagnation Detection

Algorithm 3 Stagnation Detection (Queue) (adjusted from [7])
1: procedure StagnationDetectQueue(i,h)
2: for m = 0, 1, ..., σ1 − 2 do
3: Qi(m) = Qi(m+ 1)

4: Qi(σ1 − 1) = h
5: bestOld = min0≤n<σ2{Qi(n)}
6: bestNew = minσ2≤n<σ1{Qi(n)}
7: if bestNew > (bestOld+ ε1) then
8: blockedi = true
9: blockHi = bestOld

10: else
11: blockedi = false

As mentioned in Sec. 4.4, a Smallest Heuristic First (SHF) queue choice function
is expected to produce short search times. However, initial experiments instead
showed that a search guided by SHF was actually slower on average than alterna-
tive searches using a Round Robin queue choice function.

Further investigation showed that this was largely caused by the search stag-
nating when it encountered a dead end or similarly, an obstacle like a flat wall
orthogonal to the flight path. In any case where the search encounters a local
minimum in the heuristic function, SHF ensures that the local minimum area is
explored thoroughly on all resolution levels (except anchor) before a path out of
the area is found.

To address this issue, we disable resolution levels temporarily if we detect that
the search at that level is stagnating. This should result in the local minimum
area only being explored completely at the coarsest resolution level, which requires
the lowest number of expansions to do so. We implement and test two stagnation
detection methods.

Count-based detection: The first method simply counts how many successive
expansions at a given resolution do not result in at least one successor node having
a h value at least ε1 lower than that of the expanded node. If a certain number of
successive expansions don’t result in an improvement, we mark the resolution as
blocked. If an expansion does result in an improvement, we unblock the resolution.

16

4.5 Stagnation Detection

This is relevant because we do still expand at blocked resolutions to test if newly
added nodes have allowed the search to leave the local minimum.

Queue-based detection: For our second detection method, we adapt the work
of Kai Mi et al. [7], who detect stagnation in a single resolution search to toggle
multiple heuristic functions. For each resolution level i, we use a first-in-first-out
queue Qi to save the h values of the last σ1 expansions at resolution i. Alg. 3
shows the process, StagnationDetectQueue(i,h) being called after a node s with
h = h(s) was expanded at resolution i. After updating Qi, we calculate the
minimum of both the oldest σ2 and the newest (σ1 − σ2) saved h values. If the
best new h value is larger than the best old value plus a threshold ε1, we mark
resolution i as blocked, and save the best old h value for unblocking. As in the
first detection method, we unblock the resolution if we do not detect stagnation,
which is used when we speculatively expand from a blocked queue.

At the beginning of ChooseQueue(), we unblock all resolution levels if the anchor
resolution is blocked, or if all resolution levels above anchor are blocked. This
prevents issues if the local minimum area cannot be escaped quickly enough to
prevent blocking the resolution required for it. A blocked queue is skipped by
the queue choice functions discussed in Sec. 4.4. However, ChooseQueue() may
still return a blocked resolution in an effort to unblock it. After a fixed number
of normal expansions, we expand at each blocked resolution once, assuming the
queue is valid.

Discard (g + h, g +wh, waypoint): Lastly, we attempt to detect when we have
escaped the local minimum, and discard states in the local minimum area that are
still in the queues to prevent them being expanded unnecessarily due to their small
key. This may also help unblocking queues faster once we have left the stagnation
area, since we would otherwise have to wait until the periodic speculative expansion
results in an expansion of a state outside the area.

When we insert a new node into a blocked non-anchor queue, we check whether
or not the new node is behind the obstacle that was causing the stagnation. This
step is only in effect if we use the second stagnation detection method. We assume
we have found a way around the blocking obstacle if the h value of the newly
inserted node is smaller than the previous best h value, which we saved in Line
9 in Alg. 3. In that case, we unblock the resolution, and discard nodes from
the queue based on one of three rules, in an effort to eliminate the nodes in the
stagnation area. Because of their small key, they would otherwise likely still be
expanded even after a path around the obstacle was found. All methods discard
the top nodes of the queue until they find a node which does not conform to their

17

4 Method

discard rule, or they have discarded a maximum allowed number of nodes. They
use a configurable discard threshold ε2.

The first discard rule is based on the sum of g and h values, discarding nodes
with a sum that is at least ε2 smaller than that of the newly added node (g + h

discard). The second rule is similar but discards based on the keys of both nodes,
that is, the weighted sum g(s)+w1h(s), instead (g+wh discard). Both are based on
the assumption that the best path around the obstacle will not be significantly less
expensive than a path leading through the newly added node, using the currently
known path to said node.

Because we detect the first time we reach a node that is significantly behind
the obstacle, it is likely that we have found a suboptimal path to this node. The
previous discard rules are expected to discard nodes which could lead to a better
path to the newly discovered node. In our initial testing, this results in significantly
increased solution costs. To address this, we implement a new discard rule based
on the estimated path costs to the new node. Nodes are discard candidates if the
sum of their g value and the estimated path cost to the newly added node is at
least ε2 smaller than the g value of the new node. We additionally require that a
discarded node has a larger h value than the new node (waypoint discard).

Because we do not discard nodes from the anchor queue nor expand from queues
that violate the suboptimality criterion, none of these actions compromise the
suboptimality guarantee.

18

5 Evaluation

Figure 5.1: The evaluation environment.

To evaluate our work, we run searches on a set of 500 pairs of start- and goal
states, set in the simulated outdoor environment also used by Schleich and Behnke
[8], which contains several obstacles with varied shapes (see Fig. 5.1). We generate
random pairs of start and goal states with positions within the map boundaries,
velocity components of the start states conforming to the velocity limits, and 0
velocity for the goal state. We then run A* search with a heuristic weight of 2.0
on these pairs to determine if a path from start to goal exists at anchor level.
If the search finds a path or reaches its timeout point of one million expansions
before terminating, we add the pair to our set of search pairs. While we can not
say for certain that a path exists if the search terminates due to a timeout, we
include these pairs to determine if our method can find a path. Of the resulting
set of 500 pairs, the weighted A* search found a path for 97.6% of the pairs. We
use a different test set to compare our work to that of Schleich and Behnke [8],
because that algorithm requires the start position to be at the center of the map.
For this set, the distance along the x- and y-axes from the start to the goal state
may not exceed 64 meters, and the map is shifted to make the start position the
new center. Otherwise, the test set is generated in the same way.

Our map has a size of 128× 128m and we allow a flight altitude of 0-10m. The

19

5 Evaluation

UAV may not exceed a velocity of 4.0m/s or acceleration of 2.0m/s2 along indi-
vidual axes. We consider any position that is closer than 1m to an obstacle to be
blocked, any that is further away to be free. We allow up to one million expansions
before we terminate the algorithm. For all Multi-Resolution A* searches, we use
a keyweight w1 = 2.0 and a suboptimality bound w2 = 2.0.

To compare different design choices of our proposed method against each other,
we use the number of expansions required to find a path as a measure of compu-
tation speed, because they are more precise than actual time measurements and
not influenced by external factors. Towards the end of the chapter we include
measured times to compare our approach to others that may not require the same
amount of time for an expansion. We noticed that required times for identical
tasks varied, with the first execution requiring significantly longer than all follow-
ing executions. This effect appears to stem from additional time being required
when more nodes are added to a queue than its previous capacity. It does not
happen if the same search was performed before, regardless of how many other
searches have been performed in between, unless the entire program is restarted.
We attempted to combat this by reserving memory space for the queues before
starting the execution, however, this had no effect. To eliminate this effect in the
evaluation, we perform each search twice, and use the time required by the second
search.

5.1 Goal Queue:

Resolution using Goal success average # of average path
levels Queue rate (%) expansions cost
2 no 60.0 55493.8 198.974
2 yes 99.4 2623.4 196.526
3 no 99.0 2493.6 209.993
3 yes 99.0 1591.2 208.184
4 no 99.0 3234.9 214.601
4 yes 99.0 1673.8 213.235

Table 5.1: Goal Queue evaluation: Comparing searches using and not using goal
queue with different numbers of resolution levels.

We start by evaluating the effects of the Goal Queue (Sec. 4.3). We limit our
comparison to searches using one Queue Choice Function for simplicity, and be-
cause experiments over smaller test sets showed similar results regardless of the

20

5.2 Queue Choice Functions

Queue Choice Function used. We choose a Round-Robin policy because it is the
most basic policy, and because it is expected to benefit less from the Goal Queue
than other policies like Coarsest-First. Therefore, if the Goal Queue shows signifi-
cant improvements for Round-Robin, it can be assumed to be generally useful. We
exclude anchor level from the Round-Robin selection because this is significantly
more effective, as we shall see when evaluating Queue Choice Functions (Sec. 5.2).
We allow for two Goal Queue expansions before clearing the queue. As detailed in
Sec. 4.3, we consider a state to be close to the goal and add it to the goal queue if
its h value is smaller or equal to wclose = 3 times the maximum cost of an anchor
level motion primitive. To calculate the average number of expansions and path
costs, we only consider the 297 start/goal pairs for which all searches found a path.

Tab. 5.1 compares the statistics of searches using the Goal Queue with those
that do not, using 2, 3, and 4 resolution levels including anchor. It is easy to see
that using the Goal Queue provides strictly better results in all cases, requiring
significantly less expansions to find a slightly cheaper path, and succeeding in
finding a path in at least the same number of cases. Similar results have been
observed with other queue choice policies and parameters as well. Therefore, we
will be using the Goal Queue in all further evaluations.

5.2 Queue Choice Functions
We will now compare the performance of the six options for ChooseQueue() pro-
posed in Sec. 4.4. Tab. 5.2 shows the results of our tests using two, three and
four resolution levels including anchor level. The averages for number of expan-
sions and trajectory costs are calculated over those pairs where all searches with
the same number of resolution levels found a path. At two resolution levels that
were 492 of the 500 pairs; at three and four resolution levels 497 pairs resulted in
successful paths with all queue choice functions.

When only one resolution level above anchor exists, the three functions excluding
anchor level (RR-a, wRR and SHF-a) as well as CF are all equivalent, which
explains why they perform identically.

The basic Round-Robin (RR) function always results in significantly longer
searches than its variants excluding anchor level (RR-a and wRR), while only pro-
viding a minor improvement to path costs. As discussed in Sec. 4.4, this is because
expansions at anchor resolution advance the search less than expansions at higher
resolutions, both because anchor search is equivalent to optimal A* search and
because anchor level motion primitives cover less distance. Because Round-Robin
excluding anchor (RR-a) and weighted Round-Robin (wRR) perform similarly, we

21

5 Evaluation

Resolution Queue Choice success average # of average path
levels Function rate (%) expansions cost
2 RR 98.4 21800.3 361.5
2 RR-a/wRR 99.8 4360.3 367.9
2 CF/SHF-a 99.8 4360.3 367.9
2 SHF 99.8 4798.1 366.0
3 RR 99.6 5386.3 389.1
3 RR-a 99.4 2771.8 393.0
3 wRR 99.4 2447.0 394.6
3 CF 99.4 2366.7 422.4
3 SHF 99.4 11863.4 374.9
3 SHF-a 99.4 13609.4 376.1
4 RR 99.6 5603.9 399.8
4 RR-a 99.4 3482.1 405.0
4 wRR 99.4 3536.6 411.0
4 CF 99.4 3626.7 475.4
4 SHF 99.4 10157.3 379.8
4 SHF-a 99.4 11794.2 382.3

Table 5.2: Queue Choice Function evaluation: Comparing Round-Robin (RR),
Round-Robin excluding anchor (RR-a), weighted Round-Robin (wRR),
Coarsest-First (CF), Smallest-Heuristic-First (SHF) and Smallest-
Heuristic-First excluding anchor (SHF-a) with different numbers of res-
olution levels.

conclude that the additional complexity of wRR is not justified.
As expected, the paths produced by the Coarsest First have the highest costs.

While at three levels of resolution CF does indeed require the smallest number
of expansions, at four levels RR-a and wRR are actually faster. This may be
due to suboptimal settings for the Goal Queue, or simply because Level-4 motion
primitives are not flexible enough to plan an efficient path mainly on this level in
the given environment.

Contrary to expectations, both variants of Smallest Heuristic First are signif-
icantly slower than all alternatives when using more than two resolution levels,
though they produce the cheapest paths as well. A closer look at individual
searches shows that this is at least partially caused by the algorithm getting ”stuck”
in local minima. When the search encounters a dead end or an obstacle that ex-
tends orthogonal to the straight path to the goal, SHF ensures that most nodes
at all resolution levels in the local minimum are expanded before a path around
the obstacle can be found. To overcome this problem, we implement Stagnation

22

5.3 Stagnation Detection

Detection, which is evaluated in the next section.
In general, it is notable that average path costs increase when adding coarser res-

olution levels. This is not surprising, since the less flexible motion primitives at the
added levels almost by necessity introduce suboptimalities in the path. However,
the required number of expansions does not strictly decrease as coarser resolutions
are added; in fact, all three Round-Robin policies as well as Coarsest-First require
more expansions with four resolution levels than with three. A likely reason is
that areas get explored multiple times due to overlapping motion primitives at
different resolution levels.

5.3 Stagnation Detection

Resolution Detection Discard success average # of average path
levels Mode Mode rate (%) expansions cost
3 none none 99.4 11863.2 374.2
3 Count none 99.6 6129.6 384.5
3 Queue none 99.6 3026.7 382.8
3 Queue g + h 99.4 3200.6 382.5
3 Queue g + wh 99.4 3042.1 382.8
3 Queue waypoint 99.6 3199.5 383.2
4 none none 99.4 10157.1 379.2
4 Count none 99.4 7044.8 394.7
4 Queue none 99.6 5304.8 388.6
4 Queue g + h 99.4 2616.5 388.4
4 Queue g + wh 99.4 3979.1 389.0
4 Queue waypoint 99.6 3014.3 386.3

Table 5.3: Evaluation of Stagnation Detection options, using Smallest-Heuristic-
First.

To evaluate the effectiveness of Stagnation Detection, we analyze the effects of
the methods introduced in Sec. 4.5, that being Count- or Queue-based detection.
For Queue-based detection, we also compare discarding nodes based on the sum
(g + h) or weighted sum (g +wh) of their g and h values, based on the estimated
distance to the node we detected as behind the obstacle (waypoint), and not dis-
carding at all. All variants are tested with three and four resolution levels using
SHF, since this Queue Choice Function motivates Stagnation Detection. Stagna-
tion Detection has no relevant effect with only two resolution levels because all

23

5 Evaluation

queues are immediately unblocked if anchor resolution or all non-anchor resolu-
tions are blocked.

We speculatively expand valid blocked resolution levels once after 20 regular ex-
pansions. For both Count- and Queue-based detection, we choose an improvement
threshold ε1 = 0.5. For Count-based detection, we block a resolution level after
ten consecutive expansions that did not result in a significant improvement. Sim-
ilarly, for Queue-based detection, we save the last σ1 = 20 h-values, and consider
σ2 = 10 of them to be old values. We allow for up to 100 nodes to be discarded
at once.

Tab. 5.3 shows the results of these experiments, averaging numbers of expansions
and path costs over the 496 search pairs for which all searches found solutions.
All variants of Stagnation Detection reduce the number of required expansions by
more than 30% while slightly increasing path costs. However, searches utilizing
Count-based detection still require significantly more expansions than those us-
ing Queue-based detection with or without discards, while also producing more
expensive paths. At three resolution levels, discarding nodes does not seem to
have a significant impact, but at four levels all three discard modes reduce the
required number of expansions significantly, without impacting path costs very
much. Using four resolution levels, discarding based on the key g + wh produces
more expensive paths while also requiring more expansions than both alternatives;
g+h discard results in the fastest searches here, while waypoint discard produces
the cheapest paths. It should also be noted that waypoint discard has a higher
success rate at both resolution levels, though the difference of 0.2% equates to
only a single search.

We also evaluate the effect of Queue-based Stagnation Detection with waypoint

based discard and the same parameters as above on other Queue Choice Functions,
using three and four resolution levels. The results are shown in Tab. 5.4. Basic
Round-Robin including anchor (RR) is not listed because Stagnation Detection
does not improve on the large number of expansions it requires, making it non-
viable. Once again, averages are formed over those pairs where all searches with
the same number of resolution levels found a path, which is the case for 497 pairs
both with three and four levels. It should also be noted that for all searches listed,
the success rate increased from 99.4% to 99.6% when using stagnation detection.

When using three resolution levels, Stagnation Detection reduces the required
number of expansions for all functions listed, though unsurprisingly the improve-
ment for SHF and SHF-a is significantly larger than for the other options. Result-
ing path costs are also reduced for RR-a, wRR and especially CF, though they are
increased for SHF and SHF-a.

When using four levels, Stagnation Detection is less beneficial for RR-a and

24

5.4 Comparison to A* at different Resolutions

Stagnation Detection no Stagnation Detection
Resolution Queue Choice average # of average average # of average

levels Function expansions cost expansions cost
3 RR-a 1931.1 392.4 2771.8 393.0
3 wRR 2053.8 393.2 2447.0 394.6
3 CF 1847.0 401.9 2366.7 422.4
3 SHF 3202.3 384.1 11863.4 374.9
3 SHF-a 2514.5 385.5 13609.3 376.1
4 RR-a 3812.3 406.4 3482.1 405.0
4 wRR 4142.3 410.3 3536.6 411.0
4 CF 3655.2 424.4 3626.7 475.4
4 SHF 3014.8 387.1 10157.3 379.8
4 SHF-a 3975.0 393.4 11794.2 382.3

Table 5.4: Effects of Queue-based Stagnation Detection using waypoint based dis-
card with different Queue Choice Functions: Round-Robin excluding
anchor (RR-a), weighted Round-Robin (wRR), Coarsest-First (CF),
Smallest-Heuristic-First (SHF) and Smallest-Heuristic-First excluding
anchor (SHF-a).

wRR, increasing the number of expansions required without significantly chang-
ing path costs. For Coarsest-First, path costs are once again significantly reduced,
though number of expansions no longer changes significantly. Despite the improve-
ments, the paths generated by CF remain significantly worse than all alternatives,
and as noted in Sec. 5.2, CF does not produce especially fast searches when a
larger number of resolution levels is involved.

SHF and SHF-a benefit from Stagnation Detection in a similar way at four
resolution levels as they did at three, significantly reducing the number of expan-
sions required at the cost of increased path costs. At three levels, SHF-a performs
better, while at four levels SHF does.

In general, the fastest searches are achieved by using CF with three resolution
levels and Stagnation Detection, followed by RR-a at the same settings. However,
SHF and SHF-a can produce significantly better paths.

5.4 Comparison to A* at different Resolutions
To evaluate our approach as a whole and compare it to other approaches, we
want to compare the resulting path costs to the optimal costs. Unfortunately,
an optimal A* search is unable to find a path for many of our search pairs in a

25

5 Evaluation

reasonable time. Comparing only those pairs where we can generate an optimal
trajectory would limit our sample size and likely also reduce the distance covered
on average. We therefore compare our results to a bounded suboptimal A* search
with a heuristic weight of 2.0, and compare the values created by that with the
available optimal trajectories to estimate the difference between them.

Optimal A* search is only able to find a path for 52.4% of the pairs within
one million expansions, while the suboptimal search is successful for 98% of the
searches. Over the 262 pairs for which an optimal path was found, the average
optimal costs were 91.796, while the average costs produced by the suboptimal
search were 2.45% higher at 94.044.

We encounter a similar issue when comparing our Multi-Resolution A* approach
to regular (suboptimal) A* search at coarser resolution levels — in many cases,
those searches are unable to find a path, especially at very coarse resolutions.
There are two primary reasons that we attempt to eliminate. First, rounding the
start and goal positions to conform to the coarse resolution often results in one or
both locations being inside an obstacle and therefore invalid. Second, due to the
limited mobility granted by coarse resolution motion primitives and the fact that
our start poses contain non-zero velocity components, the UAV often starts from
a state which inevitably leads to a collision or to leaving the map, resulting in the
search terminating with empty queues.

To solve these issues and generate a higher number of comparable searches, we
use features of MRA to approximate A* search at coarser resolutions, by allowing
certain anchor level motion primitives near the start and goal states. We call this
approach virtual single resolution A* (vA*). Instead of rounding our positions to
the coarse resolution grid, we round to our regular anchor resolution grid instead.
We then expand that state at anchor level to a certain debth; specifically, we fully
expand two anchor level motion primitives deep, performing a maximum of 28
expansions and generating a maximum of 729 nodes. We only insert nodes into
the queue at the resolution we want to plan at, or the goal queue if they are close
to the goal. By using the Goal Queue and goal region, we ensure that the goal
can be found even if it is not included in the search resolution.

Tab. 5.5 shows how vA* performs compared to regular A*. Averages consider
the pairs for which both A* and vA* found a path at a given planning resolution;
thus, these values are only suitable for comparing searches at the same resolution.
For Level-1 or Level-2, vA* has significantly higher success rates than A*, and also
produces cheaper paths. This does come at the cost of some additional expansions.
At Level-3, vA* actually performs worse than A*, possibly because the parameters
for the initial anchor level expansion and the goal queue are insufficient to link the
start and goal position to the coarse grid. However, because both methods have

26

5.4 Comparison to A* at different Resolutions

resolution mode success average # of average path
level rate (%) expansions cost
0 A* 97.6 41953.0 354.2
1 A* 77.0 5299.4 291.9
1 vA* 94.0 6595.7 287.8
2 A* 44.4 435.7 197.6
2 vA* 65.8 676.3 193.0
3 A* 27.0 93.9 72.9
3 vA* 22.2 1308.6 77.9

Table 5.5: Comparing A* search to virtual single resolution A* (vA*).

a success rate below 30%, we do not consider either method to be viable at this
resolution and refrain from comparing it to other methods.

planning success average plan average # of average
mode rate (%) time (ms) expansions path cost
A* Level-0 97.6 149.6 28275.7 229.1
vA* Level-1 94.0 16.5 2780.3 242.3
vA* Level-2 65.8 8.3 785.6 296.1
MRA RR-a Level-1 99.8 18.2 2867.7 240.7
MRA RR-a Level-2 99.6 7.9 1211.8 253.5
MRA CF Level-2 99.6 8.3 1179.9 258.9
MRA SHF-a Level-2 99.6 9.9 1524.4 248.1

Table 5.6: Comparison of MRA to virtual single resolution A* at different resolu-
tion levels; using Round-Robin excluding anchor (RR-a), Coarsest-First
(CF) and Smallest-Heuristic-First excluding anchor (SHF-a) Queue
Choice Functions for MRA. For MRA, Level-1 and Level-2 refer to the
coarsest level used, while for (v)A* they refer to the primary planning
level.

We will now compare our Multi-Resolution A* approach to A* and vA*. Tab. 5.6
shows the statistics comparing anchor level A*, vA* at Level-1 and Level-2, and
multiple variations of MRA using two or three levels (including anchor), all with
suboptimality weights of 2.0. For MRA we include the queue choice functions
RR-a, CF and SHF-a, all using queue-based stagnation detection and waypoint

discard. As mentioned earlier, at Level-1 these queue choice functions are all
equivalent, so we only list one. The average and maximum numbers of expansions
as well as the average path costs only consider the 323 pairs for which every search

27

5 Evaluation

found a trajectory.
As expected, anchor level A* produces the best trajectories. However, it also

requires an order of magnitude more expansions than all alternatives. At Level-1,
the performance of MRA and vA* is quite similar, requiring roughly twice as many
expansions — and twice as much time — as Level-2 MRA but producing cheaper
trajectories. However, vA* is unable to find a solution for 6% of the search pairs.

At Level-2, vA* requires significantly less expansions than MRA, however, it is
not actually faster than MRA with RR-a or CF. It also produces by far the most
expensive trajectories, and fails to find any solution for 34.2% of the pairs. For
these reasons, MRA is likely a better choice in most scenarios.

The performance of all three MRA variants at level 2 is quite similar, with SHF-a
producing the best trajectories but also requiring more time than the alternatives,
and RR-a finding a solution the fastest, but producing a more expensive trajectory.

5.5 Comparison to Local Multiresolution State
Lattices

planning success average plan average # of average
mode rate (%) time (ms) expansions path cost
MRA RR-a res1 99.8 79.7 11407.1 255.9
MRA RR-a res2 100.0 31.4 5023.3 270.1
MRA CF res2 100.0 31.1 4931.5 282.1
MRA SHF-a res2 100.0 31.9 5185.5 263.8
LMRSL [8] wh = 1 A* 65.4 - - -
LMRSL [8] wh = 1 Level-A* 98.8 339.6 10900.6 241.5
LMRSL [8] wh = 2 A* 99.0 74.4 2719.6 253.2
LMRSL [8] wh = 2 Level-A* 99.2 25.3 753.5 269.3

Table 5.7: Comparison of MRA to Local Multiresolution State Lattices (LMRSL;
Schleich and Behnke [8]): MRA using the Queue Choice Func-
tions Round-Robin excluding anchor (RR-a), Coarsest-First (CF) and
Smallest-Heuristic-First excluding anchor (SHF-a); LMRSL using and
not using Level-A* with a heuristic weight of 1.0 and 2.0.

Finally, we compare our approach to the Local Multiresolution State Lattice
approach developed by Schleich and Behnke [8]. Both approaches are similar in
that they use the same formulation of motion primitives and similar definitions of
resolution levels to accelerate searches by utilizing multiple resolutions. However,

28

5.5 Comparison to Local Multiresolution State Lattices

our approach uses all resolution levels simultaneously, while Local Multiresolution
uses only a single level at each position, based on the distance from the UAV. Our
approach holds the advantage that we can plan at a finer resolution level anywhere
on the map when necessary, however, in unexplored terrain, we usually do not have
sufficient knowledge of the environment far from the UAV to necessitate or even
enable such precise planning.

Because Local Multiresolution State Lattices centers the map on the UAV and
we want to utilize the configuration introduced in [8], we can not plan trajectories
covering a larger x- or y-distance than 64m. For this reason, we use a different
test set for this evaluation, as mentioned at the beginning of the chapter. We
compare the same MRA versions we used in Sec. 5.4 against four variants of
Local Multiresolution State Lattices; using and not using the level-based expansion
scheme (Level-A*) suggested in [8] each with a heuristic weight of 1.0 and 2.0.

Tab. 5.7 shows the results of the comparison, though we only show the low
success rate for Local Multiresolution State Lattices not using Level-A* with a
heuristic weight of 1.0. This is because we want to average planning times, num-
ber of expansions and path costs over a large number of pairs for which all searches
found a path, and all other searches succeeded for 493 of the 500 pairs. Addition-
ally, when limiting ourselves to those pairs for which this setting also found a path,
we find that the average plan time was more than 75 times as long as for the next
slowest approach. Thus, we can safely say that this variant is not relevant for the
comparison.

Using a heuristic weight of 2.0, Local Multiresolution State Lattices requires
significantly less expansions than MRA, however, without Level-A* it still requires
more than twice as much time as MRA at Level-2. Because one expansion requires
vastly different amounts of time between both methods, number of expansions is
not a suitable metric for the required time here.

Unsurprisingly, the search with a heuristic weight of 1.0 produces the best paths,
however, it is also much slower than all other options. MRA at Level-1 performs
similar to Local Multiresolution State Lattices without Level-A* and with heuristic
weight of 2.0, producing the next best paths but requiring more than twice as
much time as the remaining alternatives. At Level-2, the time differences between
MRA variants is negligible, though the path quality differs significantly. Local
Multiresolution State Lattices with Level-A* and a heuristic weight of 2.0 is faster
than MRA, however, MRA with Level-2 is still very fast, succeeds on more pairs,
and in the case of SHF-a also produces cheaper trajectories.

At the current stage of development, Local Multiresolution State Lattices and
our approach have similar performances. It is likely that both methods can still
be improved upon.

29

6 Conclusion
In this thesis, we apply Multi-Resolution A* [2] to the search-based trajectory gen-
eration method proposed by Liu et al. [5] to quickly generate dynamically feasible
second order trajectories for UAVs. We develop and compare six Queue Choice
Functions to determine the resolution level for each expansion. We introduce the
Goal Queue and Stagnation Detection as improvements to Multi-Resolution A*
that are likely effective in many different settings outside the realm of trajectory
generation.

We show that using Multi-Resolution A* results in significantly faster searches
than A* search at anchor level and significantly better success rates than A* at
coarser resolution levels. It also allows for more precise goal positions than A* at
coarser resolutions.

We show that at this stage of development, our approach can produce trajec-
tories of similar quality within similar time frames to the Local Multiresolution
State Lattice approach proposed by Schleich and Behnke [8]. However, our ap-
proach is able to plan at a fine resolution regardless of distance from the start
state, which may be useful for operations in partially known environments, includ-
ing settings where multiple tasks must be performed in the same initially unknown
environment.

Multi-Resolution A* can be used to accelerate the method proposed by Liu
et al. [5] sufficiently for frequent replanning of second order trajectories. Unless
a slight improvement of search times is more important than the quality of the
generated trajectories, we advise using a Smallest Heuristic First excluding anchor
(SHF-a) Queue Choice Function, since it produces cheaper trajectories than the
slightly faster alternatives.

It is likely that the performance of our approach can be improved further, for
example by using a different heuristic function. Additionally, it may be possible
to use information from previous searches to accelerate replanning. One approach
is to use the Smallest Heuristic First Queue Choice Function to choose resolution
levels based on a heuristic informed by the previous search, separate from the
admissible heuristic guiding the search. This would require the search direction to
be inverted between each search. Because the motion primitives are symmetrical,
this is not difficult. However, the heuristic function would need to be adjusted to

31

6 Conclusion

allow for goal states with non-zero velocities.
Finally, Liu et al. [6] extend their approach [5] to generate trajectories through

gaps that are narrower than the UAV diameter, which is possible because flight
attitude can be considered. Their method uses an initial lower dimensional search
to guide the complex high dimensional search; using Multi-Resolution A* instead
may improve performance.

32

List of Figures
2.1 Motion primitives (magenta) resulting from application of nine dif-

ferent acceleration controls (black arrows) to an initial state x0 with
non-zero velocity towards the right. Red squares mark the position
components of the discretized states. Image taken from [5]. 4

3.1 Generating trajectories based on the shortest path (red trajectory)
can result in slow, high-effort trajectories, while a planner that
takes system dynamics such as initial velocity (blue arrow) into
account can produce significantly smoother and faster trajectories
(magenta). Image taken from [5]. 6

5.1 The evaluation environment. 19

33

List of Tables
5.1 Goal Queue evaluation: Comparing searches using and not using

goal queue with different numbers of resolution levels. 20
5.2 Queue Choice Function evaluation: Comparing Round-Robin (RR),

Round-Robin excluding anchor (RR-a), weighted Round-Robin (wRR),
Coarsest-First (CF), Smallest-Heuristic-First (SHF) and Smallest-
Heuristic-First excluding anchor (SHF-a) with different numbers of
resolution levels. 22

5.3 Evaluation of Stagnation Detection options, using Smallest-Heuristic-
First. 23

5.4 Effects of Queue-based Stagnation Detection using waypoint based
discard with different Queue Choice Functions: Round-Robin ex-
cluding anchor (RR-a), weighted Round-Robin (wRR), Coarsest-
First (CF), Smallest-Heuristic-First (SHF) and Smallest-Heuristic-
First excluding anchor (SHF-a). 25

5.5 Comparing A* search to virtual single resolution A* (vA*). 27
5.6 Comparison of MRA to virtual single resolution A* at different reso-

lution levels; using Round-Robin excluding anchor (RR-a), Coarsest-
First (CF) and Smallest-Heuristic-First excluding anchor (SHF-a)
Queue Choice Functions for MRA. For MRA, Level-1 and Level-2
refer to the coarsest level used, while for (v)A* they refer to the
primary planning level. 27

5.7 Comparison of MRA to Local Multiresolution State Lattices (LMRSL;
Schleich and Behnke [8]): MRA using the Queue Choice Functions
Round-Robin excluding anchor (RR-a), Coarsest-First (CF) and
Smallest-Heuristic-First excluding anchor (SHF-a); LMRSL using
and not using Level-A* with a heuristic weight of 1.0 and 2.0. . . . 28

35

Bibliography
[1] Reinis Cimurs and Il Hong Suh. “Time-optimized 3d path smoothing with

kinematic constraints”. In: International journal of control, automation and
systems 18.5 (2020), pp. 1277–1287.

[2] Wei Du, Fahad Islam, and Maxim Likhachev. “Multi-resolution a*”. In: Thir-
teenth annual symposium on combinatorial search. 2020.

[3] Jonathan Jamieson and James Biggs. “Near minimum-time trajectories for
quadrotor uavs in complex environments”. In: 2016 ieee/rsj international con-
ference on intelligent robots and systems (iros). 2016, pp. 1550–1555.

[4] Sertac Karaman, Matthew R. Walter, Alejandro Perez, Emilio Frazzoli, and
Seth Teller. “Anytime motion planning using the rrt*”. In: 2011 ieee interna-
tional conference on robotics and automation. 2011, pp. 1478–1483.

[5] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar. “Search-
based motion planning for quadrotors using linear quadratic minimum time
control”. In: 2017 ieee/rsj international conference on intelligent robots and
systems (iros). IEEE. 2017, pp. 2872–2879.

[6] Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay Kumar. “Search-
based motion planning for aggressive flight in se(3)”. In: Ieee robotics and
automation letters 3.3 (2018), pp. 2439–2446.

[7] Kai Mi, Jun Zheng, Yunkuan Wang, and Jianhua Hu. “A multi-heuristic a*
algorithm based on stagnation detection for path planning of manipulators in
cluttered environments”. In: Ieee access 7 (2019), pp. 135870–135881.

[8] Daniel Schleich and Sven Behnke. “Search-based planning of dynamic mav
trajectories using local multiresolution state lattices”. In: 2021 ieee interna-
tional conference on robotics and automation (icra). 2021, pp. 7865–7871.

[9] Zetian Zhang, Ruixiang Du, and Raghvendra V Cowlagi. “Randomized sampling-
based trajectory optimization for uavs to satisfy linear temporal logic speci-
fications”. In: Aerospace science and technology 96 (2020), p. 105591.

37

	Introduction
	Problem Definition
	Related Works
	Method
	Resolution Levels and State Lattice
	Multi-Resolution A*
	Goal Queue
	Queue Choice Functions
	Stagnation Detection

	Evaluation
	Goal Queue:
	Queue Choice Functions
	Stagnation Detection
	Comparison to A* at different Resolutions
	Comparison to Local Multiresolution State Lattices

	Conclusion
	Appendices

