
Institute for Computer Science
Department VI
Autonomous Intelligent Systems

Rheinische
Friedrich-Wilhelms-

Universität Bonn

Rheinische
Friedrich-Wilhelms-Universität Bonn

Master Thesis

Synthetic-to-Real Domain Adaptation Using
Contrastive Unpaired Translation

Author:
Benedikt Tobias Imbusch

First Examiner:
Prof. Dr. Sven Behnke

Second Examiner:
Jun.-Prof. Dr. Florian Bernard

Supervisor:
Max Schwarz

May 2022

Declaration

I hereby declare that I am the sole author of this thesis and that none other than
the specified sources and aids have been used. Passages and figures quoted from
other works have been marked with appropriate mention of the source.

Place, Date Signature

Abstract

Deep learning models for vision have become a key component of many robotic
systems over the last years. Their usefulness is largely dependent on the avail-
ability of training data. In practice, manual annotation of training data, e.g. for
semantic segmentation, is often difficult and economically not feasible. Synthetic
images are a viable alternative as the ground truth data for deep learning tasks
can be retrieved directly from the renderer. However, synthetic data suffers from
the domain gap: Visual differences between real and synthetic images lead to im-
paired generalization performance when a network is trained on synthetic data
and inference is done on real images.

In this thesis, we follow a learning-based approach to perform synthetic-to-
real domain adaptation and thus minimize the domain gap. In combination, we
propose a multi-step method to obtain training data without manual annotation
effort: From 3D object meshes, we generate images using the modern synthesis
pipeline Stillleben. After a proof-of-concept for supervised domain adaptation,
we focus on utilizing a state-of-the-art unsupervised image-to-image translation
method for the subsequent adaptation step. The translation network is trained
from unpaired images, i.e. just requires an un-annotated collection of real images.
The generated and refined images can then be used to train deep learning models
for a particular task. We also propose and evaluate extensions to the translation
method that further increase performance, such as patch-based training, which
shortens training time and increases global consistency.

We evaluate our method and demonstrate its effectiveness on two robotics data-
sets, YCB-Video and HomebrewedDB. Moreover, we give insight into the learned
refinement operations.

Finally, we introduce and briefly evaluate other domain adaptation directions,
which include a real-to-synthetic and a symmetric approach.

Contents

1 Introduction 1

2 Fundamentals 5
2.1 Domain Adaptation For Visual Data 5
2.2 Generative Adversarial Networks (GANs) 6
2.3 Similarity Measures . 7

2.3.1 Learned Perceptual Image Patch Similarity (LPIPS) 7
2.3.2 t-SNE embeddings . 8

3 Related Work 11
3.1 Weakly-Supervised Learning . 11
3.2 Feature Learning . 12
3.3 Unsupervised Domain Adaptation 13

4 Methodology 17
4.1 Stillleben . 18
4.2 Supervised Approach . 19

4.2.1 Network Architecture and Training Details 19
4.2.2 Limitations . 21

4.3 Unsupervised Approach . 22
4.3.1 Contrastive Unpaired Translation (CUT) 22
4.3.2 Enhancements to Contrastive Unpaired Translation 25
4.3.3 Training Details . 27

5 Evaluation 29
5.1 Semantic Segmentation . 29

5.1.1 Evaluation Metrics . 29
5.1.2 Results on YCB-Video . 30
5.1.3 Results on HomebrewedDB 35
5.1.4 Combination with Real Training Data 37

5.2 Learned Refinement Operations . 37
5.2.1 Analysis using the LPIPS distance 38
5.2.2 Analysis using t-SNE embeddings 40

vii

Contents

6 Domain Adaptation Beyond Synthetic-To-Real 43
6.1 Real-To-Synthetic Domain Adaptation 43
6.2 Real and Synthetic Domain Adaptation—Towards a Common Em-

bedding . 46

7 Conclusion and Future Work 49

Appendices 51

viii

1 Introduction

Robotic systems need to address several key challenges in order to be able to au-
tonomously act in a dynamic environment. Among these are computer vision tasks
like semantic segmentation, object recognition, and 6D pose estimation. Nowa-
days, these tasks are most commonly solved using deep learning techniques. With
increasing computation resources available, more complex network architectures
are developed, raising the need for increasing amounts of training data. Acquiring
training data, however, often involves tedious manual annotation of images with
semantic labels or 6D poses. It is typically not feasible to create custom datasets
for every specific setup.

To overcome this issue, previous approaches successfully relied on fine-tuning
of networks pre-trained on generic datasets, reducing the required annotation ef-
fort (Morrison et al. 2018; Schwarz, Lenz, et al. 2018). Recently, approaches were
introduced to generate synthetic training images, e.g. from 3D object meshes like
in Stillleben (Schwarz and Behnke 2020). The benefit of such techniques is that
ground truth data—like 6D object poses or semantic segmentation masks—is triv-
ially available from the renderer, eliminating the need for manual annotation while
providing highly accurate annotations. While Stillleben yields good generalization
to real test images on the YCB-Video dataset (Xiang, Schmidt, et al. 2018) for
semantic segmentation, the achieved results are still considerably inferior com-
pared to training on real images (Schwarz and Behnke 2020). The reason for this
difference is the so-called domain gap between synthetic and real data, i.e. the
discrepancy between the synthetic data distribution and the real data distribution.
Therefore, the model learned by a segmentation network trained on synthetic data
is able to only partly capture the real data distribution from which the data is
sampled at inference time.

We aim to obtain better results from purely synthetic data and therefore need
to align the distributions more closely. We propose to tighten the domain gap by
learning a mapping from the synthetic to the real image distribution.

First, as a proof-of-concept, we investigate the domain adaptation task in a su-
pervised manner based on a U-Net network (Ronneberger, Fischer, and Brox 2015).
As a supervised approach for this problem needs annotated real data and involves
other limitations, we only demonstrate the general feasibility for our scenario and

1

1 Introduction

do not evaluate it further.
Subsequently, we address the domain adaptation problem in an unsupervised

manner, which forms the core of our thesis. Specifically, we only require synthetic
data with ground truth and un-annotated real data, without direct correspon-
dences between the images of both datasets. To learn the mapping from synthetic
to real data, we apply the GAN -based CUT approach by Park et al. (2020) in a
patch-based manner. Key challenges to be addressed here include the handling of
backgrounds and ensuring shape consistency.

We evaluate the unsupervised method on a semantic segmentation task on both
the YCB-Video dataset and the HomebrewedDB dataset (Kaskman et al. 2019).
Our results show large performance improvements, nearly reaching what is pos-
sible with real annotated training data for YCB-Video. To understand how the
observed performance improvements can be explained, we further examine deep
image features of real, synthetic, and refined synthetic frames using the LPIPS
distance (Zhang et al. 2018) and t-SNE embeddings.

Combining the creation of synthetic images using Stillleben, the unsupervised
domain adaptation method and the following use of the refined images for seman-

Robotic Application Prediction

3D Object Models Unannotated Real Images

(1)
Scene

Rendering

(2) Syn2Real
Adaptation

(4) Segmentation
Network

(3)

Figure 1.1: Our method yields robust task performance in real settings, just from 3D
object models and unannotated real images (top). We simulate and render
plausible scenes from the 3D meshes (1). Our adaptation model aligns the
synthetic and real image distributions more closely (2). The refined image
dataset is used to train a task-specific network (3), which is applied in the
target domain (4). None of these steps requires annotations.

2

tic segmentation, we propose a complete pipeline, visualized in Figure 1.1: Our
pipeline provides high-quality semantic segmentations—e.g. for robotic grasping
applications—based on only 3D object models and un-annotated real images. We
highlight that no step of this pipeline requires manual annotation effort.

This is complemented by a discussion of possible extensions of the presented
approach and more conceptual changes with respect to the adaptation direction,
supported by initial experimental results and founded on the insights gained in
the evaluation.

This thesis is structured as follows: In Chapter 2, we introduce several key
concepts relevant for the following chapters. After discussing related work in
Chapter 3, this thesis contains the following contributions:

1. A multi-step method to obtain annotated training data from 3D object
meshes and real images, first using a proof-of-concept supervised domain
adaptation approach (with annotated real images) and afterwards using a
patch-based application of the CUT approach for unsupervised domain adap-
tation without any annotated real data (Chapter 4),

2. an evaluation of the unsupervised method on a segmentation task on two
robotics datasets, alongside an analysis of the learned adaptation operations
(Chapter 5), and

3. a discussion of further domain adaptation strategies that go beyond the
synthetic-to-real setting using a modified version of the unsupervised method
(Chapter 6).

In Chapter 7, the thesis is concluded by a summary of our results and possible
starting points for future work.

3

2 Fundamentals

2.1 Domain Adaptation For Visual Data

Consider two related but distinct data distributions X and Y , for instance syn-
thetic and similar real images. Due to camera properties and complex physical
object properties, synthetic images cannot completely match the appearance of
real images. The difference between both distributions is called the domain gap.
In settings where we can sample from X but not from Y—e.g. when we need
annotated training data for some learning task but annotated real data is not
available—and still need to learn as much as possible about Y , we may want to
reduce the domain gap. This process is called domain adaptation and essentially
refers to approximating a mapping f : X → Y . Solving this task for visual data
using deep neural networks is an established area of research, as is apparent from
the literature review by M. Wang and Deng (2018).

They group the approaches into two main categories: heterogeneous and homo-
geneous domain adaptation. The former refers to the case when the domain gap
arises from the fact that source and target domain have different feature spaces.
In the latter case, both domains share their feature space but still the respec-
tive distributions X and Y do not match. In this work, we address homogeneous
domain adaptation, as do the related domain adaptation approaches presented in
Section 3.3. Another distinction made by M. Wang and Deng (2018) is one-step vs.
multi-step domain adaptation: There may exist situations, where the domain gap
is too large to be effectively reduced by a single translation network. To address
this issue, multi-step domain adaptation makes use of intermediate representations
between the two relevant distributions. In our case, one-step domain adaptation is
sufficient because the synthetic and the real image distribution are rather close and
we only intend to learn minor optical changes while—most importantly—exactly
preserving object shapes.

In this thesis, X denotes the synthetic images distribution and a set of samples
x thereof is defined as x ∈ X (X . Likewise, Y denotes the real data distribution.

5

2 Fundamentals

2.2 Generative Adversarial Networks (GANs)

First proposed by Goodfellow et al. (2014), Generative Adversarial Networks
(GANs) denote a neural network paradigm used for unsupervised generative mod-
eling, i.e. for approximating a data-generating distribution pdata. The approach
is not restricted but commonly applied to image data. As this thesis focuses on
image data, we explain GANs with respect to the example of images.

A GAN typically consists of two neural networks: The generator network and
the discriminator network. In the original publication by Goodfellow et al., the
generator G (z, θg) creates images based on its parameterization θg and a latent
input vector z, sampled as z ∼ pz from a prior distribution pz. The goal is to train
G such that the distribution pg induced by the generator output for z ∼ pz closely
approximates pdata. To this end, a discriminator network D (x, θd) is used, where
x is some image input and θd the discriminators parameterization. D is presented
with real images from pdata and generated images from pg and outputs a scalar
value d ∈ [0, 1], indicating whether x was a real or a generated (“fake”) image.

Intuitively, both networks are competing to outperform each other: The genera-
tor is optimized to produce images that can “fool” its adversary, the discriminator,
to classify them as real images. The discriminator, however, is trained towards
better distinction of real and faked images. This setup induces a dynamic that
results in generator output that looks similar to real data from pdata, i.e. turns
the resulting pg into a good approximation of pdata. In terms of game theory, this
corresponds to a two-player minimax game between the generator G and the dis-
criminator D. The described optimization is realized using the following shared
objective function:

min
G

max
D

Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D (G(z)))] , (2.1)

where in practice the expected value is approximated using a mini-batch of real
or generated samples. The first term drives the output of D towards 1 for real
images and is irrelevant for the generator. The second term drives the output of
D towards 0 for generated images when training the discriminator. By minimizing
it in the optimization of G, G is encouraged to produce images that maximize the
discriminator’s output, i.e. let it classify the fake images as real. In the limit, the
system should converge towards D (x, θd) =

1
2
.

While in the original formulation by Goodfellow et al. (2014), G is provided with
noise as input, it is also possible to condition the image generation on other images,
resulting in an image-to-image translation setup. Park et al. (2020) make use of
this modification in their approach which we use in this thesis, see Section 4.3.

6

2.3 Similarity Measures

This adaptation can—ignoring any possible skip connections—be interpreted as
generating the latent vector z not randomly but directly from the source image
distribution using an encoder network.

In practice, optimizing a GAN is a non-trivial task and might fail. Possible
problems include vanishing gradients or mode collapse, denoting the case where
the generator produces trivial output like e.g. black images, resulting in pg largely
deviating from pdata. A modification to the standard GAN definition—that Park et
al. (2020) adopt as default in their implementation—has been proposed as Least
Squares Generative Adversarial Networks (LSGAN(s)) by Mao et al. (2017) to
overcome the vanishing gradient problem and stabilize the training. The main
difference is that the discriminator is trained using a least squares loss compared
to the cross-entropy loss in the standard formulation. Intuitively, the benefit of the
changed loss function is the following: Using cross-entropy, generated images that
are on the correct side of the discriminator’s decision boundary do not generate a
training signal for the generator, although they might strongly deviate from pdata.
With a least squares loss, there is still a significant training signal, i.e. gradient,
in these cases. Mao et al. (2017) demonstrate that LSGANs generate images of
higher quality and exhibit a more stable training behavior than the original GAN
formulation.

2.3 Similarity Measures

To analyze the results of our unsupervised domain adaptation approach and for
the training of the supervised method, we need similarity measures to compare
images. In this thesis, we use two measures that go beyond classical pixel-wise
distances like the L2 distance.

2.3.1 Learned Perceptual Image Patch Similarity (LPIPS)

The Learned Perceptual Image Patch Similarity (LPIPS) metric, proposed by
Zhang et al. (2018), is a so-called perceptual metric. As a loss function, it can be
used for training image-to-image tasks. It is calculated based on image features
obtained by passing the images to be compared through a pre-trained Convolu-
tional Neural Network (CNN), e.g. AlexNet (Krizhevsky, Sutskever, and G. E.
Hinton 2012) trained on ImageNet1 as used in our work.

1https://www.image-net.org/index.php

7

2 Fundamentals

Formally, the LPIPS is given by

LLPIPS (x, x̂) =
∑
l

1

HlWl

∑
h,w

∣∣∣∣wl �
(
ylhw − ŷlhw

)∣∣∣∣2
2
, (2.2)

where x is the target image and x̂ the compared image. yl, ŷl ∈ RHl×Wl×Cl denote
the corresponding normalized feature activations for layer l. wl ∈ RCl scales the
activations channel-wise per layer. Finally, � denotes Hadamard’s product.

Zhang et al. (2018) showed that this loss leads to visually superior results com-
pared to using a per-pixel metric like the L2 norm. One of the reasons for this is
that the L2 loss does not account for the dependencies between neighboring pixels
which becomes problematic for tasks with image output (compared to e.g. clas-
sification output). Besides, pixel-wise losses like L2 often lead to blurred results,
for optimization-theoretical reasons. Further details on perceptual losses as well
as arguments for their superiority to per-pixel measures can be found in the work
by J. Johnson, Alahi, and Fei-Fei (2016) and Zhao et al. (2017).

2.3.2 t-SNE embeddings

Image similarity for larger sets of images can also be compared by visualizing the
underlying data distributions using t-distributed stochastic neighbor embeddings
(t-SNE embeddings). t-SNE embeddings have been introduced by Van der Maaten
and G. Hinton (2008) as a technique for the visualization of high-dimensional
data. It performs dimensionality reduction in such a way that meaningful two
(or three) dimensional maps of the data are produced—aiming to preserve the
essential structure of the manifold on which the high-dimensional data lies.

The key idea behind t-SNE embeddings is to align a low-dimensional distribu-
tion Q with the high-dimensional data distribution P . To achieve this, pairwise
similarities are determined for the available samples from P and from this, con-
ditional probabilities pj|i are calculated, where pi|i := 0 and assuming a Gaussian
around the datapoint with index i. In a similar manner, but assuming a Student
t-distribution, conditional probabilities are also calculated for the same number of
samples in the low-dimensional space as qj|i. Based on this, P and Q are iteratively
aligned by minimizing the Kullback-Leibler divergence

KL (P ||Q) =
∑
i

∑
j

pij log pij
qij

. (2.3)

While experimental data by Van der Maaten and G. Hinton (2008) shows the
superiority of their approach compared to related approaches in the context of

8

2.3 Similarity Measures

visualizing large high-dimensional datasets, some drawbacks are to be kept in
mind: First, the Kullback-Leibler divergence is a non-convex function, meaning
that the iterative optimization yields different results for each run, given a different
initialization. Besides, visualizations of t-SNE embeddings have a tendency to
suggest clusters in the data where there are none, as pointed out by Wattenberg,
Viégas, and I. Johnson (2016).

To visualize images by calculating t-SNE embeddings, we could use raw pixel
values. However, this results in a rather high input dimensionality and also pro-
duces embeddings that are not representative for what a neural network detects
within the images. The latter is a particularly important point because we are
interested in the benefit of refining synthetic images towards more realism for
following deep learning tasks. It is of higher interest whether the domain adapta-
tion process achieves a closer alignment of the feature activations of a pre-trained
neural network than whether the raw pixel-value distributions are aligned closer.
Therefore, meaningful t-SNE embeddings for our context can be obtained by cal-
culating them on (pooled) feature activations of a pre-trained neural network, like
for instance done by Schwarz, Schulz, and Behnke (2015).

9

3 Related Work

The need for large amounts of annotated data to train neural networks is a well
known problem. Especially in scenarios where no existing dataset is suitable, there
is a huge need to perform the training without these large amounts of manually
labeled training data. To this end, techniques have been developed that follow
different approaches to avoid the need for manually labeled training data. In the
following, we present several of them, with a special focus on unsupervised domain
adaptation for synthetic data as the main approach of this thesis belongs to this
family of techniques. As we address semantic segmentation as the subsequent deep
learning task after domain adaptation in this thesis, we focus on approaches that
consider semantic segmentation.

3.1 Weakly-Supervised Learning
One group of techniques is largely self-supervised or only weakly supervised, but re-
lies on some human interaction. Zhi et al. (2021) use RGB-D data from a handheld
camera to learn a scene representation in a Neural Radiance Fields (NeRF)-based
(see Mildenhall et al. (2020)) manner that—aside from the typical properties,
namely RGB information and volume density—also models semantic information.
They embed the used Multi-Layer Perceptron (MLP) in an interactive system in
which the user can assign class labels to the determined semantic classes, starting
from the beginning of the training. The authors compare their technique to state-
of-the-art solutions that use large labeled datasets and find that their solution
outperforms them given less than 100 interactions (i.e. clicks). Inherently, due to
being NeRF-based, a shortcoming of the proposed solution is that the training is
specific to a given scene. Thus, it can be used to more easily generate large labeled
datasets or for robotic SLAM scenarios.

ScribbleSup by D. Lin et al. (2016) follows a different approach for semantic
segmentation: They keep the reliance on large annotated datasets but instead
of dense per-pixel annotations, only sparse scribble annotations like depicted in
Figure 3.1 are required, drastically reducing the annotation effort. The authors use
a graphical model to propagate the scribble annotations to the corresponding pixels

11

3 Related Work

Figure 3.1: Scene with scribble annotations. Annotations of this form are needed by
ScribbleSup for training. Taken from D. Lin et al. (2016).

and a CNN for the actual segmentation training. Both processes are included in a
combined loss function and the optimization alternates between label propagation
and network training. The network outputs are directly used to improve the labels.
The authors report a segmentation performance slightly below what is achieved
with full pixel-wise labels on the PASCAL VOC 2012 dataset (Everingham et al.
n.d.).

Ho et al. (2020) propose a slightly different approach: They developed a method
for semantic segmentation that needs initial, partial labels using which a CNN is
trained. During training, the network predictions are used to interactively improve
the labels, e.g. by annotating complicated features not yet recognized by the net-
work. This is done repeatedly as a loop of training, segmentation and correction.
The application domain is medical image processing.

3.2 Feature Learning
Another way to overcome the lack of labeled training data is to use fully self-
supervised methods. They are designed and trained to learn meaningful features
or, in other words, embeddings of the input data. Based on these latent codes,
subsequent tasks can be solved, like image classification.

VICReg by Bardes, Ponce, and Lecun (2022) is a representation learning tech-
nique for image processing. Their architecture consists of an encoder and an
expander, where the first outputs the latent representation for subsequent deep
learning tasks and the latter is used to calculate a loss that drives the train-
ing towards meaningful representations. The main contribution is the loss setup
to—in parallel—balance variance, invariance and covariance. Most importantly,
the latter is minimized over pairs of embedding components to ensure sufficient
decorrelation and the first one is optimized to be above or at a given threshold
for the individual embedding components to get meaningful latent variables. In
combination, this prevents the well-known problem of mode collapse.

12

3.3 Unsupervised Domain Adaptation

F. Wang et al. (2020) introduce a method for self-supervised feature learning
called Invariance Propagation. Their technique is based on contrastive learning
and aimed at learning features that are invariant to intra-class variance in or-
der to learn more conceptual information, whereas many other techniques focus
on intra-image variations. The authors evaluate their method on various deep
learning tasks and report to outperform existing approaches on semi-supervised
image classification, i.e. classification after fine-tuning a model using small parts
of labeled datasets.

Baevski et al. (2022) propose data2vec, a multi-purpose approach for self-super-
vised learning, applicable to e.g. computer vision or language-based tasks. Their
goal is to find latent representations of an input sample, like an image, based on
masked versions of it. This is different from related approaches that are focused on
one application domain and predict domain-specific representations. Technically,
they use a Transformer network. The authors report performance on an image
classification task that is comparable to superior to related approaches, depending
on the data.

3.3 Unsupervised Domain Adaptation

The approach we follow in this thesis is unsupervised domain adaptation in a
synthetic-to-real setup. The lack of annotated training data is addressed by gen-
erating automatically labeled synthetic data and refining these images towards
more realism in an unsupervised way.

Stein and Roy (2018) apply domain adaptation to warehouse and outdoor scenes
using the CycleGAN approach (Zhu et al. 2017). Similar to our method, they
address a semantic segmentation task and use separate networks for domain adap-
tation and segmentation. However, the system as a whole is applied to robotic
navigation and larger-scale scene understanding, in contrast to in our case robotic
manipulation in small-scale scenes. This might explain why our initial experiments
with CycleGAN did not yield satisfactory results. The CUT architecture employed
by our approach is easier to train and generally yields better results (Park et al.
2020).

In similar manner, Mueller et al. (2018) successfully demonstrated the use of
CycleGAN-based domain adaptation for synthetic training data. Their application
domain is hand pose tracking. To ensure accurate preservation of the hand poses,
they propose GeoConGAN, adding a geometric consistency loss to the CycleGAN
objective. Probably resulting from our patch-based application of the newer CUT
approach, we did not experience geometric inconsistencies. Therefore, adding

13

3 Related Work

complexity in the form of another loss component calculated using an additional
CNN appears not justified to us.

Shrivastava et al. (2017) use a GAN-based approach with a patch-based dis-
criminator for synthetic-to-real domain adaptation of hands and eyes with the
goal of pose estimation. They use L1 regularization on (identity or more com-
plex) transformed image features to constrain the GAN towards preservation of
the image content. The GAN’s discriminator is trained on batches of refined
images accumulated over time to stabilize the adversarial learning. CUT’s con-
trastive learning-based approach for content consistency appears far more flexible
and data-adapting to us, compared to the proposed L1 regularization.

Bousmalis et al. (2017) propose PixelDA, another GAN-based approach for do-
main adaptation. Like in our scenario, they apply it to small objects but focus
more on classification and pose estimation while highlighting broader applicabil-
ity. In addition to the standard setup consisting of a generator and a discrimi-
nator, they add a task-specific classifier to their model, trained on both synthetic
and generator-refined synthetic images to support the domain adaptation. To
maintain correspondences between the synthetic images and their refined versions,
they propose to penalize content dissimilarities using a masked pairwise mean
squared error, given depth data is available from the renderer. The resulting gen-
erated backgrounds, mainly replacing black backgrounds, appear rather noisy to
us. While this might even benefit generalization for classification, we expect that
more consistent backgrounds are needed in our case. Additional experiments that
we performed at full resolution with the CUT architecture have shown a detrimen-
tal effect of masking out the backgrounds in our application domain.

CyCADA by Hoffman et al. (2018) is another domain adaptation approach de-
rived from the idea of CycleGAN. This technique guides the adaptation process
in two ways: The authors propose loss components for aligning the distributions
both in the pixel space and the feature space. Besides, the authors suggest to use
loss components specific to the subsequent deep learning task to enforce semantic
consistency. Hoffman et al. (2018) report better performance on a semantic seg-
mentation task after domain adaptation than for the existing unsupervised adap-
tation approaches. However, the training is computationally costly and complex—
compared to the far simpler but still very effective objective of CUT.

The DLOW technique proposed by Gong et al. (2019) is based on the CycleGAN
concept as well. It generalizes the idea of domain adaptation beyond mapping a
source domain S to a target domain T : The authors introduce a model for “domain
flow generation”. Intuitively, a parameter z ∈ [0, 1] is introduced to control how far
an image from S should be adapted towards T . A mentioned key benefit of this
technique is that learning the intermediate steps supports the domain adaptation

14

3.3 Unsupervised Domain Adaptation

process. In their experiments, Gong et al. (2019) show improved results on a
semantic segmentation task compared to plain CycleGAN domain adaptation.
However, the improvement is not very substantial. The previously mentioned
shortcomings of CycleGAN compared to CUT apply for this approach as well.

15

4 Methodology
To perform synthetic-to-real domain adaptation for use on subsequent deep learn-
ing tasks, our main goal is to find a mapping f : X → Y in a learning-based
manner, where X denotes the synthetic and Y the real image distribution. As the
real image distribution we assume the underlying distribution of YCB-Video (Xi-
ang, Schmidt, et al. 2018) or related datasets containing images of several small
objects. Figure 4.1 shows exemplary samples from X and Y in which the visual
differences that form the domain gap can be seen.

samples from X

samples from Y

f
:X

→
Y

Figure 4.1: Real YCB-Video frames (bottom) alongside corresponding synthetic images
(top). It can be seen that, besides the backgrounds, there are visual differ-
ences in the object appearance that form the domain gap.

In this chapter, we present our methodology to find a suiting f in two main parts:
In Section 4.2, we describe a supervised domain adaptation approach alongside its
limitations. Thereafter, an unsupervised approach is presented in Section 4.3.

We remark that our primary goal for using domain adaptation is to tighten the
domain gap. In a synthetic-to-real scenario, this essentially means to refine images
to look more natural. However, we are not really interested in the appearance to
the human eye but in getting better results for subsequent deep learning tasks
based on refined synthetic images. Thus, “looking more natural” is not to be
understood in the strict perceptual sense—although there are relations between
deep images features and human perception, like demonstrated for instance by

17

4 Methodology

Zhang et al. (2018) with regards to the LPIPS metric. In this thesis, we choose
semantic segmentation as the subsequent task on which we evaluate our approach
in Chapter 5.

4.1 Stillleben

The Stillleben library (Schwarz and Behnke 2020) is a framework for generation
and rendering of cluttered tabletop scenes. Stillleben operates on arbitrary input
meshes and generates random arrangements through the use of a physics engine.
Besides, it is able to render arrangements with given object poses or to use dif-
ferent surfaces beyond the standard tabletop setup. The arranged scenes are then
rendered with a modern physics-based-rendering (PBR) pipeline. This pipeline can
put the images into complex, real lighting situations through support for Image-
based Lighting (IBL) data. To obtain even more realistic images, a post-processing
step adds effects simulating the behavior of a real camera, such as noise, chromatic
aberration, white balancing errors, and over-/underexposure. Depending on the
objects to be rendered, it might be that object surface features are missing in
the meshes, like e.g. stickers for the objects from YCB-Video. Stillleben pro-
vides a means to add such surface features randomly. Alongside the RGB image
data, ground truth data for downstream machine learning tasks like semantic seg-
mentation or 6D pose estimation is provided, which is available directly from the
renderer. Figure 4.2 depicts a generated image alongside more data on the visible
objects from the renderer. A segmentation model trained with purely Stillleben-
generated synthetic data has been shown to reach respectable performance on the
YCB-Video dataset (Schwarz and Behnke 2020).

We use Stillleben as the rendering engine to create synthetic images for our do-
main adaptation approaches and as a part of the meshes-to-segmentation pipeline.
For the supervised approach, we make use of Stillleben’s capability to render im-
ages with given object poses that are provided with the YCB-Video dataset. Note
that it is not straightforward to render a table surface in this case: First, we
cannot directly ensure that all objects lie on the simulated table and second, we
cannot guarantee the physical plausibility of the resulting images because the ob-
ject poses are fixed and the real supporting surface might not be planar. Therefore,
we restrict ourselves to rendering the fixed arrangements embedded in an IBL envi-
ronment that provides lighting and a background. For the unsupervised approach,
we have more degrees of freedom with respect to the arrangements. Therefore,
we make use of Stillleben’s PBR capabilities and render tabletop scenes with dif-
ferent table surfaces and random, yet physically consistent object arrangements

18

4.2 Supervised Approach

Figure 4.2: Stillleben user interface. On the upper left, the synthetic image can be
seen. The other three visualizations depict more data form the renderer,
like the corresponding semantic segmentation mask (bottom left). Taken
from https://ais-bonn.github.io/stillleben/.

that are similar to those in YCB-Video. As for the supervised approach, we use
IBL data for the lighting. However, the objects are not embedded into the IBL
scenes but backgrounds are randomly selected from the ObjectNet3D database (Xi-
ang, Kim, et al. 2016) to obtain more diverse data. While we use the feature to
add stickers for the YCB-Video dataset, we do not use it for the HomebrewedDB
dataset (Kaskman et al. 2019), see Section 5.1.3.

4.2 Supervised Approach
As a proof-of-concept for synthetic-to-real domain adaptation in our setup, we
first use a supervised approach. The key idea here is to train a CNN on data pairs
(x, y) ∈ X × Y . x is generated such that it contains the same objects as y with
matching poses—raising the need for pose annotations for all used images from
the real distribution. Figure 4.1 depicts exemplary image pairs with matching
poses. Challenges include the handling of image backgrounds and the simulation
of sensor noise. The image backgrounds are particularly challenging, because we
do not have the original background data available separately from the images.

4.2.1 Network Architecture and Training Details
For our domain adaptation network, we use the U-Net architecture (Ronneberger,
Fischer, and Brox 2015), depicted in Figure 4.3. It consists of an encoder part
and a decoder part which are nearly symmetric. The corresponding layers are

19

https://ais-bonn.github.io/stillleben/

4 Methodology

Figure 4.3: The U-Net architecture. Taken from Ronneberger, Fischer, and Brox (2015).

connected by skip connections. Originally, U-Net was developed for semantic
segmentation, but its structure does also allow to use it for image translation.
U-Net and modified versions of it have already been successfully applied to various
image-to-image translation scenarios by for instance Isola et al. (2017) or Kandel
et al. (2020). Particularly the skip connections make this architecture suitable for
our use case: The refinements we need to apply to tighten the domain gap are on
a rather small scale and the overall structure of the images needs to be preserved.
The skip connections provide the network with a means to easily learn the identity
mapping, complemented with the small-scale refinements.

To train the network, we use the LPIPS distance (Zhang et al. 2018) as our loss
function, introduced in Section 2.3.1.

To decide how to apply this loss function, however, is not trivial: While the poses
from annotated real images can be exactly transferred to the synthetic images, the
backgrounds cannot. Solutions include using no or randomly chosen backgrounds.
Here, we embed the rendered objects in a digital environment map (IBL map) to
also capture the lighting influence of the environment on the objects. In contrast to
for instance object surface properties, the resulting differences in the backgrounds
are substantial and there is no inherent correspondence between the background
of a synthetic and the respective real image. Thus, it is not feasible to train the
network to replace a synthetic background with a consistent real one. For the
same reason, using synthetic images with no backgrounds would not be feasible
either. This is supported by experiments which yielded severe artifacts in these

20

4.2 Supervised Approach

(a) (b) (c)

Figure 4.4: Refinement results from the supervised approach. a) shows the synthetic
image, b) the version refined using our trained U-Net adaptation network
and c) the baseline real image from YCB-Video. The synthetic and the real
image are taken from a distinct test set and have not been presented to the
network during training.

cases. We therefore train the network to preserve the synthetic background while
adapting the foreground. Formally, this translates to

L = LLPIPS (y � sgn (lgt) + x� (1− sgn (lgt)) , ŷ) , (4.1)

as our loss function where lgt denotes the ground truth segmentation label for both
the synthetic and the real image (x and y, respectively, as before), ŷ the network
output and where � is Hadamard’s product.

We train the network for 24 epochs of 10k fixed image pairs using the Adam
optimizer with a batch size of 8 and using batch normalization after the convo-
lution blocks. To stabilize the training, we employ gradient clipping. Figure 4.4
shows exemplary results for a synthetic-real image pair taken from a distinct test
set. It can be seen that the image’s objects visually appear more natural while
the background mostly stays the same. Also, the object shapes are accurately
preserved—which is important for re-using ground truth annotations from the
synthetic input data.

4.2.2 Limitations
In this thesis, we do not further evaluate the presented supervised approach in
a quantitative manner or further optimize our method but only briefly demon-
strate it as a proof-of-concept. The reason are the strong methodical limitations
of this approach: First, the presented technique needs real images with 6D pose
annotations. This contradicts our goal of avoiding manual annotation efforts to
obtain training data. One possible application of this approach might be as some
form of data augmentation or in combination with highly accurate pose estimation

21

4 Methodology

techniques. The second major limitation arises from the kind of adaptation the
network has to do: It is trained to separate the foreground objects from the back-
ground, to apply an identity mapping to the background and to let the foreground
objects appear like in the corresponding real image. This impairs the generaliza-
tion capabilities with respect to unseen scenes or object arrangements compared to
unpaired, unsupervised techniques that have to learn more fundamental concepts
from the training data in order to perform domain adaptation.

4.3 Unsupervised Approach
To overcome the previously mentioned limitations of the supervised proof-of-
concept technique, we propose the unsupervised approach explained in the fol-
lowing. After explaining Contrastive Unpaired Translation (CUT) by Park et al.
(2020), on which we base our work, we explain our modifications to this technique
and how we apply it.

In addition to the challenges that had to be addressed in the supervised set-
ting, ensuring object shape consistency is now a non-trivial but highly important
requirement. While the supervised setting strongly guides the network towards
preserving object shapes, unpaired translation in general does not constrain the
network (enough) towards this. However, strong shape consistency is important
for subsequent tasks where we need the annotation data provided by the renderer
to still be valid for the refined synthetic images.

4.3.1 Contrastive Unpaired Translation (CUT)
Our domain adaptation approach is largely based on Contrastive Unpaired Trans-
lation (CUT) as introduced by Park et al. (2020). It is an image-to-image transla-
tion technique, aimed at preserving the image content while adapting the appear-
ance to the target domain, i.e. it performs conditional image generation. CUT is
related to the well-known CycleGAN approach by Zhu et al. (2017) which pursues
the same objective. Both are GAN-based, can be used for unpaired image sets and
have to address the same key issue: Training a GAN for unpaired image-to-image
translation is in general an under-constrained task. CycleGAN employs a second
GAN for a reverse mapping from the target to the source domain. The method
enforces correspondences between input and output image by a cycle-consistency
loss that penalizes differences resulting from passing an image through both the
forward and the reverse GAN subsequently (and vice versa), see Figure 4.5a). This
avoids a collapse of the generator, i.e. mapping all inputs to a single output in the
target domain.

22

4.3 Unsupervised Approach

(a) CycleGAN (b) CUT

Figure 4.5: CycleGAN and CUT key ideas. a) CycleGAN uses two GANs G and F for
a cyclic mapping of input images. The depicted cycle-consistency loss is also
applied vice versa, i.e. for images from the target distribution Y . b) CUT
uses a single GAN with generator G and ensures content preservation using
contrastive learning. Taken from Zhu et al. (2017) and Park et al. (2020),
respectively.

CUT uses an alternative way to ensure content preservation and removes the
second GAN. Advantages of this include reduced complexity and training time.
Besides, the inherent assumption that f : X → Y is a bijection is removed which
is helpful in our case with respect to the various and differing synthetic and real
lighting settings. The authors of CUT directly compare its performance with
CycleGAN and show its superiority, see (Park et al. 2020). Figure 4.5 shows key
design ideas of a) CycleGAN and b) CUT. The mentioned alternative way to
retain the image content is contrastive learning. The main idea behind this is to
learn an embedding that maps associated data points at close distance, in contrast
to other, not associated data points and to subsequently use this embedding to
guide the training of the main network. Park et al. (2020) apply this idea to
image-to-image translation by proposing the PatchNCE loss which is based on
the InfoNCE by Oord, Li, and Vinyals (2018). The intuition here is that a patch
of the translated image should have more information in common with the same
patch in the source image (positive) than with N other patches from the source
image (negatives). More specifically, this is done as follows (a visualization of the
calculation can be found in Figure 4.6): A patch from the synthetic source image
x is sampled and features extracted from it are passed through a simple MLP. The
same is done for the corresponding patch from the translated image and the other
N patches from the source image. Based on this, the MLP is trained as a classifier
to select the positive sample from the N + 1 source patches, given the translated
output patch. Park et al. (2020) use cross-entropy as their loss function.

23

4 Methodology

The GAN’s generator has an encoder-decoder architecture and thus provides a
feature extractor, the encoder part. The aforementioned features are taken from
the encoder. To account for different levels of visual complexity, features from
specific encoder layers1 are taken and used for training a distinct MLP per layer.
Together, the MLPs’ cross-entropy losses form the PatchNCE loss. Technically,
the patch sampling works as follows: First, single pixels are chosen as “patches”.
Deeper in the encoder, the corresponding receptive fields grow, thus increasing the
patch size considered for the respective features.

The PatchNCE calculation is visualized in Figure 4.6. Note that the figure
depicts our patch-based application of the CUT approach, so the aforementioned
patches become subpatches of the patches used for the training of CUT as a whole.

x

ŷ

Figure 4.6: The PatchNCE is calculated based on the selected patch x from the synthetic
image and the corresponding generated refined image ŷ. From these smaller
images, subpatches are selected for the calculation. Adapted from Park et al.
(2020).

Training the MLPs towards embedding source and target patch features close to
each other, with patches at different levels of complexity, strongly constrains the
GAN towards content preservation. In CUT, the PatchNCE is also calculated for
the target image to stabilize the training by hinting the network to keep images
from the target domain identical.

Park et al. (2020) combine the PatchNCE with a traditional GAN loss that
trains the GAN generator to apply the changes in appearance for—in our case—

1These layers can be manually chosen.

24

4.3 Unsupervised Approach

domain adaptation. In combination, the following loss function is proposed:

L = LGAN (G,D,X, Y) + λNCE · (LPatchNCE (G,H,X) + LPatchNCE (G,H, Y)),

(4.2)

where G denotes the GAN’s generator, D the discriminator, X the source image
and Y the target image. H denotes the MLPs used for the PatchNCE. Park et al.
(2020) suggest to choose λNCE = 1.

4.3.2 Enhancements to Contrastive Unpaired Translation
While CUT has been proposed for translating real images to results that are realis-
tic to the human eye, with input backgrounds more consistent with the foreground
than in our case2 and with more diverse objects than our images have, our setting
is different: We translate the images primarily to be used as input to a neural
network, use randomly chosen backgrounds and have a highly restricted number
of objects and scenes. Therefore, we apply the CUT approach with modifications:

Patch-based Application

Its authors propose to apply CUT to images at full resolution. However, we de-
cided to train it in a patch-based way. There are several reasons for this: First,
we have substantial variability in the images produced by Stillleben, especially
with respect to the backgrounds, and a large set of real images. It seems sensible
to use many images from both distributions for the training in order to achieve
good generalization to unseen images. Working at full resolution (640×480 pixels
for YCB-Video), however, induces long training times when following the learning
duration of 400 epochs proposed by Park et al. (2020) and using a large training
dataset. Second, the changes to the source image we aim to achieve are at small
scale. Ideally, our domain-adapted images reflect the visual properties induced by
the camera used for the real images but are content-wise very close to the source
data. Therefore, we do not need to consider full images and—also apart from the
higher training cost—doing so might even have a detrimental effect. Experimental
results support this motivation. CUT models trained at full resolution often de-
form relevant objects or hallucinate parts of them in new places, as can be seen in
Figure 4.7. While the training is performed on patches, inference is still possible
at full resolution, due to the GAN generator’s architecture. We thus argue that it
is sufficient and even beneficial to work on image patches.

2We remind the reader that the background is randomly chosen from ObjectNet3D for each
generated image.

25

4 Methodology

(a) synthetic (b) refined

Figure 4.7: A synthetic image and a CUT-refined version of it with CUT trained on full-
resolution images. Note how training at full resolution leads to deformations
and hallucinations of objects in the background image.

The selected patch size has to be small enough to notably reduce the compu-
tation effort and prevent global effects like in Figure 4.7. At the same time, it
has to be large enough to still contain sufficient information and to ensure that
sampling sub-patches for the PatchNCE is still possible in a meaningful way. We
propose and evaluate patch sizes between 602 and 1602 pixels. The patch se-
lection is done by random cropping. Given the generator’s architecture and the
PatchNCE calculation, patch sizes below < 1002 pixels can be thought to be too
small from a theoretical perspective. Experimental evidence, however, shows that
other, beneficial effects of small patch sizes can outweigh this, see Chapter 5.

Noise Injection

Synthetic images can imitate image noise, for instance as proposed by Foi et al.
(2008). Noise from real cameras, however, exposes properties that are hard to
model and can exhibit high variance. It could be the case that at the synthetic-to-
real domain adaptation task, it is hard for a GAN to add such noise to an image.
We hypothesize that injecting noise within the translation process can be helpful
to resolve this. Given the GAN’s encoder-decoder architecture, we decided to
inject noise directly at the input of the decoder by adding N normally-distributed
random feature maps to the M feature maps from the encoder, where N � M .
To ease the noise integration and return to the previous number of feature maps,
we add three convolution layers before the actual decoder part. We remark that
noise is injected both during training and inference and that the noise is randomly
generated for each image.

26

4.3 Unsupervised Approach

4.3.3 Training Details
To obtain the refined images, we pass synthetic images through the CUT genera-
tor. Before, we train CUT on unpaired sets of synthetic and real images for 400
epochs, following the curriculum suggested by Park et al. (2020). For the training
of CUT, we choose a batch size of 40 irrespective of the patch size. This is to keep
the sources of variation between the results for different patch sizes limited. The
deviation from the standard batch size of 1 for CUT has two main reasons: First,
the training time can be substantially reduced while improving memory usage.
Second, we argue that for the patch-based application of CUT it is beneficial to
use more averaged gradients, especially as some of the randomly sampled patches
may consist entirely of irrelevant background information. In order to expose the
network only to images that could occur in reality, we do not horizontally flip im-
ages for data augmentation as proposed by Park et al. (2020). The network weights
are initialized normally. Further deviations from the defaults of the standard im-
plementation are stated in the respective experiment descriptions in Chapter 5. All
training of CUT has been performed using NVIDIA A100-SXM4-40GB accelerator
cards.

27

5 Evaluation

In this chapter, we evaluate the unsupervised approach for domain adaptation and
the proposed enhancements we presented in Chapter 4.

First, we evaluate it on a semantic segmentation task using two robotics datasets.
Subsequently, we give insight into the learned refinement operations.

5.1 Semantic Segmentation
In many applications, the goal of visual domain adaptation is to create images that
look appealing to the human eye. As mentioned before, in our robotics use case, we
are not actually interested in well-looking images but in images that yield better
results on subsequent data processing tasks than the original synthetic images.

Therefore, we evaluate our method on a semantic segmentation task. This eval-
uation is performed similarly to how it is done by Schwarz and Behnke (2020) for
reasons of comparability as we use Stillleben to generate our synthetic images. We
choose the YCB-Video dataset (Xiang, Schmidt, et al. 2018) as our main dataset
for the evaluation—because Stillleben has been optimized for and evaluated on
this dataset, see (Schwarz and Behnke 2020). Besides, YCB-Video provides the
necessary ground truth segmentation data as well as pose data for the supervised
approach. To demonstrate the broader applicability of our approach we also eval-
uate the performance on the HomebrewedDB dataset (Kaskman et al. 2019). This
dataset is sufficiently distinct from YCB-Video but still related enough to consist
of similar arrangements, i.e. of tabletop scenes with small objects.

5.1.1 Evaluation Metrics

For the semantic segmentation task, we use RefineNet (G. Lin et al. 2017), an es-
tablished network architecture for semantic segmentation, and train it from scratch
on 450k images, subdivided into 300 epochs of 1500 images. The segmentation
performance is evaluated on a test set of annotated real images by calculating the
mean Intersection over Union (IoU) over all classes present in the dataset. All
IoU values in the following are calculated on the respective test sets.

29

5 Evaluation

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

0.2

0.4

0.6

training epoch

Io
U

Figure 5.1: The Test IoU on YCB-Video for training on synthetic images over 300 epochs
shows significant variance between epochs.

We are interested in the performance on test data after training on three image
sets: synthetic images from Stillleben, CUT-refined synthetic images from Still-
leben, and real images (disjoint from the test set) for comparison. For the refined
images, we use the ground-truth labels provided by the renderer for the corre-
sponding unrefined images. Ground-truth labels for both the training and the test
real images are provided as part of the datasets used for the evaluation.

As can be seen in Figure 5.1, the performance on the test data differs significantly
between epochs during the training of RefineNet. In the following, we therefore
always visualize the distribution of IoU values over the 50 last training epochs
instead of just indicating the IoU value for the final epoch.

5.1.2 Results on YCB-Video
For the prior training of CUT, we use 10k images generated using Stillleben and
10k images from the training set of YCB-Video.

Patch Size

The first investigated aspect is the patch size, which we choose between 602 and
1602 pixels as mentioned in Section 4.3. It is worth noting that internally CUT
works with patch sizes that are multiples of 4. In other cases, patches are rescaled
to have such size using bicubic interpolation. While it appears possible that this
interpolation would introduce some beneficial or detrimental smoothing to the
input images, we saw no consistent effect on the results. We evaluate the per-
formance for the following patch sizes: 602, 702, 902, 1002, 1202, and 1602 pixels.
The results are depicted in Figure 5.2, alongside the results for RefineNet trained

30

5.1 Semantic Segmentation

0.47

0.49

0.51

0.53

0.55

0.57

0.59

0.61

0.63

0.65

0.67

0.69

0.71

0.73

0.75

0.77

0.79

sy
n

C
U
T@

16
0p

x

C
U
T@

12
0p

x

C
U
T@

10
0p

x

C
U
T@

90
px

C
U
T@

70
px

C
U
T@

60
px re

al

training mode

Io
U

Figure 5.2: Results on YCB-Video. The test IoU distribution over the last 50 training
epochs for CUT-refined images for CUT patch sizes 1602, 1202, 1002, 902,
702, and 602. The leftmost plot depicts the test results for training with
synthetic images, the rightmost plot for training with real images. Training
with CUT-refined synthetic images not only yields higher IoU values than
pure synthetic images but also narrower distributions.

on purely synthetic and real YCB-Video images. It can be seen that especially
at patch size 602, but to some degree still for 702, only insufficient information is
conveyed for this dataset compared to the larger patch sizes. 1602 and especially
902 yield the best results, as can also be seen in the numerical results in Table 5.1.
Given the fact that the training time for CUT largely depends on the patch size
(see Table 5.2), 902 seems to be the best trade-off. Using CUT-refined synthetic
images offers a significant benefit over using pure Stillleben images and shows seg-
mentation performance that is close to the level yielded by training on real data.

Apart from the general performance increase, CUT-refining the synthetic images
offers another benefit: Irrespective of the patch size, refining the images leads to
a significantly narrower distribution of the IoU values, closer to real data, which
yields the narrowest distribution. In contrast, the variance is rather high for
training on synthetic images. For practical use, a narrower distribution is helpful
because the performance after the training can be estimated more reliably and
does not depend too much on the exact epoch at which we stop the training. As
for the mean IoU value over the last 50 epochs, a patch size of 902 pixels also yields
the narrowest distribution in terms of the standard deviation, see Table 5.1.

31

5 Evaluation

Table 5.1: Results on YCB-Video.
Training mode Mean IoU (↑) SD1 (↓) Rel. to Real (↑) Rel. to Syn. (↑)

synthetic 0.638 0.0560 0.842 —

CUT160px 0.742 0.0187 0.979 +16.3%
CUT120px 0.732 0.0187 0.966 +14.7%
CUT100px 0.737 0.0161 0.972 +15.5%
CUT90px 0.743 0.0145 0.980 +16.5%
CUT70px 0.717 0.0186 0.946 +12.4%
CUT60px 0.707 0.0257 0.933 +10.8%

real 0.758 0.0081 1.000 +18.8%
1 SD denotes the standard deviation.

Table 5.2: Patch Size & Training Epoch Time
Patch size [px] Time [s]

160×160 181
120×120 110
100×100 82
90×90 66
70×70 54
60×60 43

32

5.1 Semantic Segmentation

0.55

0.57

0.59

0.61

0.63

0.65

0.67

0.69

0.71

0.73

0.75

0.77

0.79

C
U
T@

16
0p

x

C
U
T@

16
0p

x

+n
oi
se

_4

C
U
T@

16
0p

x

+n
oi
se

_8

C
U
T@

16
0p

x

+n
oi
se

_1
6

C
U
T@

16
0p

x

+n
oi
se

_3
2

training mode

Io
U

Figure 5.3: Noise injection. The test set IoU distributions for 0, 4, 8, 16, and 32 injected
random feature maps show no beneficial effect of injecting noise.

Noise Injection

For the noise injection described in Section 4.3.2, we tested injecting 0, 4, 8, 16
and 32 random feature maps at a patch size of 1602 pixels. The results can be
seen in Figure 5.3. While 8 feature maps appear to even have a detrimental effect
across multiple runs of this experiment, the general impression is that injecting
noise is not beneficial. This contradicts the hypothesis that additional randomness
apart from the noise added by Stillleben’s camera model is helpful for the GAN
to closer match the real image distribution. We hypothesize that the artificial
image noise from Stillleben is sufficient to produce images that cannot too easily
be distinguished from real images by the GAN discriminator based on the kind of
present noise.

Exponential Moving Average for RefineNet

Another change, however, is beneficial but not directly related to CUT: Using an
exponential moving average (EMA) of the RefineNet model parameters for the
evaluation on the test set significantly improves the performance and reduces the
variability of the IoU (decay factor: 0.995). This is consistent over all patch sizes
for CUT-refined images as well as synthetic and real images, as can be seen in
Figure 5.4. We therefore use this modification in the following for the experiments
with HomebrewedDB and for the further experiments in Chapter 6. For later

33

5 Evaluation

comparison with HomebrewedDB, we give the corresponding numerical results
in Table 5.3.

0.47

0.49

0.51

0.53

0.55

0.57

0.59

0.61

0.63

0.65

0.67

0.69

0.71

0.73

0.75

0.77

0.79

sy
n

sy
n+

EM
A

C
U
T@

16
0p

x

C
U
T@

16
0p

x+
EM

A

C
U
T@

12
0p

x

C
U
T@

12
0p

x+
EM

A

C
U
T@

10
0p

x

C
U
T@

10
0p

x+
EM

A

C
U
T@

90
px

C
U
T@

90
px

+E
M

A

C
U
T@

70
px

C
U
T@

70
px

+E
M

A

C
U
T@

60
px

C
U
T@

60
px

+E
M

A
re

al

re
al
+E

M
A

training mode

Io
U

Figure 5.4: Using an exponential moving average (EMA) for the RefineNet parameters
improves the performance and reduces the IoU variability.

Table 5.3: Results on YCB-Video (with EMA).
Training mode Mean IoU (↑) SD1 (↓) Rel. to Real (↑) Rel. to Syn. (↑)

synthetic+EMA 0.701 0.0247 0.910 —

CUT160px+EMA 0.757 0.0073 0.983 +8.0%
CUT120px+EMA 0.745 0.0077 0.968 +6.3%
CUT100px+EMA 0.760 0.0078 0.987 +8.4%
CUT90px+EMA 0.763 0.0097 0.991 +8.8%
CUT70px+EMA 0.759 0.0117 0.986 +8.3%
CUT60px+EMA 0.720 0.0110 0.935 +2.7%

real+EMA 0.770 0.0021 1.000 +9.8%
1 SD denotes the standard deviation.

34

5.1 Semantic Segmentation

5.1.3 Results on HomebrewedDB
We also evaluate our approach on the HomebrewedDB dataset (Kaskman et al.
2019) to demonstrate the broader applicability of the presented approach. Both
datasets consist of small objects placed on a table. However, the overall image
appearance and the presented scenes differ significantly. We do not use the plain
HomebrewedDB dataset but the data offered in the BOP challenge1. For both
the offered test images (BOP’19/20 test images (Primesense)) and the validation
images (Validation images (Primesense)), ground truth semantic annotations are
included. No real training images are offered. However, 3D meshes for all objects
are available, which we need for Stillleben.

We restrict our evaluation to the subset S of HomebrewedDB objects which
are present in the test images. We generate synthetic scenes with objects from S

and train CUT on validation images containing objects from S. The segmentation
model trained on real data is trained analogously. In all cases, the official test set
is used to evaluate the performance of the trained RefineNet models.

For generating the synthetic images using Stillleben, we make two slight modifi-
cations compared to the process proposed for YCB-Video by Schwarz and Behnke
(2020), based on the appearance of the real images: We remove the stickers ran-
domly added to the objects and instead of rendering the objects on a textured table,
a white table is used. Without any further adaptation to HomebrewedDB, we reach
IoU values around 0.48 which are inferior to those achieved for YCB-Video. The
achieved IoU for real images is slightly lower than for YCB-Video, see Figure 5.5
and Table 5.4.

For the training of CUT, we use 10k synthetic images and all 1020 real valida-
tion images. Obviously, most real images are presented multiple times during each
epoch. Due to our patch-based training, the shown part of the image, however,
varies. We restrict ourselves to patch sizes of 702 and 902 pixels. The general im-
pression when looking at the images from both datasets is that the objects typically
take up less room in the images in HomebrewedDB compared to YCB-Video.

With the same hyperparameter choices as for YCB-Video, we saw segmentation
performance inferior to that of pure Stillleben. Looking at the produced images,
the reason is a mode collapse: Most of the images are grey-textured, with the
object shapes barely visible. This is consistent over multiple runs and patch sizes.
A reason might be that for this dataset and the respective synthetic images pro-
duced by Stillleben, the loss weighting insufficiently ensures content preservation.
Therefore, we propose to increase the weight of the PatchNCE while keeping it
low enough to allow for meaningful changes to the appearance. The results for

1https://bop.felk.cvut.cz/datasets/

35

5 Evaluation

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

sy
n

+E
M

A

C
U
T@

90
px

+N
C
E_2

+E
M

A

C
U
T@

90
px

+N
C
E_5

+E
M

A

C
U
T@

90
px

+N
C
E_7

+E
M

A

C
U
T@

70
px

+N
C
E_2

+E
M

A

C
U
T@

70
px

+N
C
E_5

+E
M

A

C
U
T@

70
px

+N
C
E_7

+E
M

A re
al

+E
M

A

training mode

Io
U

Figure 5.5: Results on HomebrewedDB. We show the test IoU distribution over the
last 50 training epochs for CUT-refined images for CUT patch size 902 and
λNCE = 2, 5, 7 as well as for patch size 702 with the same values for λNCE
(from left to right), complemented by the results for training on synthetic
(left) and real images (right).

λNCE = 2, 5, 7 can be seen in Figure 5.5 and Table 5.4 for both patch sizes con-
sidered. A modest increase of λ = 2 appears to be favorable, as does a patch size
of 702 pixels—with regards to the IoU and its variability as well. Thus, combined
with the theoretical reasoning from above, we do not further evaluate larger patch
sizes. With these changes we see a significant improvement compared to the re-
sults using raw Stillleben images, quantitatively larger than for YCB-Video with
EMA by a margin in relative terms, see Table 5.4 and Table 5.3. Not only the
IoU is increased by CUT-refining the synthetic images, but also the IoU variance
over the training epochs of RefineNet is reduced—consistent with what we see for
YCB-Video.

Based on these results, we conclude that our approach is applicable also be-
yond YCB-Video with only minor changes needed for a related dataset. Further
optimization of Stillleben for HomebrewedDB has the potential to achieve segmen-
tation performance on refined synthetic data comparable to the performance on
real data for this dataset as well.

36

5.2 Learned Refinement Operations

Table 5.4: Results on HomebrewedDB (with EMA).
Training mode Mean IoU (↑) SD1 (↓) Rel. to Real (↑) Rel. to Syn. (↑)

synthetic 0.481 0.0304 —

CUT90px,λNCE=2 0.499 0.0123 0.677 +3.7%
CUT90px,λNCE=5 0.481 0.0223 0.653 +0.0%
CUT90px,λNCE=7 0.511 0.0150 0.693 +6.2%
CUT70px,λNCE=2 0.558 0.0094 0.757 +16.0%
CUT70px,λNCE=5 0.556 0.0173 0.754 +15.6%
CUT70px,λNCE=7 0.542 0.0193 0.735 +12.7%

real 0.737 0.0006 1.000 +53.2%
1 SD denotes the standard deviation.

5.1.4 Combination with Real Training Data

Until now, we considered the case where we have no real training data and aim
to enhance the usefulness of synthetic data. However, there also might be cases
where we have real training data available but the achieved performance is not
good enough. In their experimental setup, Schwarz and Behnke (2020) have shown
that it is beneficial to train RefineNet on synthetic and real data at the same time
by randomly choosing the mini-batches from both datasets. One might wonder
whether the use of CUT-refined images enhances this effect. The results for both
YCB-Video and HomebrewedDB are depicted in Figure 5.6. Consistent across
both datasets, the achieved IoU on the respective test sets is higher with refined
images than without. However, the effect is less pronounced than for combining
real with purely synthetic data. From this, we hypothesize that using synthetic
data has a regularizing influence on the training with real data, namely that the
learned features are more domain-invariant. This effect is smaller for synthetic
images refined towards more realism.

5.2 Learned Refinement Operations
As pointed out before, we are mainly interested in achieving good segmentation
performance in order to improve the value of synthetic training data for robotic ap-
plications. Still, it is worth analyzing what CUT is actually doing to the synthetic
images. Figs. 5.7a) and b) show six synthetic images based on the YCB-Video
objects and their CUT-refined versions, respectively.

While some refined images look more realistic, some do actually not seem re-

37

5 Evaluation

0.73

0.75

0.77

0.79

0.81

0.83

YC
B−V

re
al
+E

M
A

YC
B−V

sy
n+

re
al

+E
M

A YC
B−V

C
U
T@

90
px

+r
ea

l

+E
M

A H
BD

B

re
al
+E

M
A

H
BD

B

sy
n+

re
al

+E
M

A H
BD

B

C
U
T@

70
px

+N
C
E_2

+r
ea

l+
EM

A

training mode

Io
U

Figure 5.6: Mixing synthetic and real data. We show the test IoU distribution over the
last 50 training epochs for real training images, real and synthetic images
mixed, as well as real and refined synthetic images mixed, for YCB-Video
and HomebrewedDB, respectively.

alistic to the human eye. Still, we achieve generalization to real data on the
YCB-Video segmentation task that is close to what we get when training on real
data. Hence, we hypothesize that—even if not for the human eye—refining the
images aligns the synthetic and real image distributions more closely in the feature
space of a CNN like the CUT generator.

5.2.1 Analysis using the LPIPS distance

In a first step, we use the LPIPS distance metric already introduced in Sec-
tion 2.3.1 and used in Section 4.2 to compare the image distributions quantita-
tively. Specifically, we use the YCB-Video keyframes, render corresponding Still-
leben images using the pose annotations and refine them using a trained CUT gen-
erator. Like before, we calculate the LPIPS distance using features extracted from
AlexNet (Krizhevsky, Sutskever, and G. E. Hinton 2012) pre-trained on ImageNet2.
To study the effect of our image refinements, we compare the mean LPIPS dis-
tance (in the following: mLPIPS) of synthetic and real images with the mean
distance of CUT-refined synthetic and real images, where the mean is calculated
over the YCB-Video keyframes.

2https://www.image-net.org/index.php

38

5.2 Learned Refinement Operations

(a) synthetic

(b) refined

Figure 5.7: Synthetic images and their CUT-refined versions.

Using a CUT network trained at a patch size of 902 pixels, we obtain the fol-
lowing results (lower values are better): The mLPIPS for synthetic and real data
is 0.72833961 compared to 0.70913235 for CUT-refined and real data (improve-
ment: +2.7%). Thus, the perceptual distance is slightly decreased by refining the
images. The distribution around the mean value is visualized in the left half of
Figure 5.8. It can be seen that it is narrower when the refinements are applied and
more pronounced below the mean value, again compared to pure synthetic data.

As described before, we cannot fully replace the synthetic backgrounds with
real ones in our domain adaptation setup. Thus, we also compare the images with
the backgrounds masked out, using the ground truth segmentation label from the
Stillleben renderer3. The resulting mLPIPS values are 0.1859759 and 0.18570992
for synthetic and CUT-refined images, respectively, showing only a very slight

3We use this segmentation mask for all three images, as by definition the segmentation masks
provided for the YCB-Video keyframes are identical.

39

5 Evaluation

improvement by the applied refinements (+0.1%). Correspondingly, the LPIPS
distributions as depicted in the right half of Figure 5.8 are rather similar, with a
slightly vertically larger broad region below the mean value for the refined images.

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

sy
n

C
U
T

sy
n_

m
as

ke
d

C
U
T_m

as
ke

d

dataset compared to real data

L
P

IP
S

Figure 5.8: LPIPS distance distribution between synthetic and real images alongside the
corresponding distribution for CUT-refined and real images. The distribu-
tions are calculated for the YCB-Video keyframes with synthetic images with
corresponding poses. Lower values are better. For the full images (left), we
see an improvement after applying the refinements. This improvement is
almost not present when masking out the backgrounds (right).

Summing up, the analysis using LPIPS distance values points towards a re-
duced domain gap after applying refinements using CUT. However, the seen im-
provements are not particularly large which does not correspond to the drastically
improved results in the semantic segmentation task described before. We therefore
hypothesize that a single scalar value like the LPIPS, calculated using a fixed net-
work trained on a dataset with strongly differing content might not be sufficient
to capture the actual changes by the refinements. To overcome this, we analyze
the image distributions more closely in the following part.

5.2.2 Analysis using t-SNE embeddings
To analyze the synthetic, CUT-refined and real image distributions, we employ
t-SNE embeddings (see Section 2.3.2) to project CNN features of the actual images
into two dimensions. This is done, because we cannot investigate the image distri-

40

5.2 Learned Refinement Operations

butions in the high-dimensional feature space of a CNN directly. For the reason
to use CNN features and not image data directly, see Section 2.3.2. Like before,
we create triples of real YCB-Video keyframes, Stillleben images and CUT-refined
versions thereof. Also as done previously, we employ a CUT generator trained at
a patch size of 902 pixels. For the resulting set of triples, we calculate the feature
maps of one extraction layer of RefineNet trained on real YCB-Video images. We
apply adaptive average pooling with output size 1×1 to each feature map to obtain
a vector of scalar values. Based on these vectors for all images, we calculate the
t-SNE embeddings.

Figs. 5.9a) and b) depict embeddings based on features from an early extrac-
tion layer and a late extraction layer, respectively. It can be seen that subsequent
keyframes of the real YCB-Video video sequences are closely aligned. Besides, the
synthetic images appear to form two clusters—especially for the early extraction
layer—for which it was not possible to reliably determine their origin. We hy-
pothesize that this split might be an artifact introduced by the tendency of t-SNE
embeddings to form clusters, see (Wattenberg, Viégas, and I. Johnson 2016). We
see a slight shift into the direction of the real samples introduced by the CUT
refinements in a) and b), which is more apparent when inspecting which synthetic
data point corresponds to which refined and real data point. Some samples are
even shifted more or less exactly to the corresponding real samples in the embed-
dings.

As mentioned for the LPIPS, we are more interested in what happens to the ap-
pearance of the objects in the images rather than in the backgrounds. Therefore,
we also calculate t-SNE embeddings for all image triples with the backgrounds
masked out, again using the segmentation labels provided by the Stillleben ren-
derer. The results are depicted in Figs. 5.9c) and d) for an early and a late
extraction layer, respectively. The general impression is that CUT-refining the
images both spreads the distribution and also aligns the distribution closer to the
real image distribution for the early extraction layer (see c)). For several images,
the refined synthetic images are embedded quite close to the corresponding real
images—an effect that has been seen in a) but is much more pronounced for the
masked images. Besides, the two clusters visible in the synthetic data are dis-
persed to some degree. In later extraction layers of RefineNet, the effect of better
alignment with real data is less clearly visible but still present, see d). We saw
similar effects to the ones described here for the early layers of AlexNet trained
on ImageNet, supporting the hypothesis that the domain adaptation actually does
align the distributions more closely.

41

5 Evaluation

(a) early unmasked (b) late unmasked

(c) early masked (d) late masked

Figure 5.9: t-SNE embeddings for different extraction layers of RefineNet, based on im-
ages without (a, b) and with (c, d) masked backgrounds (turquoise: syn-
thetic, orange: refined synthetic, blue: real images).

42

6 Domain Adaptation Beyond
Synthetic-To-Real

The main topic of this thesis is synthetic-to-real domain adaptation. However,
our primary goal is to tighten the domain gap between synthetic and real images
to improve the generalization to real data in subsequent deep learning tasks. In
the following, we outline different further ways to apply the approach presented in
Section 4.3 and modifications to this approach that provide alternative means to
reduce the domain gap. A detailed analysis and optimization of said ideas would
go beyond the scope of this thesis. Still, our ideas and discussions are backed by
some initial experiments.

6.1 Real-To-Synthetic Domain Adaptation
Performing synthetic-to-real domain adaptation raises the question whether real-
to-synthetic domain adaptation might be a task that is easier to learn for a GAN.
The reason for this is the fact that real images have more complex properties
than synthetic images. Thus, it can be hypothesized that it would be easier for a
network to “unlearn” these properties compared to adding them to an image.

For subsequent deep learning tasks (i.e. semantic segmentation in this thesis),
the workflow has to be changed slightly: At training time, we can use the un-
modified synthetic images instead of refined images. At inference time, the real
images need to be passed through the CUT generator before the actual inference
on the trained task network is performed. This implies faster training of the task
network but at the same time also increased runtime and latency for the infer-
ence. In real-time applications like robotic manipulation, this has to be carefully
considered and balanced with the achieved network performance.

Experiments with this inverse setting, however, yield results on the subsequent
semantic segmentation task inferior to the original approach, consistently across
patch sizes and independent of adapted hyperparameters for the training of CUT.
Unpublished work on a similar field of application by a research group known to us
also points into the direction that—in spite of the intuition outlined above—real-

43

6 Domain Adaptation Beyond Synthetic-To-Real

to-synthetic domain adaptation might be a harder task to learn. We hypothesize
that a part of the explanation in our setting is that training the segmentation
network on refined images encourages better generalizing features to be learned,
due to more variability in the data compared to pure synthetic images. This
would be consistent with the wider spread distributions of refined images seen in
Section 5.2.2. Besides, any variability introduced by the refinements is only added
to the test set in the real-to-synthetic setting, which are few images compared
to the 300k frames of synthetic data used for the training that are refined in the
synthetic-to-real setting.

In combination with semantic segmentation, it is even possible to go a step
further than pure domain adaptation (see Figure 6.1 for a visual intuition): In
the real-to-synthetic case, we have the segmentation labels for the target image
distribution available or alternatively, we can generate synthetic images without
backgrounds. So one can even train CUT to refine the relevant objects to look
more like in synthetic images and to remove the real backgrounds. Corresponding
training data for the subsequent segmentation network is available as synthetic
images without backgrounds can be used. As described for the supervised ap-
proach in Section 4.2, the real and synthetic image backgrounds largely differ and
also using CUT, it is not possible to actually fully replace the synthetic with real
backgrounds or vice versa in a learning-based manner. Removing backgrounds,
however, appears easier. The main (theoretical) benefit of this modification there-
fore, is the fact that the semantic segmentation network does not need to generalize
from synthetic to real backgrounds.

Initial experiments with this setting were performed at full resolution as the
patch-based approach would be presented with too much content-less (i.e. black)
area otherwise, destabilizing the training. The obtained results are promising, but
still expose strong artifacts, as can be seen in Figure 6.2: While some objects are
preserved and cut out accurately as intended, some objects have holes (a)) or are
only partly retained (b)). Besides, parts of the backgrounds are still in the images
after CUT is applied. Further research would be required to obtain better quality
results.

44

6.1 Real-To-Synthetic Domain Adaptation

S R T
G

S R T
G

S

S\B

R

Tlgt

G

(a)

(b)

(c)

Figure 6.1: Domain Adaptation Schemes. S denotes the source (synthetic) image dis-
tribution, T the target (real) and R the refined image distribution and G is
the generator. The distance between S and T represents the domain gap.
a) In synthetic-to-real domain adaptation, the synthetic images are refined
to look more like the images from the target distribution. b) In the inverse
real-to-synthetic setting, the images from the real distribution are refined,
i.e. mapped towards S. c) In the extended real-to-synthetic case, the syn-
thetic ground truth labels lgt are used to get the source distribution without
background S\B. Now, the images from T are mapped towards S\B.

(a) (b)

Figure 6.2: Real YCB-Video frames after being passed through a CUT generator trained
to perform real-to-synthetic domain adaptation, with synthetic images with-
out backgrounds. The general idea of removing the backgrounds works, but
in some locations too much or too few is removed, resulting in strong arti-
facts.

45

6 Domain Adaptation Beyond Synthetic-To-Real

6.2 Real and Synthetic Domain
Adaptation—Towards a Common Embedding

As mentioned earlier, we aim for good performance on subsequent deep learning
tasks, i.e. in this thesis semantic segmentation. This allows us to relax the idea of
synthetic-to-real or real-to-synthetic adaptation: Instead of narrowing the domain
gap from one side, we can also train CUT to learn a common embedding for images
from both the synthetic and the real image distribution. This would reduce the
generalization effort for the segmentation network.

We remind the reader of the optimization objective for CUT: A GAN loss is
combined with the PatchNCE applied to refined images from the synthetic image
distribution (source distribution) and to real images (target distribution), where
the latter is done to stabilize the training by encouraging an identity mapping for
real images, see (Park et al. 2020). For the GAN loss, the discriminator is trained
on refined synthetic and unchanged real images.

Including the PatchNCE on real images in the objective allows the generator
to also meaningfully process real images. Thus, we can change the discriminator
training such that it learns to distinguish the generator output for synthetic images
from the output for real images. Figure 6.3 depicts the modified setup. We
hypothesize that introducing this symmetry into the generator training helps to
find a common embedding for both image distributions while the PatchNCE still
sufficiently constrains the generator’s output content-wise.

First experiments with this change yield results on the subsequent semantic seg-
mentation task that overall do not improve on what is obtained with the synthetic-
to-real approach as evaluated in Chapter 5, the effect is rather detrimental. How-
ever, for patch sizes that previously yielded particularly weak results, these are
improved, as can be seen in Figure 6.4. We conclude, that this modification to the
training for itself is not beneficial yet but with further optimization might be able
to provide convincing results, possibly even more consistently over various patch
sizes.

A possible improvement in this context would be an additional loss component
derived from a semantic segmentation network that is trained in parallel on the
results of CUT after a first, initializing training phase, inspired by the work of
Bousmalis et al. (2017). This would ensure that we obtain results that are feasible
for a CNN to be segmented. For different subsequent tasks, corresponding loss
networks could be used.

46

6.2 Real and Synthetic Domain Adaptation—Towards a Common Embedding

x

y

G

D

x

y

G D

(a) (b)

Figure 6.3: Towards a common embedding. a) In the basic setup, the discriminator D
is trained to distinguish synthetic images x that have been refined using the
generator G from real images y. b) We propose to train D symmetrically on
images, with both x and y being passed through the generator G.

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

sy
n+

EM
A

C
U
T@

16
0p

x+
EM

A

C
U
T@

16
0p

x+
SD

+E
M

A

C
U
T@

12
0p

x+
EM

A

C
U
T@

12
0p

x+
SD

+E
M

A

C
U
T@

10
0p

x+
EM

A

C
U
T@

10
0p

x+
SD

+E
M

A

C
U
T@

90
px

+E
M

A

C
U
T@

90
px

+S
D
+E

M
A

C
U
T@

70
px

+E
M

A

C
U
T@

70
px

+S
D
+E

M
A

C
U
T@

60
px

+E
M

A

C
U
T@

60
px

+S
D
+E

M
A

re
al
+E

M
A

training mode

Io
U

Figure 6.4: Training the CUT discriminator symmetrically (in the plot: +SD) yields
mixed results. For some patch sizes the IoU is improved while it is lower for
others. Overall, the best results are still achieved with a non-symmetrically
trained discriminator. Depicted is again the test IoU distribution over the
last 50 training epochs, as in Chapter 5.

47

7 Conclusion and Future Work

In this chapter, we summarize the results of our work. Finally, we point out
possible future work, based on where the scope of this thesis ends.

This thesis has—in combination—presented a pipeline for semantic segmenta-
tion of RGB images based on 3D object models and un-annotated real images that
performs nearly as good on semantic segmentation as a model trained on anno-
tated real images. This pipeline consists of the Stillleben library for generating
synthetic training images, an unsupervised domain adaptation technique and a
subsequent segmentation network trained using only the refined, domain-adapted
synthetic images.

The core scientific contributions of this thesis have been the patch-based appli-
cation of CUT to domain adaptation and its structured evaluation, complemented
by the proposed extensions and modified application scenarios. Besides, we have
presented a proof-of-concept supervised domain adaptation approach.

We have shown that the proposed unsupervised technique is able to greatly
improve the segmentation results obtained from synthetic data for two robotics
datasets. While for YCB-Video, this is sufficient to nearly reach the results
achieved with real annotated training data, the results for the HomebrewedDB
dataset are comparable in relative terms but not yet as good in absolute terms.

In conclusion, we have demonstrated for our application domain that, given good
synthetic data, unsupervised domain adaptation is a viable method to remove the
need for real annotated training data.

The main reason for the shortcomings in the results on HomebrewedDB is the
lower achieved baseline segmentation performance for the Stillleben-generated syn-
thetic images containing objects from this dataset. A possible extension point
would thus be to optimize the Stillleben library for this and possibly more datasets
and investigate how well the results seen for YCB-Video can be replicated.

Particularly interesting for future work are the modifications to our approach
explained in the previous chapter. Based on our preliminary results, the most
promising approach would be to find a common embedding for synthetic and real
images and train subsequent task networks on this representation. Key challenges
in here include preserving the synthetic ground truth labels and constraining the
optimization into a beneficial direction.

49

7 Conclusion and Future Work

To address the mentioned challenges, but also separately in the synthetic-to-real
context, another possible point to extend the proposed method would be to include
a semantic segmentation loss component in the domain adaptation training. More
generally, it appears interesting to investigate task-specific loss components.

Our evaluation on semantic segmentation has been focused on the RefineNet ar-
chitecture, in line with the evaluation of Stillleben by Schwarz and Behnke (2020).
It might be of interest how our results translate to training of other, state-of-the-art
segmentation networks. In a broader sense, also the effect of the learned refine-
ment operations on the training of different deep learning tasks like classification
or 6D pose estimation could be investigated.

Based on our results, we believe that visual domain adaptation is an interesting
and promising research area for robotic applications, with the potential to bridge
the domain gap between synthetic and real data and thus to remove the need for
large annotated datasets in perspective.

50

List of Figures

1.1 Overview of the combined pipeline. 2

3.1 Example annotated image for ScribbleSup. 12

4.1 Real YCB-Video frames alongside corresponding synthetic images. . 17
4.2 Stillleben user interface. 19
4.3 The U-Net architecture. 20
4.4 Refinement results from the supervised approach. 21
4.5 CycleGAN and CUT key ideas. 23
4.6 PatchNCE calculation. 24
4.7 Output after training CUT on full-resolution images. 26

5.1 Test IoU on YCB-Video for training over 300 epochs. 30
5.2 Results on YCB-Video. 31
5.3 Noise injection. 33
5.4 Results on YCB-Video using EMA for the RefineNet parameters. . 34
5.5 Results on HomebrewedDB. 36
5.6 Mixing synthetic and real data. 38
5.7 Synthetic images and their CUT-refined versions. 39
5.8 LPIPS distance distributions. 40
5.9 t-SNE embeddings for different extraction layers of RefineNet. . . . 42

6.1 Domain Adaptation Schemes. 45
6.2 Results of real-to-synthetic domain adaptation. 45
6.3 Towards a common embedding. 47
6.4 Results for symmetrically trained CUT discriminator. 47

51

List of Tables

5.1 Results on YCB-Video. 32
5.2 Patch Size & Training Epoch Time 32
5.3 Results on YCB-Video (with EMA). 34
5.4 Results on HomebrewedDB (with EMA). 37

53

Bibliography
Baevski, Alexei, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael

Auli (2022). “data2vec: a general framework for self-supervised learning in speech,
vision and language.” In: arXiv preprint arXiv:2202.03555.

Bardes, Adrien, Jean Ponce, and Yann Lecun (2022). “VICReg: variance-invariance-
covariance regularization for self-supervised learning.” In: ICLR 2022-10th In-
ternational Conference on Learning Representations.

Bousmalis, Konstantinos, Nathan Silberman, David Dohan, Dumitru Erhan, and
Dilip Krishnan (2017). “Unsupervised pixel-level domain adaptation with gen-
erative adversarial networks.” In: Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 95–104.

Everingham, M., L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman
(n.d.). The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

Foi, Alessandro, Mejdi Trimeche, Vladimir Katkovnik, and Karen Egiazarian (2008).
“Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-
data.” In: IEEE Transactions on Image Processing 17.10, pp. 1737–1754.

Gong, Rui, Wen Li, Yuhua Chen, and Luc Van Gool (2019). “DLOW: domain
flow for adaptation and generalization.” In: Conference on Computer Vision
and Pattern Recognition (CVPR).

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio (2014). “Generative adver-
sarial nets.” In: Advances in Neural Information Processing Systems 27.

Ho, David Joon, Narasimhan P Agaram, Peter J Schüffler, Chad M Vanderbilt,
Marc-Henri Jean, Meera R Hameed, and Thomas J Fuchs (2020). “Deep interac-
tive learning: an efficient labeling approach for deep learning-based osteosarcoma
treatment response assessment.” In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, pp. 540–549.

Hoffman, Judy, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei Efros, and Trevor Darrell (2018). “CyCADA: cycle-consistent adversarial
domain adaptation.” In: International Conference on Machine Learning. PMLR,
pp. 1989–1998.

Isola, Phillip, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros (2017). “Image-
to-image translation with conditional adversarial networks.” In: Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134.

55

Bibliography

Johnson, Justin, Alexandre Alahi, and Li Fei-Fei (2016). “Perceptual losses for real-
time style transfer and super-resolution.” In: European Conference on Computer
Vision (ECCV). Springer, pp. 694–711.

Kandel, Mikhail E, Yuchen R He, Young Jae Lee, Taylor Hsuan-Yu Chen, Kathryn
Michele Sullivan, Onur Aydin, M Taher A Saif, Hyunjoon Kong, Nahil Sobh, and
Gabriel Popescu (2020). “Phase imaging with computational specificity (PICS)
for measuring dry mass changes in sub-cellular compartments.” In: Nature Com-
munications 11.1, pp. 1–10.

Kaskman, Roman, Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic (2019).
“HomebrewedDB: RGB-D dataset for 6D pose estimation of 3D objects.” In:
International Conference on Computer Vision (ICCV) Workshops.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet clas-
sification with deep convolutional neural networks.” In: Advances in Neural In-
formation Processing Systems 25.

Lin, Di, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun (2016). “ScribbleSup:
scribble-supervised convolutional networks for semantic segmentation.” In: Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 3159–3167.

Lin, Guosheng, Anton Milan, Chunhua Shen, and Ian Reid (2017). “RefineNet:
multi-path refinement networks for high-resolution semantic segmentation.” In:
Conference on Computer Vision and Pattern Recognition (CVPR).

Mao, Xudong, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and Stephen
Paul Smolley (2017). “Least squares generative adversarial networks.” In: Inter-
national Conference on Computer Vision (ICCV). IEEE, pp. 2813–2821.

Mildenhall, Ben, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng (2020). “NeRF: representing scenes as neural radi-
ance fields for view synthesis.” In: European Conference on Computer Vision
(ECCV). Springer, pp. 405–421.

Morrison, Douglas, Adam W Tow, Matt Mctaggart, R Smith, Norton Kelly-Boxall,
Sean Wade-Mccue, Jordan Erskine, Riccardo Grinover, Alec Gurman, T Hunn,
et al. (2018). “Cartman: the low-cost cartesian manipulator that won the amazon
robotics challenge.” In: International Conference on Robotics and Automation
(ICRA), pp. 7757–7764.

Mueller, Franziska, Florian Bernard, Oleksandr Sotnychenko, Dushyant Mehta,
Srinath Sridhar, Dan Casas, and Christian Theobalt (2018). “GANerated hands
for real-time 3D hand tracking from monocular RGB.” In: Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 49–59.

Oord, Aaron van den, Yazhe Li, and Oriol Vinyals (2018). “Representation learning
with contrastive predictive coding.” In: arXiv preprint arXiv:1807.03748.

Park, Taesung, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu (2020). “Con-
trastive learning for unpaired image-to-image translation.” In: European Con-
ference on Computer Vision (ECCV). Springer, pp. 319–345.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-Net: convolu-
tional networks for biomedical image segmentation.” In: Medical Image Comput-

56

Bibliography

ing and Computer-Assisted Intervention - MICCAI 2015 - 18th International
Conference Munich, Germany, October 5 - 9, 2015, Proceedings, Part III. Ed.
by Nassir Navab, Joachim Hornegger, William M. Wells III, and Alejandro F.
Frangi. Vol. 9351. Lecture Notes in Computer Science. Springer, pp. 234–241.

Schwarz, Max and Sven Behnke (2020). “Stillleben: realistic scene synthesis for
deep learning in robotics.” In: International Conference on Robotics and Au-
tomation (ICRA), pp. 10502–10508.

Schwarz, Max, Christian Lenz, Germán Martı́n Garcı́a, Seongyong Koo, Arul Sel-
vam Periyasamy, Michael Schreiber, and Sven Behnke (2018). “Fast object learn-
ing and dual-arm coordination for cluttered stowing, picking, and packing.” In:
International Conference on Robotics and Automation (ICRA), pp. 3347–3354.

Schwarz, Max, Hannes Schulz, and Sven Behnke (2015). “RGB-D object recog-
nition and pose estimation based on pre-trained convolutional neural network
features.” In: International Conference on Robotics and Automation (ICRA).
IEEE, pp. 1329–1335.

Shrivastava, Ashish, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang,
and Russell Webb (2017). “Learning from simulated and unsupervised images
through adversarial training.” In: Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2242–2251.

Stein, Gregory J and Nicholas Roy (2018). “GeneSIS-RT: generating synthetic
images for training secondary real-world tasks.” In: International Conference on
Robotics and Automation (ICRA), pp. 7151–7158.

Van der Maaten, Laurens and Geoffrey Hinton (2008). “Visualizing data using
t-SNE.” In: Journal of Machine Learning Research 9.11.

Wang, Feng, Huaping Liu, Di Guo, and Sun Fuchun (2020). “Unsupervised repre-
sentation learning by invariance propagation.” In: Advances in Neural Informa-
tion Processing Systems 33, pp. 3510–3520.

Wang, Mei and Weihong Deng (2018). “Deep visual domain adaptation: a survey.”
In: Neurocomputing 312, pp. 135–153.

Wattenberg, Martin, Fernanda Viégas, and Ian Johnson (2016). “How to use t-SNE
effectively.” In: Distill.

Xiang, Yu, Wonhui Kim, Wei Chen, Jingwei Ji, Christopher Choy, Hao Su, Roozbeh
Mottaghi, Leonidas Guibas, and Silvio Savarese (2016). “ObjectNet3D: a large
scale database for 3D object recognition.” In: European Conference on Computer
Vision (ECCV). Springer.

Xiang, Yu, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox (2018).
“PoseCNN: a convolutional neural network for 6D object pose estimation in
cluttered scenes.” In: Robotics: Science and Systems (RSS).

Zhang, Richard, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang
(2018). “The unreasonable effectiveness of deep features as a perceptual metric.”
In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 586–
595.

57

Bibliography

Zhao, Hang, Orazio Gallo, Iuri Frosio, and Jan Kautz (2017). “Loss functions for
image restoration with neural networks.” In: IEEE Transactions on Computa-
tional Imaging 3.1, pp. 47–57.

Zhi, Shuaifeng, Edgar Sucar, Andre Mouton, Iain Haughton, Tristan Laidlow, and
Andrew J Davison (2021). “iLabel: interactive neural scene labelling.” In: arXiv
preprint arXiv:2111.14637.

Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A Efros (2017). “Unpaired
image-to-image translation using cycle-consistent adversarial networks.” In: In-
ternational Conference on Computer Vision (ICCV).

58

	Introduction
	Fundamentals
	Domain Adaptation For Visual Data
	Generative Adversarial Networks (GANs)
	Similarity Measures
	Learned Perceptual Image Patch Similarity (LPIPS)
	t-SNE embeddings

	Related Work
	Weakly-Supervised Learning
	Feature Learning
	Unsupervised Domain Adaptation

	Methodology
	Stillleben
	Supervised Approach
	Network Architecture and Training Details
	Limitations

	Unsupervised Approach
	Contrastive Unpaired Translation (CUT)
	Enhancements to Contrastive Unpaired Translation
	Training Details

	Evaluation
	Semantic Segmentation
	Evaluation Metrics
	Results on YCB-Video
	Results on HomebrewedDB
	Combination with Real Training Data

	Learned Refinement Operations
	Analysis using the LPIPS distance
	Analysis using t-SNE embeddings

	Domain Adaptation Beyond Synthetic-To-Real
	Real-To-Synthetic Domain Adaptation
	Real and Synthetic Domain Adaptation—Towards a Common Embedding

	Conclusion and Future Work
	Appendices

