
Institute for Computer Science
Department VI
Autonomous Intelligent Systems

Rheinische
Friedrich-Wilhelms-

Universität Bonn

Rheinische
Friedrich-Wilhelms-Universität Bonn

Master’s Thesis

Extrinsic Camera Calibration for Multiple Smart
Edge Sensors using Person Keypoint Detections

Author:
Bastian Pätzold

First Examiner:
Prof. Dr. Sven Behnke

Second Examiner:
Dr. Volker Steinhage

Supervisor:
Simon Bultmann

Date: April 10, 2022

Declaration

I hereby declare that I am the sole author of this thesis and that none other than
the specified sources and aids have been used. Passages and figures quoted from
other works have been marked with appropriate mention of the source.

Place, Date Signature

Abstract

Camera calibration is an essential prerequisite for many methods in the field of
computer vision and robotics. The extrinsic calibration of a multi-camera system
is defined by the relative poses between the cameras. Obtaining them is typically
achieved by the application of offline methods that utilize traditional checker-
board calibration targets. These methods can be perceived to be cumbersome and
lengthy, considering that a new calibration is required each time any camera poses
change. In this thesis, we propose an online method for the extrinsic calibration of
multiple smart edge sensors, relying solely on 2D human keypoint detections that
are extracted locally on the sensor boards, and omitting any further processing
of the original RGB camera images. The person keypoint detections from multi-
ple views are received at a central backend where they are synchronized, filtered,
and assigned to person hypotheses. We use these person hypotheses to repeatedly
construct optimization problems in the form of factor graphs. The knowledge ob-
tained from their solutions accumulates over time and causes the estimated camera
poses to converge toward their optimal pose. Our method assumes the intrinsic
camera parameters to be known and requires priming with a rough initial estimate
of the extrinsic calibration. Given a suitable sequence of one or multiple persons
traversing the scene, the extrinsic calibration will converge within a few minutes.
We show that the calibration with our method achieves lower reprojection errors
compared to a reference calibration generated by an offline method utilizing a
traditional calibration target.

Contents

1. Introduction 1

2. Related Work 3
2.1. Camera Calibration . 3
2.2. Human Pose Estimation . 4

3. Theory 7
3.1. Projective Geometry . 7

3.1.1. Intrinsic Camera Calibration 7
3.1.2. Extrinsic Camera Calibration 9

3.2. Factor Graphs . 11
3.3. Error Metrics . 12

4. Method 17
4.1. Person Keypoint Detection . 19
4.2. Pre-Processing Stage . 20

4.2.1. Synchronization . 22
4.2.2. Filtering . 23
4.2.3. Data Association . 25
4.2.4. Pruning . 30
4.2.5. Analysis and Queueing . 30

4.3. Optimization Stage . 31
4.3.1. Person Hypothesis Selection 33
4.3.2. Factor Graph Construction 38
4.3.3. Variable Initialization . 41
4.3.4. Optimization . 42

4.4. Refinement Stage . 43
4.4.1. Temporal Smoothing . 43
4.4.2. Error Estimation . 46

vii

Contents

5. Implementation 49
5.1. Utilized Frameworks & Hardware 49
5.2. Features & Usage . 50
5.3. Parameters . 51

6. Evaluation 55
6.1. Setup . 55
6.2. Experiments . 59
6.3. Results . 71

7. Conclusion 75
7.1. Discussion & Future Work . 76

Appendices 79

A. Manual Calibration 79

B. Reference Calibration 81

viii

1. Introduction

Sensor calibration is an essential task in any robotics application. Typically, robots
utilize numerous sensors to perform perception, planning, and action tasks. In
order to successfully interpret and utilize the measurements taken by a sensor, one
must first obtain knowledge about its characteristics. An imprecise calibration can
lead to a degradation in performance and possibly cause critical safety issues.

For a number of reasons, the topic of camera calibration is an inherently difficult
one to solve [1]. First, the calibration parameters can change over time, due to
vibration, thermal expansion, loose parts or other common problems that follow
from normal usage. Therefore, it is not sufficient to calibrate the parameters
only once during the construction of the system. Instead, calibration must be
performed repeatedly throughout its lifetime. While, in practice, this problem
might be considered negligible for the intrinsic parameters, e.g. the focal length of
a camera, it is typically of great relevance for the extrinsic parameters, i.e. the rigid
transformation between the camera’s coordinate system and a reference coordinate
system. Second, the calibration parameters cannot be measured directly with
sufficient precision. Instead, they must be inferred from the data captured by
the considered cameras. This introduces a variety of practical problems for the
calibration procedure. Typically, this inference is performed by actively deploying,
or utilizing some existent, calibration target of known correspondences in front of
the cameras. Using a checkerboard pattern for this task is one of the most popular
methods in computer vision [2]. However, the application of such a method requires
expertise and might be perceived as cumbersome and lengthy, considering it has
to be done repeatedly for a large multi-camera system. Additional challenges for
inferring calibration parameters from image data involve accommodating for noisy
measurements taken by the cameras or collecting a sufficient amount of data-points
spread over the entirety of the image planes. In the case of finding the extrinsic
parameters of a multi-camera system, synchronicity between the image streams
must be established, data association has to be performed to find correspondences
between images from multiple views, and the fields of view (FoV) of all cameras
must overlap sufficiently.

1

1. Introduction

In this thesis, we aim to develop a self-supervised method for calibrating the
extrinsic parameters of an existing system of static smart edge sensors, in which
each sensor runs inference for 2D human pose estimation. In particular, we want
to infer the relative poses between the cameras on all deployed smart edge sensor
boards in real-time, by using only the person keypoint detections being transmitted
by the sensors.

The method is supposed to be capable of handling an unknown number of
persons present in the scene simultaneously. Neither the dimensions or height of
the persons, nor their precise orientation towards the cameras is assumed to be
known. As mentioned above, the camera layout is assumed to have sufficiently
overlapping FoVs to perform the task. We do not make any further assumptions
on the scene that is observed by the cameras. For example, the method should
support a non-planar ground surface, as well as arbitrary occlusions from tables or
pillars. We assume the intrinsic parameters to be known for all considered cameras
as well as a reasonable initial guess for the extrinsic calibration to be available. A
detailed discussion on these two last requirements, their demanded accuracy and
effect on the calibration procedure can be found in Sec. 6.3.

Our current solution for obtaining the extrinsic calibration of the sensor network
is the kalibr toolkit [3]. While its precision is sufficient for our purposes, we perceive
the calibration procedure to be cumbersome and lengthy. We hope to replace this
solution with the developed method.

Figure 1.1: RGB images from the targeted system of 20 smart edge sensors showing the
scene that serves as the scenario for this thesis.

2

2. Related Work

2.1. Camera Calibration
Traditional methods for camera calibration are based on using artificial image
features, so called fiducials. The common idea behind this approach is to deploy
some reference frame with known correspondences in front of all cameras that
are to be calibrated. Zhang et al. [2] utilize a checkerboard pattern on a planar
surface to perform intrinsic calibration of single cameras. The kalibr toolkit [3] uses
a planar grid of AprilTags [4] to perform extrinsic calibration of multiple cameras,
which allows to fully resolve its orientation towards the cameras, and is robust
against occlusions. Another similarity of these traditional methods is that they
require the recording of a calibration sequence in which the calibration target is
positioned in front of the considered cameras and in their overlapping FoVs. The
calibration sequence is then processed offline to obtain the results. In practice,
this process can be tedious when considering larger multi-camera setups. In such
a scenario, the calibration procedure must be repeated as soon as a single camera
changes its pose or new cameras are added to the system. In our experience, offline
processing alone can easily take days, depending on the number of cameras, the
length of the calibration sequence and the used compute hardware.

To cope with the problems of these traditional approaches, methods for ex-
trinsic camera calibration have been proposed that are not based on extracting
fiducial features from classical calibration targets but use naturally occurring fea-
tures instead. All approaches mentioned in the following assume the intrinsic
parameters to be known. Komorowski et al. [5] extract SIFT-features [6] and find
correspondences between multiple views using RANSAC [7]. They use segmen-
tation to remove dynamic objects and validate their approach on stereo vision
datasets. Their method is targeted towards one or few small baseline stereo cam-
eras and offline processing of a small batch of images. Bhardwaj et al. [8] calibrate
traffic cameras by deploying deep learning paradigms to extract vehicle instances
and match them to a database of popular car models. The extracted features and
known dimensions of the car models are then used to formulate a PnP-problem [7].
They assume a planar ground surface in the vicinity of the cars and process results
offline. Guan et al. [9][10] detect two keypoints (Head & Feet) for each observable

3

2. Related Work

pedestrian in a surveillance scenario. They perform pairwise triangulation of the
pedestrians by assuming an average height for all visible persons in the image pair.
Then they compute the calibration offline, using RANSAC, followed by a gradient
descent based refinement scheme. Their resulting calibration is only defined up
to an unknown scale factor, which must be resolved manually. The method as-
sumes the center lines between all pedestrians to be parallel, or in other words, all
persons are assumed to stand upright during the calibration, whereas other poses,
e.g. sitting persons, are not supported.

At last, we want to mention Reinke et al. [11], who propose an offline method
for finding the relative poses between a set of (two) cameras and the base frame of
a quadruped robot. They use a fiducial marker mounted on the end-effector of a
limb as the calibration target. The poses of the cameras mounted on the head of
the robot are resolved by using a factor graph [12]. Kinematic constraints between
the marker frame and the base frame are encoded as unary factors nodes.

2.2. Human Pose Estimation
Human pose estimation refers to the approach of recognizing and localizing anatom-
ical keypoints of a person on some given image material. Early works use manually
designed feature extractors like HOG-descriptors [13] or pictorial structures [14][15]
for this task. In recent years, approaches using convolutional neural networks
(CNNs) have become a popular choice and yield impressive results. Two well
known state-of-the-art and publicly available methods for human pose estimation
are OpenPose [16] and AlphaPose [17][18][19].

Figure 2.1: 2D human pose estimation for multiple persons simultaneously. Keypoint
detections belonging to the same person are linked. [16]

4

2.2. Human Pose Estimation

Both methods allow the estimation of the poses of multiple persons simultane-
ously and in real-time. Another similarity is that they train and validate CNNs
on some public datasets, which contain diverse video sequences of multiple per-
sons carrying out complex tasks as well as groundtruth keypoint annotations for
the validation set that is used for supervised learning. Afterward, the raw results
generated by the CNNs are refined by various methods such as part affinity fields,
transformers, or factor graphs. Numerous methods in the field use the Common
Objects in Context (COCO) [20] and MPII Human Pose (MPII) [21] datasets. One
of the key differences between them is their usage of different keypoint formats for
the annotations contained in the validation set. In particular, the COCO dataset
uses a total of 17 keypoints of which 5 are facial keypoints, while the MPII dataset
uses a total of 16 keypoints of which only one is a facial keypoint.

So far we have only considered human pose estimation for single 2D image
streams. Another interesting subject is the estimation of human poses in an allo-
centric 3D space. Here, the idea is to fuse 2D human poses from multiple views, i.e.
using multiple cameras viewing a common scene from different perspectives. The
available methods investigating this subject typically require a calibrated set of
cameras. Another common problem that all 3D human pose estimation methods
share is the requirement of performing data association. Here, one must find the
correspondences between 2D detections from multiple views. Only this association
allows to perform triangulation and infer depth information associated with the
detections.

Figure 2.2: 3D human pose estimation on the Shelf dataset using four cameras and four
persons. Only three persons are detected. Data association between views
is indicated by numbers above the heads. [22]

Again, there exist a number of datasets that allow to train and validate such
methods. Commonly used is the Human3.6M dataset (H3.6M) [23], as well as
the Campus and Shelf datasets [22]. When training a 3D human pose estimation
method based on an existing implementation for 2D human pose estimation, the
dataset must use the same keypoint format as the dataset used for 2D estima-
tion. Another important aspect concerning 2D and 3D human pose estimation
is the distinction between online and offline methods. Online methods process

5

2. Related Work

image streams and provide the corresponding results in real-time. Typically, these
methods deploy smaller-sized networks or find other means of reducing their com-
putational complexity, in order to become suitable for application in real-time.
The reduction of computational complexity typically comes at the cost of reduced
quality of the pose estimation. Some available methods offer to configure this
trade-off between speed and accuracy [16].

Figure 2.3: Real-Time Multi-View 3D Human Pose Estimation using Semantic Feedback
to Smart Edge Sensors [24]. The image data is only shown for illustration
purposes.

The goal of this thesis is to develop a method for extrinsic camera calibration
on multiple smart edge sensors using person keypoint detections. We consider an
existing network of smart edge sensors, deployed by Bultmann et al. [24] to perform
3D human pose estimation in real-time. Figure Fig. 2.3 illustrates the 2D and 3D
pose estimation of this method, as well as the considered sensor network within
this thesis. We will directly adopt this implementation for 2D pose estimation und
use it as the foundation of our work.

In this method [24], each smart edge sensor is performing 2D human pose estima-
tion in real-time using the COCO keypoint format. The advantages of processing
the image data locally on the sensor boards and transmitting only the obtained
keypoint data is to save network bandwidth and avoid privacy-related issues, as
the original image data is not required to ever leave the sensor boards. Afterward,
a central backend fuses the data received by the sensors to perform 3D human
pose estimation in real-time, using a greedy matching algorithm for data associa-
tion [25], triangulating corresponding detections between multiple views based on
the direct linear transformation algorithm [26], refining the triangulation results by
applying factor graph based skeleton models, and deploying a semantic feedback
loop to improve the quality of the 2D human pose estimations.

6

3. Theory

In this chapter, we establish the theoretical background on which this thesis is
based. We start by introducing the projective geometry required to formally de-
scribe the problem of camera calibration. Then we establish the concepts of factor
graphs which we will use to solve this problem. Finally, we discuss and define
various error metrics that allow us to assess the quality of its solution.

3.1. Projective Geometry
In this section, we establish the definitions for the camera model, the intrinsic and
extrinsic calibration, as well as all the other aspects that concern the projective
geometry utilized by the method proposed in this thesis. This section is largely
based on the great book by Hartley and Zisserman [26].

3.1.1. Intrinsic Camera Calibration

Optical center
Image plane

c

~P

z

x

y

C

~p
u

v

Figure 3.1: Illustration of the projective camera model. c is the principle point and C is
the optical center. The local coordinate system of the camera is placed at
the optical center. The image plane is depicted in front of the optical center.

7

3. Theory

The finite projective camera model that we utilize in this work is defined by its
calibration matrix

K =

fx s cx
0 fy cy
0 0 1

 , (3.1)

where the focal length (fx, fy)
T denotes the distance between the optical center C

and the principle point c in pixels. Expressing the focal length in two components,
one for the x- and one for the y-direction, accommodates for the possibility of
having non-square pixels. The principal point denotes the origin of the camera
coordinate system and is located where the line from the optical center intersects
with the image plane perpendicularly. The parameters (cx, cy)

T are used to offset
the origin of the image coordinate system from the principle point. We follow the
convention of using the top left corner of the image plane as the origin of the image
coordinate system. The skew parameter s is only non-zero in very rare cases and
we assume it to be zero within the scope of this work.

The calibration matrix of a camera allows the projection of a point ~P in the
three-dimensional space for which the cameras optical center C is the origin, we
refer to it as the local coordinate system, to the corresponding two-dimensional
point ~p in the image coordinate system, by

~p = K [I|0] ~P ≡

fxX + cxZ

fyY + cyZ

Z

 =

fx 0 cx 0

0 fy cy 0

0 0 1 0

X

Y

Z

1

 , (3.2)

where [I|0] is a 3 × 4 matrix, consisting of the 3 × 3 identity matrix and the
1× 3 zero vector in the last column, while ~p and ~P are expressed in homogeneous
coordinates. Of course, the depth information gets lost in the projection. The
projection mapping from local to image coordinates is described by

(X,Y, Z)T 7→ (fxX + cxZ, fyY + cyZ)
T . (3.3)

The above definitions hold for ideal cameras. In practice, however, camera lenses
or entire cameras are imperfect in many ways. These imperfections lead to various
non-linear distortion effects, that introduce an error for the projection from ~P to ~p

w.r.t. Eq. 3.2. Tang et al. [27] describe a number of camera distortion models. In
the scope of this work we will accommodate for two types of distortions: Radial
distortions originate from imperfections in the manufacturing process of camera
lenses and manifest in the form of fish-eye or barrel effects. Tangential distortions

8

3.1. Projective Geometry

occur when a camera lens is not positioned exactly planar to the image plane of
the camera. These distortions can be reversed, or undistorted, by obtaining the
appropriate distortion coefficients for the considered camera, and applying them
to the measured image coordinates by using the inverse distortion models.

We refer to the calibration matrix K, together with the (optional) distortion
coefficients ~dist, as the intrinsic calibration of a camera. Typically, the intrinsic
calibration of a camera can be viewed as constant. In practice, this assumption
might not always hold, e.g. when using an optical zoom lens, when the camera
construction is not perfectly rigid, or due to changes in temperature. However,
we disregard these effects in the scope of this work and do assume the intrinsic
calibration to be constant. The intrinsic calibration can obtained for an individual
camera, independent from other cameras in case it is embedded in a multi-camera
system. Numerous methods for this purpose are available, most of which use a
checkerboard type pattern with known sizes on a planar surface as the calibration
target [2][3].

It is worth stressing, that we use a number of different coordinate systems,
which must not be mixed up. In particular, we distinguish between the 2D camera
coordinate system, originating from the priciple point c in the image plane, the 2D
image coordinate system, for which the origin deviates from the principle point by
(cx, cy)

T, the 3D local coordinate system, for which the origin is the optical center
C of the considered camera, and lastly, the 3D global coordinate system, in which
the local coordinate systems of multiple cameras are embedded.

3.1.2. Extrinsic Camera Calibration

The extrinsic calibration of a camera typically refers to its pose, consisting of
a position and an orientation component, toward some reference frame, e.g. an
object in its FoV, another camera, or some world coordinate frame.
Within the scope of this work, we define the extrinsic calibration of a multi-camera
system SN , with N > 1 finite projective cameras Ci for i ∈ [0 . . N − 1], where the
pose for the optical center of each camera

Ci = {~Ti = (Xi, Yi, Zi)
T, ~Ri = (αi, βi, γi)

T} , (3.4)

consists of the position vector ~Ti and the orientation vector ~Ri, embedded in one
global three-dimensional Euclidean vector space, as knowing the relative poses
∆Cij, i.e. knowing the translation vectors ∆~Tij and the rotation vectors ∆~Rij,
between all camera pairs ij for i, j ∈ [0 . . N − 1].

To spare the need for relating all camera poses to some common external refer-

9

3. Theory

ence frame, we define C0 to be the origin of our global coordinate system by

C0 := {~T0 = (0m, 0m, 0m)T, ~R0 = (0°, 0°, 0°)T} . (3.5)

In other words, the local coordinate system of C0 is the global coordinate system.

Note, that the knowledge of some relative camera poses ∆Cij can imply the
knowledge of some other relative camera poses in SN . For example, for N = 3, the
knowledge of ∆C01 and ∆C02 implies ∆C12, such that knowing the relative poses of
any two pairs of cameras can be considered as the full extrinsic calibration of S3.

Ci
x

y

z

α

β

γ

a)

C0

C1

C2

CN−1

b)

...

Figure 3.2: Convention for positive rotations of a local coordinate system (a) and an
illustration of the extrinsic calibration where each camera is represented by
its local coordinate system embedded in the global vector space (b).

The adopted conventions for rotations and axis labels are illustrated in Fig. 3.2.
In accordance with Fig. 3.1, each camera looks straight down the z-axis of its local
coordinate system. We refer to rotations around the three Euler angles α, β and
γ as pitch, yaw and roll.

Knowing the extrinsic parameters ~Ti and ~Ri of a camera i allows us to adapt
Eq. 3.2 for describing the mapping from a point ~p in the local coordinate system
of Ci to the same point ~P in the global coordinate system, defined by

~P = Ki [R′
i | − ~Ti] ~p = Pi ~p , (3.6)

where R′
i is the 3 × 3 rotation matrix for ~Ri and Pi = K [R′

i| − ~Ti] is commonly
referred to as the 3× 4 projection matrix of Ci.

10

3.2. Factor Graphs

3.2. Factor Graphs
This section gives a brief introduction into the concept of factor graphs and elab-
orates on certain aspects that are relevant for this work. For a more thorough
introduction on factor graphs, please refer to the works of Koller et al. [28] and
Dellaert et al. [12].

Let g be a joint probability distribution, ranging over multiple random variables,
which can be factorized into a product of factors by

g(X0, X1, ..., XN−1) =
∏
i

fi(Si) (3.7)

where each factor fi only depends on a (small) subset of the random variables

Si ⊆ {X0, X1, ..., XN−1} . (3.8)

A factor graph is a graphical model that is capable of representing such a fac-
torization while allowing to run various kinds of message passing algorithms on
it in an efficient way. Furthermore, one can show that a factor graph can repre-
sent any Bayesian network or Markov random field [29]. Figure 3.3 illustrates a
factor graph, which represents the factorization of an exemplary joint probability
distribution

g(X0, X1, X2, X3) = f0(X0) · f1(X0, X1) · f2(X1, X2, X3) . (3.9)

X0

X2

X1 X3

f0 f1 f2

Figure 3.3: Illustration of an exemplary factor graph consisting of four variable
nodes (X0, ..., X3) and one unary (f0), binary (f1) and trinary (f2) factor
node each.

Formally, a factor graph G is an undirected graph with two types of nodes.
Variable nodes represent the random variables Xn and factor nodes represent the
factors fi of g. A factor node representing the factor fi is connected by an edge to
all the variable nodes, that represent the random variables Si on which the factor
fi depends. Therefore, a factor graph is a bipartite graph, where all edges connect

11

3. Theory

a variable node to a factor node.
Typically, we distinguish between unary and binary factor nodes, which either

connect to one or two variable nodes. While representing factors depending on
more random variables is possible, the strength of factor graphs lies in describing
the independence relations between the random variables of complex joint proba-
bility distributions and in its convenience of allowing the addition of many simple
factors to it, based on heuristic knowledge about the underlying problem. In par-
ticular, for an unknown joint probability distribution and a given set of measure-
ments, which contains knowledge about the set of random variables it depends
on, we can exploit heuristic knowledge about the underlying problem to obtain
factors that constrain all (or a subset) of the random variables. Once a sufficient
number of suitable constraints are added to the factor graph, we can run some
optimization algorithm on it to find the maximum a-posteriori assignment for all
constrained random variables. If not sufficiently many constraints were added to
the graph or the factor graph is numerically poorly constrained, the optimization
will fail, because a unique maximum a-posteriori does not exist [12].

If some of the contained factors are non-linear in nature, the graph must be
linearized by minimizing the non-linear squared error specified by the factors before
optimization can be performed [30]. A typical example for such non-linear factors
are poses which contain an orientation component. Another requirement before
being able to perform optimization is the initialization of all random variables with
a concrete value. For this, we must first find some scheme to estimate all required
random variables outside the scope of the factor graph. Finally, the optimization
can be performed, for example, by using a Levenberg-Marquardt style optimizer,
which is a mixture between gradient-descent based optimization and the Gauss-
Newton method [12].

3.3. Error Metrics
In this section, we elaborate on all instances in this work, where the notion of error
occurs. First, we define the distance between positions and orientations. Then,
we show a method for intentionally creating errors position and orientation errors
of some magnitude. Lastly, we discuss an interesting metric that distributes the
position error equally over all cameras.

Position and Orientation Errors

In order to evaluate the quality of an extrinsic calibration, we can compare it to
an existing reference calibration. Therefore, we must define an error metric for

12

3.3. Error Metrics

each type of data that defines a camera pose, namely its position and orientation
components. In order to find the error between an estimated camera pose and the
corresponding reference camera pose, we consider both components independently
and describe them by a scalar distance. For the distance dpos(·, ·) between two
position vectors, we simply use the Euclidean distance or L2-norm defined by

dpos(~T0, ~T1) = ||~T0 − ~T1||2 =
√

(x0 − x1)2 + (y0 − y1)2 + (z0 − z1)2 , (3.10)

where the Cartesian coordinates of the position vector ~Ti are defined by

~Ti = (xi, yi, zi)
T . (3.11)

However, finding the distance between two orientations is not as straightforward.
First, we must discuss the different representations that an orientation can take
on. We define an orientation vector, analogously to the position vector, by a 3D
vector of Euler angles

~Ri = (αi, βi, γi)
T . (3.12)

Typically, we only use this representation for illustrative purposes, as it is intuitive
for us to understand. Adopting the same distance measure

d′rot(~R0, ~R1) = ||~R0 − ~R1||2 (3.13)

w.r.t. Eq. 3.10, does not yield the desired result. In particular, we want to find
the smallest possible rotation about a single rotation axis through the origin of
the coordinate system.

Computational methods involving orientations predominately use rotation ma-
trices or quaternions as means of representation. In this context, quaternions are
often preferred for efficiency reasons and because they are not prone to the prob-
lem of gimbal-lock [31]. We use the quaternion representation to define an error
metric between two orientations.

A quaternion ~Q, as the name suggests, is a 4-tupel defined by

~Q = q0 + q1 i + q2 j + q3 k , (3.14)

where q0, q1, q2, q3 ∈ R and i, j and k are imaginary units defined by

i2 = j2 = k2 = i j k = −1 . (3.15)

This definition implies a number of interesting and unique properties w.r.t. the
algebraic operations between quaternions. For a more detailed introduction on

13

3. Theory

quaternions, please refer to the works of Kuipers [32][33]. However, it is worth
pointing out, that the quaternions form a non-commutative algebra H over the
real numbers R. In order to represent orientations in 3D space, we use i, j and k
to denote the standard orthonormal basis for R3 by

i = (1, 0, 0) j = (0, 1, 0) k = (0, 0, 1) . (3.16)

The components q1, q2, and q3 then specify the axis of rotation, while q0 specifies
the rotation angle around this axis.

To convert Euler angles to a quaternion representation, there exist a number of
conventions w.r.t. to the order of the sequence with which the three Euler angles
are applied [32][34]. We map a rotation vector ~R to a quaternion ~Q by

mV Q(α, β, γ) =

cos(γ/2) cos(β/2) cos(α/2) + sin(γ/2) sin(β/2) sin(α/2)
sin(γ/2) cos(β/2) cos(α/2)− cos(γ/2) sin(β/2) sin(α/2)
cos(γ/2) sin(β/2) cos(α/2) + sin(γ/2) cos(β/2) sin(α/2)
cos(γ/2) cos(β/2) sin(α/2)− sin(γ/2) sin(β/2) cos(α/2)

 . (3.17)

In order to compare two quaternions, we must ensure that they are both nor-
malized to one. A unit quaternion of norm one obeys

|| ~Q||2 =
√
q20 + q21 + q22 + q23 = 1 . (3.18)

Any nonzero quaternion ~Q can be scaled to unit length by

~Q

|| ~Q||2
=

q0

|| ~Q||2
+

q1

|| ~Q||2
i + q2

|| ~Q||2
j + q3

|| ~Q||2
k . (3.19)

Finally, we are prepared to compute the distance between two orientations rep-
resented as quaternions. However, there exist many different methods to obtain
such a distance, all of which fulfill different properties. Hunynh [35] presents and
compares a number of metrics for 3D rotations. We adapt one of the presented
metrics (φ3) to return an error in the range [0, 2π] defined by

drot(~Q0, ~Q1) = arccos(2 · 〈 ~Q0, ~Q1〉2 − 1) , (3.20)

where the inner product 〈 ~Q0, ~Q1〉 is defined by

〈q0 + q1 i + q2 j + q3 k , q′0 + q′1 i + q′2 j + q′3 k〉 = q0q
′
0 + q1q

′
1 + q2q

′
2 + q3q

′
3 . (3.21)

We use the presented metrics not only for comparing camera poses, but also for

14

3.3. Error Metrics

other intermediate results that contain a position or an orientation component.

Obtaining an Initial Estimate for the Extrinsic Calibration

The method proposed in this work requires priming with a rough estimate of the
extrinsic calibration w.r.t. the targeted multi-camera system. There exist many
ways to obtain such an estimate. In practice, these estimates could come from
utilizing existing measurements of the room, e.g. a floor plan, using tape measure,
or from simply guessing to ones best knowledge. While it is relevant for our method
to accommodate for and improve from such inaccurate initial estimates, we also
require a reliable reference measurement for evaluation. However, we can utilize
this reference calibration to construct initial estimates that have certain properties.
In particular, we want to specify a desired error for the position and orientation
components of all camera poses. For this, we distinguish between two cases. In the
first case, all camera poses are spaced equidistantly to the corresponding reference
poses, w.r.t. the distance measures dpos(·, ·) and drot(·, ·) and the respective target
distances εpos and εrot defined by

dpos(~Ti,
~̇Ti) = εpos ∧ drot(~Qi,

~̇Qi) = εrot ∀ i > 0 , (3.22)

where C0i = {~Ti, ~Qi} is the initial estimate for the pose of camera i and Ċi = { ~̇Ti,
~̇Qi}

is the corresponding reference pose. The directions of these offsets are uniformly
distributed.

In the second case, the specified error is normally distributed w.r.t. the addi-
tional parameters σpos and σrot. We adapt the first approach, such that

dpos(~Ti,
~̇Ti) = ti · εpos ∧ drot(~Qi,

~̇Qi) = ri · εrot ∀ i > 0 , (3.23)

where ti and ri are normally distributed random variables, defined by

ti ∼ N (µ = 1, σ2 = σ2
pos) ∧ ri ∼ N (µ = 1, σ2 = σ2

rot) . (3.24)

Note that we do not tamper with C0, as we define this pose to be the origin of our
coordinate system.

Distributing the Position Error between all Cameras

In Eq. 3.5 we defined the extrinsic calibration in a way, such that C0 is the origin
of the coordinate system against which the other cameras are positioned. Both,
the reference extrinsic calibration, as well as the resulting calibration from our

15

3. Theory

proposed method use this definition. However, this has an effect on the comparison
between the two, and thereby, the resulting error. In particular, the measured
position error for C0 will always be zero, while the underlying error of the proposed
calibration will be distributed over the remaining cameras. We solve this issue by
estimating the transformation that minimizes the error between the two sets of
points, following Umeyamas method [36].

Fig. 3.4 illustrates this method by transforming a set B to B′, such that the
distance between corresponding points is minimal between B′ and A. Umeyamas
method allows to include a scaling factor for the optimal transformation alongside
the rotation matrix and the translation vector. In this example, the distance error
is greatly reduced by applying this scaling factor. More so, the scaling factor gives
an interesting insight into the two point sets.

0 50 100 150 200 250 300
x

0

50

100

150

200

250

300

y

Umeyama - Without scaling
A
B
B'

0 50 100 150 200 250 300
x

0

50

100

150

200

250

300

y

Umeyama - With scaling
A
B
B'

Figure 3.4: Least-squares estimation of transformation parameters between two point
patterns A and B according to Umeyama [36].

Employing Umeyamas method to transform the position components of a pro-
posed extrinsic camera calibration in order to minimize the error toward the ref-
erence calibration introduces an error > 0 for C0, while reducing the total error of
the system. As the scale of the obtained camera positions might be considered a
relevant property of the extrinsic calibration, we do not use scaling for reporting
errors. However, we can exploit the optimal scaling factor to assess the scaling
ambiguity of the proposed calibration and to report errors that are corrected w.r.t.
scaling. To some degree, all camera calibration methods utilizing naturally occur-
ring objects of unknown exact dimensions suffer from scaling ambiguities [1].

16

4. Method

We propose a method which aims to utilize the image streams of a multi-camera
system SN with N > 1 finite projective cameras Ci, for i ∈ [0 . . N − 1], in order to
extract and maximize knowledge about the relative poses between all cameras in
real-time, i.e. finding the translation vectors ∆~Tij = (Xj −Xi, Yj − Yi, Zj − Zi)

T

and the rotation vectors ∆~Rij = (Ψj − Ψi, θj − θi, ϕj − ϕi)
T between all camera

pairs ij for i, j ∈ [0 . . N − 1], where the pose of the optical center of camera i is
defined by

Ci = {~Ti = (Xi, Yi, Zi)
T, ~Ri = (Ψi, θi, ϕi)

T} (4.1)

consisting of the position vector ~Ti and the orientation vector ~Ri.
We call this the extrinsic calibration of the multi-camera system SN .

The camera poses Ci are embedded in one global three dimensional Euclidean
vector space for which we define C0 to be the (static) origin by

C0 := {~T0 = (0m, 0m, 0m)T, ~R0 = (0°, 0°, 0°)T} . (4.2)

2D Pose
Estimation

2D Pose

2D Pose
Estimation

Synchronization Filtering

Queue Data
Association

Optimization Refinement

C0

C1

C2

CN−1

...

Extrinsic Calibration

RGB
Image

RGB
Image

Smart Edge Sensor 0

Smart Edge Sensor N − 1

Backend

Figure 4.1: Overview of the proposed pipeline for extrinsic camera calibration using
smart edge sensors and person keypoint detections. Images are analyzed
locally on the sensor boards. Keypoint detections are transmitted to the
backend where multiple views are fused to construct and solve optimization
problems using factor graphs. A queue decouples the pre-processing and
optimization stages.

17

4. Method

The optical center of each camera can be viewed as the origin of its own local
coordinate system in which we can express position vectors as ~pi = (x, y, z)T and
orientation vectors as ~ωi = (α, β, γ)T relative to Ci. When rotating these local
coordinate systems within the global vector space, we refer to rotations around
the three Euler angles α, β and γ as pitch, yaw and roll. In its local coordinate
system, each camera looks straight down the z-axis in positive direction, or the roll
axis, respectively. The local coordinate system of C0 resembles the global vector
space.

Fig. 4.1 gives an overview of our proposed pipeline. Each camera stream is fed
into an onboard person keypoint detector capable of detecting multiple persons
simultaneously. We refer to the unity of camera and detector as smart edge sen-
sor. The keypoint detections are transmitted to a central backend to be processed
further. The pre-processing stage first synchronizes the detection streams into
sets of time-corresponding detections. Each frame-set is then filtered to remove
redundant and noisy detections after which data association is performed, where
the correspondences between person detections from multiple views are found.
Corresponding person detections are fused to form a person hypothesis. After
pruning unique detections, person hypotheses with at least one valid detection
are considered eligible to be used in the optimization stage. To conclude the pre-
processing stage, eligible person hypotheses are analyzed and attached to a queue,
which serves to decouple the pre-processing stage from the rest of the pipeline.
The optimization stage repetitively reads from this queue, selects several person
hypotheses, according to a fitness function and uses them to construct and solve
an optimization problem in the form of a factor graph [12]. The refinement stage
updates the current estimate of the extrinsic calibration by smoothing the inter-
mediate results generated by the optimization stage and estimates the calibration
error in order to configure the next optimization cycle. Given a suitable sequence
of person detections in areas where the FoV of at least two cameras overlap, the
extrinsic calibration will converge to an optimum.

In order to apply this method, some requirements must be fulfilled. Each camera
in SN must provide an RGB image stream, together with a unique timestamp for
every image. The FoVs of all cameras must overlap in such a way that SN forms
a connected graph. Two FoVs are considered to be overlapping when a person
fits in the considered area. Furthermore, we assume the calibration matrices Ki

to be known for all cameras i. The corresponding distortion coefficients ~disti can
be provided to increase the precision of the resulting extrinsic calibration. Lastly,
this method must be initialized with a rough estimate of the extrinsic calibration.
A detailed discussion on these requirements can be found in Sec. 6.3.

18

4.1. Person Keypoint Detection

4.1. Person Keypoint Detection

It is fair to assume, that most multi-camera systems are placed in such way, that
the observed areas of all cameras are easily accessible by humans. Therefore,
instead of using traditional calibration targets, like checkerboards or AprilTag [4]
grids, for example, we want to use the persons that are present in the scene as cali-
bration targets, to gain knowledge about the extrinsic calibration of a multi-camera
system. Traditional calibration targets are often favorable from a methodological
point of view, because exact dimensions of the targets are known and the problem
of data association can be solved easily. However, the use of person calibration
targets does have some advantages over the traditional methods. In particular, its
often much easier to have persons walking around the scene, instead of crafting
and positioning traditional targets. Furthermore, persons are dynamic objects and
can easily cover large areas of the FoVs of all cameras. They can be viewed and
detected from any angle and they have a relatively large baseline, all allowing for
and contributing to persons being suitable and effective calibration targets. On
the contrary, the dimensions of a person are not precisely known, which creates a
scaling ambiguity in the resulting extrinsic calibration.

In order to utilize persons as calibration targets, we directly adopt the method
for person keypoint detection proposed by Bultmann et al. [24], with one exception:
The semantic feedback loop, described in this work, which improves on the quality
of the detections, is not used, as it relies on a known extrinsic calibration. The
deployed smart edge sensors are equipped with an RGB camera and a tensor
processing unit (TPU), running inference of a lightweight MobileNetV3 feature
extractor [37], adopted for human pose estimation, locally on the sensors. This
architecture allows the person keypoint detection of all cameras, to be executed in
parallel and real-time. Furthermore, transmitting compact keypoint data to the
backend directly, instead of transmitting larger size image data, results in lower
latencies, due to the lower computational overhead needed for transmission and
implies softer requirements on the network infrastructure, w.r.t. bandwidth. The
clocks of all sensors are software synchronized. This allows for a precise comparison
of the timestamps associated with the detections between different sensors, later
on in the pipeline.

The feature extractors generate heatmaps encoded as multi-channel images,
where each channel reflects the confidence of one specific human joint, being
present at a pixel location. From these heatmaps, the sensors derive messages
of the following format: For each image, the sensor Ci transmits a person keypoint
detection message {D p

j}i , where joint j corresponds to person p.

19

4. Method

A single keypoint detection is defined as

D = { (u, v)T, c , Σ } , (4.3)

where (u, v)T are the image coordinates, c ∈ [0, 1] is the confidence and Σ ∈ R2×2

is the covariance of the detection. Only detections with a confidence above zero
are considered as valid detections. Invalid detections are always included in each
message, using a confidence of zero. Note that the order of p is arbitrary, for
each consecutive message of one sensor, or between time-corresponding messages
of multiple sensors. The order of j is fixed and follows the definition, established
for the COCO dataset [20], using a total number of 17 joints (See Tab. 4.1). The
covariance Σ describes the uncertainty region around the detection, referring to
the initial heatmap, where the highest confidence c is at (u, v)T. All detections di
of a sensor Ci are annotated with the same timestamp ti.

Table 4.1: Ordered list of detectable joints according to the COCO dataset [20].
0: nose 1: left_eye 2: right_eye
3: left_ear 4: right_ear 5: left_shoulder
6: right_shoulder 7: left_elbow 8: right_elbow
9: left_wrist 10: right_wrist 11: left_hip

12: right_hip 13: left_knee 14: right_knee
15: left_ankle 16: right_ankle

While the sensors are capable of detecting multiple persons simultaneously, the
number of detections does increase the demand on their limited computational re-
sources. In particular, too many simultaneous detections can cause drops in frame
rates and increased latencies, making it more difficult to find a time-corresponding
set of detections between all cameras and leading to negative effects on the goal of
performing extrinsic calibration. Therefore, as many persons as necessary, but as
few as possible, should be present in the scene during the calibration procedure. In
practice, the deployed sensors (See Fig. 4.2) are capable of detecting up to three
persons simultaneously, at uncompromised frame rates of 30FPS and latencies
around 2ms [24].

4.2. Pre-Processing Stage
The pre-processing stage is the first stage of the pipeline being located at the back-
end. It receives N person keypoint detection streams and processes them so that
they can be used for optimization. First, incoming streams are synchronized into

20

4.2. Pre-Processing Stage

Figure 4.2: Visualization of the person keypoint detections for one person with the cor-
responding RGB image shown in the background for illustration purposes
(left). Image of one deployed sensor running TPU based inference locally
and directly transmitting person keypoint detections to the backend (right).

sets of time-corresponding detection messages of size N . In the following, we will
refer to such a set as a frame-set. After synchronization, the only mandatory step
that must be performed before being able to carry out optimization is data asso-
ciation, where correspondences between detections from different sensors within a
frame-set are obtained. This step is necessary because the optimization stage uses
constraints based on multi-view geometry, so that any 3D joint is required to be
observed from at least two cameras.

However, we apply various filter constraints on each frame-set, before handing
them to the optimization stage, in order to forward only those detections, that
are considered accurate and suitable for contributing to improving the extrinsic
calibration. Detections can be noisy, w.r.t. their temporal neighbors, which is
reflected in their confidence values. Also, false detections can occur. For example,
person-like objects, e.g. humanoid robots or coat stands, can be wrongly identified
as persons, which is usually indicated by very noisy detections. Furthermore, many
detections are redundant, whenever there is little movement in the scene and thus,
do not contain any new knowledge to learn from. Fortunately, the rate of incoming
detections is much larger, than the rate of detections feasible to be processed by
the optimization stage. This requires us to align the two rates, by dropping enough
frame-sets, to avoid the waste of computational resources on analyzing frame-sets
that will and should not be used in the optimization stage. As the computational
effort for a frame-set that passes all filter constraints, as well as all consecutive
steps in the pre-processing stage, is much higher, than the computational effort for
a frame-set, that is rejected by an early filter stage, the filter constraints should

21

4. Method

be set strict enough, to let the pre-processing frame rates not drop significantly
below the sensor frame rates. Otherwise, valuable incoming detections might be
missed, due to the computational resources being already used at full capacity.

Figure 4.3: Illustration of the pre-processing stage where a synchronized set of detections
from eight sensors is filtered and associated. Keypoint detection confidences
are colored according to a heat color-map. Accepted sensors and keypoints
are highlighted while rejections are provided with reasoning. Corresponding
person detections between sensors are surrounded by bounding boxes of the
same color.

4.2.1. Synchronization

In order to extract knowledge about the extrinsic calibration of a multi-camera
system from incoming person keypoint detection messages, we must analyze sets,
with one detection message from each sensor, where the timestamps of all messages
are as close to each other as possible. This ensures, that detections in one frame-set
correspond to images, that all captured the scene at the same point in time, but
from different viewing angles. In other words, there was no significant movement
of any person in the interval between the timestamps of the first and last message.

The person keypoint detection streams from each sensor arrive at the pre-
processing stage in an asynchronous fashion. As described earlier, cameras within
the sensors are not hardware-synchronized w.r.t. their frame rates. Assuming that
all cameras precisely operate with r frames per second, we must expect a maxi-
mum timing offset of ±1/(2 · r) seconds. Furthermore, sensors with many persons
in their FoV might momentarily drop their frame rates, due to computational

22

4.2. Pre-Processing Stage

limitations. Other phenomena, such as jitter or caching, contribute to further de-
viations. The clocks of all sensors are software synchronized, within an accuracy
of approximately two milliseconds. This allows for a precise determination of the
timing offset between detection messages from different sensors. While all of the
above problems are reflected in the timestamp of each message, we must also con-
sider the latency between capturing the initial RGB images and the arrival of the
corresponding detection messages at the backend. Predominantly, the inference
for person keypoint detection on each sensor, as well as the transmission over a
network infrastructure to the backend, contribute to this.

We perform synchronization by deploying the Approximate Time Synchronizer [38],
which is provided by the Robot Operating System [39]. It buffers all incoming mes-
sages for a time, that exceeds the maximum offset that is to be expected between
the arrival of corresponding detection messages at the backend, in order to find
sets of one message for each sensor, with a minimal timing offset between their
timestamps. By this, the matching quality of the resulting sets solely depends
on the message timestamps and is independent from the latency that is required
for person keypoint detection and transmission to the backend. Furthermore, the
algorithm satisfies some properties that we consider desirable:

• A message can only be assigned to one set.

• For any two sets, the timestamps from one set, are either all smaller or all
larger, than the timestamps from the other set, w.r.t. to each sensor.

• As few messages as possible are dropped, in that at least for one sensor,
there is no dropped message between two consecutive sets.

Higher buffer sizes allow to accommodate for larger inference and transmission
latencies, at the cost of increasing the throughput latency of the pipeline. Further
timing-related constraints, that consider statistical properties of the distribution
of the timestamps within a frame-set, will be applied during the filtering step.

4.2.2. Filtering
Filtering aims to reject false, noisy, redundant, and low-quality detections, while
letting the most useful detection pass through. We do this by setting up various
constraints for each frame-set, that either address the number of detections by
each sensor, the timestamps associated to each sensor, or the confidence value of
each detection:

• If a frame-set has no detections by any sensor, or only detections by one
sensor, we reject the entire frame-set. The reason for rejecting frame-sets

23

4. Method

with detections by only a single sensor is that we cannot possibly apply
any multi-view geometry on these detections, which is required during the
optimization stage.

• If the number of person detections for a sensor exceeds a specified number
of persons jmax, all detections of this sensor are rejected. This helps to
resolve scenarios, where both, valid detections and false detections occur
simultaneously in one sensor. Additionally, we can use this parameter to
automatically reject all detection during moments, where the number of
persons in the scene is too large for a successful calibration. This can improve
the overall quality of the used detections and help to solve the problem of
data association.

• For all sensors with at least one valid detection, we compute the maximum
span between the first and the last timestamp, as well as the mean and
the standard deviation of all timestamps. If this maximum span exceeds a
specified value ∆tmax, or the standard deviation exceeds a specified value
σmax, we reject the entire frame-set. If the deviation of the timestamp from
a single sensor exceeds the standard deviation, multiplied by some constant
weight wσ, all detections from the respective sensor are rejected.

• We apply a similar approach to address the confidence values of each detec-
tion. If the standard deviation of the valid confidence values for a person
exceeds a specified value σc

max, all detections corresponding to this person are
rejected. If a single detection deviates further than this standard deviation,
multiplied by some constant weight wc

σ, the respective detection is removed
from the person. Instead of considering the maximum span of the detections
for each person, we simply reject all detections below some threshold cmin.
Additionally, we define a minimum number of valid detections per person
detection and a set of specific joints that are required to be valid within
each person detection. Person detections that violate these constraints are
rejected. In particular, we demand valid detections of both hips and both
shoulders for each person, in order to perform data association.

Note that most filter constraints are interactive with one another. Rejecting a
detection due to one filter constraint can lead to a violation of another filter con-
straint. Suggesting a set of parameters, that works well for any scenario, is difficult,
as this choice depends heavily on the scene and sensor layouts, the implementation
and parametrization of the person keypoint detection, the network infrastructure,
as well as the available computational resources on the backend. Setting them up

24

4.2. Pre-Processing Stage

carefully, w.r.t. to a concrete scenario, is essential for obtaining a precise extrinsic
calibration.

After filtering, we use the distortion coefficients of each camera, if available, and
undistort the coordinates of all valid detections using the OpenCV library [40].

4.2.3. Data Association
To extract knowledge about the extrinsic calibration of a multi-camera system,
we will exploit the projective geometry between corresponding detections from
multiple views during the optimization stage. Therefore, in the data association
step, we try to find these correspondences between the detections from all sensors.
Fig. 4.3 illustrates the goal of this step.

While an approach for data association based on multi-view geometry is com-
putationally less expensive than using, for example, an image-based approach, it
has one obvious drawback: The geometry of the scene is not precisely known. The
relative camera poses are only roughly known at the beginning of the calibration
procedure, as finding them, is the overlying goal of this method. Also, the preci-
sion of the detections is not exact. Therefore, a geometry-based approach can only
be successful, if the precision of both, detections and camera poses is good enough.
The necessary precision for this approach to work as intended, will be discussed in
Sec. 6.3. Moreover, a method using visual descriptors for data association, which
can be easily used in conjunction with or instead of the geometry-based approach
presented here, is described in Sec. 7.1.

However, we can try to reduce the required precision in both domains. The
precision of the detections is easily boosted, by only letting detections with ac-
curate timing and high confidence pass through the filtering step. The negative
effect, caused by inaccurate camera poses, can be neglected to some degree, by
rejecting all person detections that are too close to each other, within each sensor.
Note that the orientation error of the camera poses is more problematic than the
position error, especially for distant detections. Therefore, we will apply further
filtering of entire person detections, according to this, before the actual data asso-
ciation takes place. In particular, we reject all person detections within a sensor,
where the bounding box that surrounds the valid detections of a person detection
intersect with that of another.

Due to the functioning of the method used for person keypoint detection, we
already know the association of every single joint detection to a corresponding
person detection. We will exploit this knowledge, by considering the distance of
the joints of a person detection, to the respective joints of other person detections.

25

4. Method

In order to increase the number of available joints, we will not only use those joint
detections, that survived the filtering step, but also consider all other joints of
the person detections in question, that exceed some confidence threshold cmin_da,
lower than the confidence threshold cmin used during filtering. Furthermore, when
searching for corresponding candidates of a specific person detection, we can safely
exclude all other person detections within the same sensor from the search space.
The distances between the joints will be computed within the global coordinate
system, by back-projecting 2D detections into 3D rays, and then reducing each ray
to a line segment, according to a depth estimation for each person detection. By
comparing the average distances of the line segments between all person detections,
we obtain an assignment for each person detection to one person hypothesis.

Ray-Casting

First, we back-project 2D detections into global 3D coordinates. As we have not
obtained any depth information for these 2D detections yet, each back-projection
results in a 3D ray, where the origin of the ray is the optical center of the respective
camera, propagating toward infinity and facing the same direction as the camera.
Therefore, the 3D coordinates corresponding to a 2D detection must be somewhere,
i.e. at some depth, on this ray. We do this for all detections that are considered
valid according the filtering step, as well as for all invalid detections, which belong
to a person detection that contains at least one valid detection and exceed some
confidence threshold cmin_da.

Using the focal length (fx, fy)
T and the principle point (cx, cy)T from the projec-

tion matrix Ki for camera Ci, all points ~pD on the back-projection ray for detection
Di, with the image coordinates (u, v)T, are expressed in local coordinates by

~pD(z) =

(u− cx) · z/fx
(v − cy) · z/fy

z

 , (4.4)

where z ∈ [0,∞) is the unknown depth of detection Di. We transform ~pD into the
global coordinate system by

~PD(z) = R′
i · ~pD(z) + ~Ti , (4.5)

where R′
i is the rotation matrix corresponding to the rotation vector ~Ri, and ~Ti is

the position vector of camera Ci.

26

4.2. Pre-Processing Stage

Depth Estimation

Figure 4.4: 3D back-projection rays embedded in the global coordinate system for the
joint detections of one person (black) and the corresponding reduction to line
segments after applying depth estimation (green). 3D human pose estimation
according to [24] shown for illustration purposes only.

Next, we reduce each ray ~PD to a line segment, by estimating the interval
[zmin, zmax] in which the depth z of each detection D lies. We estimate this depth
once for each person detection and then apply it to each ray, corresponding to all
valid joint detections associated with the respective person detection.

From the size of a person detection we can try to infer its depth, i.e. its distance
from the optical center of the camera it was detected by. Using the height of the
bounding box, that surrounds all joint detections associated with a person detec-
tion, would provide the largest possible baseline and thereby the most accurate
result. By specifying parameters for the minimum person size hmin and the maxi-
mum person size hmax, that are to be expected to be present in the scene during
the calibration procedure, we could easily compute zmin and zmax for a person
detection p with the bounding box height hp by(

zmin

zmax

)
=

fx + fy
2 · ‖hp‖2

(
hmin

hmax

)
. (4.6)

However, using this method would induce three assumptions:

• Each person detection must have at least one valid joint detection on its
head (nose/eyes/ears) and one valid detection of an ankle.

• All persons in the scene must always stand upright during the entire cali-
bration procedure.

27

4. Method

• All persons in the scene must always stand roughly planar to the image
planes of the cameras they are observed by.

When any of the assumptions is violated, the height of the bounding box for a
person shrinks in size, leading to a substantial underestimation of zmin and zmax.
Enforcing the existence of the required joint detections as an additional filter
constraint is possible, but both head and ankle detections are often occluded in
practice, which would lead to many rejections of otherwise useful detections.

Instead, we propose a similar, but more robust approach. In the filtering stage,
we enforce the existence of valid shoulder and hip joints for each person detection
(See Sec. 4.2.2). Usually, these joints are not occluded and deliver stable detec-
tions. Also, they are the joints with the least amount of movement, which reduces
the problem of synchronicity between multiple views. By averaging the distances
between the detections of the left shoulder and hip, as well as the right shoulder
and hip, we obtain the length of the torso in pixels. As the length of the torso,
as well as the distances between all four considered joints, can be assumed to as
constant for a person, due to the human anatomy, we can drop the assumption of
persons always standing upright and support any orientation instead. As the axis
of the torso is always roughly perpendicular to the axes between both shoulders
and both hips, a camera directed at a person can always see one of the three axes
with a distance between the endpoints of an axis > 0, independent from the ori-
entation of the person. In fact, for any orientation of a person toward a camera,
at least one of the axes can be seen by the camera with a minimum angle of 45°.

However, to save computational resources, we do not try to estimate the orien-
tation of a person toward the cameras it is observed by, implying that each joint
detection of a person detection will use the same depth estimation. Instead, we
expect the best case orientation of 90° for the hmin case and the worst case orien-
tation of 45° for the hmax case, yielding the largest possible interval [zmin, zmax],
defined by

zmin = min

fx + fy
2

· hmin ·

φshoulders

φtorso

φhips

/‖hshoulders‖2
‖htorso‖2
‖hhips‖2

 (4.7)

and

zmax = min

fx+fy
2
· hmax ·

φshoulders

φtorso

φhips

/ sin(45°) ·

‖hshoulders‖2
‖htorso‖2
‖hhips‖2

, (4.8)

where min(·) refers to the smallest vector element, h is the measured distance

28

4.2. Pre-Processing Stage

between the respective joints of a person detection in pixels, and the ratios φ relate
the height of a person to the considered distances between joints. We obtain the
values for φ by applying the method of Bultmann et al. [24] and measuring the
considered joint distances of the generated 3D person models for persons with
known height. After carrying out this experiment for a small number of persons,
we obtain φshoulders

φtorso

φhips

 =

0.17526

0.29242

0.15261

 . (4.9)

Note that this approach mitigates the problem of the total height of a person not
being reflected properly in the keypoint detection data, as the distance between
the ankle and eye/ear joints is not capturing the full height of a person.

Finally, we apply the depth estimation, by reducing each ray ~PD to a line segment

~̂
PD(z) = ~PD(z) , (4.10)

for z ∈ [zmin, zmax].
Figure 4.4 illustrates this reduction.

Line Segment Distances

As a metric for calculating the distance between two line segments, we use the
Closest point-distance described by Wirtz et al. [41], of the form

Dclosestpoint(l1, l2) = min(D⊥(l1, l2),D⊥(l2, l1)). (4.11)

Hypothesis Matching

In order to find the correspondences between person detections from multiple
views, we deploy an iterative greedy search method, similar to the approach of
Tanke et al. [25]. Instead of determining the assignment costs for assigning person
detections to person hypotheses, based on epipolar distances, we use the introduced
line segment distances described above. To further improve the robustness of the
approach, w.r.t. the extrinsic calibration not being precisely known, we iterate
over all person detections in a specific order. In particular, we utilize the depth
estimation (zmin + zmax)/2 of each person detection, to sort all person detections
by depth in ascending order. This exploits, that near person detections have a
relatively short interval [zmin, zmax] and thereby, a more constrained localization
in 3D space.

First, we create a new person hypothesis for the nearest person detection. Then,

29

4. Method

we iterate over all other person detection, as described above. For each iteration,
we calculate the cost for assigning the person detection to all currently existing
person hypotheses. If the lowest assignment cost is smaller than a threshold θ, we
assign the person detection to the considered hypothesis. Otherwise, we create a
new person hypothesis and assign the person detection to it.

Starting the iteration with near person detections generally increases the proba-
bility of more joint detections being valid within a person detection. This allows us
to increase the certainty of the assignments, by only making an assignment when a
minimum number of shared valid detections > 1 exist on both sides of the compar-
ison. Creating new hypotheses instead of making correct assignments is possible,
but this is only a problem when it causes unnecessary pruning. Otherwise, the
included detections can still be utilized in the optimization stage. Being conserva-
tive with making assignments, and thereby slowing down the convergence of the
calibration procedure, is necessary, as wrong associations can cause tremendous
distortions in the calibration procedure, especially when they get used repeatedly.

4.2.4. Pruning
In the filtering step, we reject all frames, where there are only detections in one
sensor, because we cannot possibly apply or exploit any multi-view geometry for
these detections (See Sec. 4.2.2). However, this constraint is not sufficient, to
remove all detections of this kind. After data association, it is possible, that a
person hypothesis contains joint detections that were only detected by one sensor.
For the same reason as above, we do not want to forward such unique detections
into the optimization stage, because each joint of a hypothesis must be detected
by at least two sensors, in order to contribute to the solution of the optimization
problems, created during the optimization stage. Removing unique detections does
not directly affect the resulting extrinsic calibration, but it reduces the overall
computational complexity of the method, which passively does improve on the
results, in case the available computational resources are used at full capacity.

4.2.5. Analysis and Queueing
To conclude the pre-processing stage, we analyze and shape the gathered data in
each frame-set, in order to prepare its utilization in the optimization stage.

First, we compute a number properties for each obtained person hypothesis },
which will allow for a comparison between multiple person hypotheses from dif-
ferent frame-sets, during the hypothesis selection step (See Sec. 4.3.1) in the opti-
mization stage:

30

4.3. Optimization Stage

• We count the number of valid detections ~n} within each person hypothesis
} for each camera i.

• We count the total number of valid detections n ′
} within each person hypoth-

esis }.

• We estimate the center of mass ~ζ} for each person hypothesis }, by averaging
over the center points of all assigned line segments ~̂

PD within each hypothesis,
by

~ζ} =
1

n ′
}
·
∑
D

~̂
PD

(
zDmin + zDmax

2

)
, (4.12)

for all valid detections D ∈ }.

• We calculate the mean zµ} and the standard deviation zσ} for the distances
between the center of mass ~ζ} and the camera position vectors ~TD, associated
with all valid detections D ∈ }.

• We calculate the mean vµ} and the standard deviation vσ} of the number of
valid detections per joint j for all valid detections Dj ∈ }.

• We calculate the mean cµ} and the standard deviation cσ} of the detection
confidences cD for all valid detections D ∈ }.

• We calculate the mean tµ} and the standard deviation tσ} of the timestamps
tD for all valid detection D ∈ }.

Finally, we append each person hypothesis }, containing its valid detections D}

and the properties P} listed above, to a queue in descending order, w.r.t. their
mean timestamps tµ} .

4.3. Optimization Stage
The optimization stage processes the person hypotheses obtained in the pre-
processing stage, in order to extract knowledge about the extrinsic calibration
of the utilized multi-camera system. We do this by repeatedly constructing and
solving optimization problems, during the entire calibration procedure. Each opti-
mization problem is constrained by exploiting methods from multi-view projective
geometry, as well as prior or heuristic knowledge.

In particular, we construct a factor graph [30] in each optimization cycle (See
Sec. 4.3.2), to encode projective constraints, based on a selection of person hy-
potheses, as well as statistical constraints on the camera poses w.r.t. the obtained

31

4. Method

camera poses in previous optimization cycles, or the initial estimate of the ex-
trinsic calibration in case of the first optimization cycle. The optimal selection
of person hypotheses used in an optimization cycle is determined by a selection
algorithm based on assigning a fitness value for all available person hypotheses
(See Sec. 4.3.1). We solve each factor graph for the most likely camera poses,
by applying a Levenberg-Marquardt optimization scheme (See Sec. 4.3.4). As an
intermediate result, we will estimate 3D poses for all selected person hypotheses
(See Sec. 4.3.3).

In this section, we describe one optimization cycle, starting with the selection
of appropriate person hypotheses, and ending with the optimization of the con-
structed factor graph. Adapting parameters and fusing results over multiple op-
timization cycles, which will improve the convergence of the extrinsic calibration,
will be performed in the refinement stage. However, the general approach of the
refinement stage will be summarized here, as it is helpful for understanding this
section.

Notes on the Refinement Stage

All constraints encoded in the factor graph are equipped with (Gaussian) noise
models. They specify the tolerance each constraint is susceptible to, but also
allow for controlling the dynamics between individual constraints, or the entire
system. In general, applying optimizations with looser noise models will cause
larger deviations of all camera poses, w.r.t. their previous pose. In contrast,
strict noise models will only allow for small deviations, but increase the risk of
failing an optimization cycle, not yielding any new results. At the beginning of
the optimization procedure, noise models must be wide enough, to handle a rough
initialization of the camera poses. Over time, they must become stricter, in order
to enable convergence and to obtain a precise final extrinsic calibration. Mixtures
of loose and strict noise models can be used simultaneously, to reflect the individual
confidence in single camera poses, detections, or components thereof.

All noise models must be initialized with parameters, that reflect the certainty in
the initial estimate of the extrinsic calibration. During the calibration procedure,
all noise models are dynamically adapted, by estimating the error of the current
calibration, w.r.t. to the trajectory of the camera poses. Specifying wider noise
models to start with is possible, but will lead to slower convergence and can lead
to locally optimal calibrations, from which it is hard to recover.

The error estimation process, the adaptive control of all noise models, the tem-
poral smoothing of results over multiple optimization cycles, as well as other post-
processing schemes, are located in the refinement stage (See Sec. 4.4), which is

32

4.3. Optimization Stage

executed between all consecutive optimization cycles.

4.3.1. Person Hypothesis Selection

The pre-processing stage extracts person hypotheses from incoming person key-
point detection streams, where each person hypothesis consists of up to 17 joints
(See Tab. 4.1), while each joint is detected by a minimum of two and a maxi-
mum of N sensors. They are queued up to serve for constraining the optimization
problem, which will be constructed in form of a factor graph. Due to the filtering
constraints each detection passed in the pre-processing stage, all person hypothe-
ses contained in the queue are considered eligible for this task. The number of
selected hypotheses should be specified w.r.t. the scene layout and the available
computational resources on the backend. In general, the larger the scene is, the
less overlap there is between the FoVs of all cameras. Therefore, the number of
selected hypotheses must be large enough, to constrain the majority of cameras in
each optimization cycle.

We can improve on the resulting extrinsic calibration of this method, by selecting
specific person hypotheses, according to some fitness function, instead of choosing
them at random. The goal of hypothesis selection is to select the set of hypotheses
contained in the queue, that is the most promising, to yield the largest possible
improvement on the current estimate of the extrinsic calibration.

In the final analysis step of the pre-processing stage, we obtained a total of
ten properties for each hypothesis. We base the decision on which hypotheses
to choose on comparing these properties for available hypotheses. Furthermore,
we introduce two additional properties for each hypothesis, concerning its usage
and performance during the calibration procedure, which is maintained in the
refinement stage.

Retrieving Fitness Values

Let Qt be the queue of hypotheses from which we draw our selection at opti-
mization cycle t. We aim to obtain a fitness value f} for each person hypothesis
} ∈ Qt, which depends solely on the properties P} of }. Most of these properties
are obtained in the pre-processing stage (See Sec. 4.2.5). In addition, we introduce
two new properties n+

} and n−
} for each hypothesis }, which denote how often }

was selected in previous optimization cycles (n+
}) and how often the respective

optimizations failed (n−
}). Explicitly, we use the set of properties

P} = {n ′
}, z

µ
} , z

σ
} , v

µ
} , v

σ
} , c

µ
} , c

σ
} , t

µ
} , t

σ
} , n

+
} , n

−
} } . (4.13)

33

4. Method

Figure 4.5: Illustration of the selection of hypotheses for a person who has traversed most
parts of the room. The skeleton models are obtained after optimization using
the selected hypotheses. Free areas are occupied or occluded by objects.

They are easy to interpret, in that for all of them, either larger or smaller values
are considered preferable for being selected. In particular, we want to emphasize
the selection of hypotheses that have, more valid detections (n ′), shorter distances
toward the cameras they are observed by (z), more valid detection per joint (v),
higher confidence values (c), larger (newer) timestamps (tµ}), smaller timing offsets
(tσ}), fewer previous uses (n}) and less failed optimizations during previous uses
(n−

}). Note that for z, v and c, we consider both, their mean µ and standard
deviation σ, to obtain more meaningful insights on their distribution. Here, the
selection probability must always increase for smaller σ values.

In order to allow for a comparison between the properties of all } ∈ Qt, we
normalize each property p ∈ P} to the interval [−1,+1], by

fp(x) =
x− pmin

0.5 · (pmax − pmin)
− 1 , (4.14)

where fp is the fitness value for a concrete value x that p takes on, while pmax

and pmin are the maximum and minimum values for all instances of p over all
hypotheses } ∈ Qt. However, this only holds for properties, where an increase in
value is considered good. Wherever lower values are considered good, as pointed
out above, we must invert fp.

We introduce yet another property p′ for each } ∈ Qt, based on the number of
detections per camera ~n} contained in hypothesis }. For this, we first introduce a
set of N global counters ~o, which count the number of detections in all previous
optimization cycles for each camera in SN . We normalize the counters to the

34

4.3. Optimization Stage

interval [0 . . 1], such that the camera with the least detections maps to 1, and
the camera with the most detections maps to 0. Then, we multiply both vectors,
accumulate their elements, and normalize by the number of detections n ′

} in }, by

fp′ =
||~o · ~n}||1

n ′
}

. (4.15)

This mechanisms rectifies spatial clusters of person hypotheses by enforcing that
the selection of under-determined cameras are favored. Over time, this property
is supposed to increase the probability for evenly representing all cameras within
the optimization stage, once at least some detections are available for all cameras.

Finally, one global set of weighting factors sp ≥ 0 allows us to determine the
contribution of each property p on the overall fitness value of a hypothesis, defined
by

f} =
∑
p

sp · fp . (4.16)

Ensuring Minimum Spacing

So far, we have not considered one property obtained in the pre-processing stage,
that plays a unique role in the selection process. We use the center of mass ~ζ}
of each person hypothesis } as a pre-condition in the selection algorithm, to find
a selection that ensures a minimum spacing ζ between the center of mass of all
selected hypotheses. In each optimization cycle t, we find the mean distance ζµ
between the center of mass ~ζ} of all hypotheses } in the queue Qt, by

ζµ =
1

|Qt|

b|Qt|/2c∑
i=0

d|Qt|/2e∑
j=|Qt|−1

||~ζi − ~ζj||2 . (4.17)

In order to control the required distance of this spacing constraint, we use sζ to
scale ζµ, such that

ζ = sζ · ζµ . (4.18)

This ensures, that all selected person hypotheses are well spaced apart from each
other, independent from the actual distribution of ~ζ} existent in Qt, while at the
same time, permitting the selection based on all other properties p} to take effect.
As the mechanism for obtaining the fitness value for each hypothesis follows the
same idea of being independent of the input distributions, the entire hypothesis
selection algorithm is agnostic to the quality and distribution of the hypotheses
data. Note that this means, that the selection algorithm does no further filtering

35

4. Method

of the data and instead always emphasizes each property equally, regardless of the
data it is provided with. Ensuring that all selection hypotheses are spatially spread
out to a feasible amount, is the key objective for the selection of hypotheses. By
this, we emphasize the construction of optimization problems in each optimization
cycle, that are constrained by detections of the majority of cameras. The advantage
of training bigger subsets of the multi-camera system jointly is to remove valid,
but only locally optimal calibration results from the search space, that consider
only a smaller subset of the complete multi-camera system. The effect is, that
we increase the probability of obtaining optimization results, that are consistent
w.r.t. the complete multi-camera system and thereby, are suitable candidates
for resembling the global optimum. Over time, this will lead to less movement
in the camera poses between optimization cycles, leading to faster and deeper
convergence toward the correct extrinsic calibration.

Selection Algorithm

Let Ht be the set of M selected person hypotheses from the queue Qt, for opti-
mization cycle t. First, we calculate the fitness values f} for all new } in Qt, based
on the specified set of weighting factors sp, for each property p that contributes
to f}. Then, we define F to be Qt sorted in ascending order, such that F0 is the
person hypothesis with the largest fitness value in Qt. Finally, we calculate the
minimum distance requirement ζ between the centers of mass ~ζ} for all } in F ,
based on the weighting factor sζ . We start the selection process by adding F0 to
Ht. To select all other M − 1 hypotheses, we iterate over F in ascending order,
starting with F1, until the size of Ht reaches M . For each iteration i, we check if
the Euclidean distances between the center of mass ~ζFi

and ~ζ}, for all hypotheses
} in Ht, are below ζ. If this is not the case, we increase i until this condition is
met. If i reaches the end of F , we ignore the distance requirement and fill Ht with
the first hypotheses in F , that are not already contained in Ht. Whenever the
distance condition is met, we add Fi to Ht. We refer to Alg. 1 for a pseudocode
implementation of this algorithm.

The selection algorithm is fully parameterized by sζ and sp for all properties p.
In practice, we set most parameters to 1, except those that condition the same
fundamental attribute. For example, cµ} and cσ} both concern the confidence values
within a hypothesis. In order to not be overly selective w.r.t. confidence values,
we could use scµ} = 0.5 and scσ} = 0.5. Also, if the initial estimation of the extrinsic
calibration is known to be good, stµ} can be set near zero, in order to increase
the number of selections to draw from, while using a feasible length for Q w.r.t.
memory usage.

36

4.3. Optimization Stage

Algorithm 1: Person Hypothesis Selection. Selecting M person hypothe-
ses } with the highest fitness values f} from the queue Qt at optimization
cycle t, while ensuring a minimum spacing ζ between all selected hypothe-
ses Ht. F is defined as Qt, sorted in ascending order by f}, where f} is
parameterized by ~sp. ζ is defined as the average distance between the cen-
ter of mass ~ζ} for all person hypotheses } ∈ Qt, scaled by sζ . The second
while-loop handles the case in which the ζ-constraint cannot be ensured.
Data: Queue of hypotheses Qt at time t; scaling parameters ~sp and sζ
Result: Selection of M hypotheses Ht

1 F ← Qt, f}, sp;
2 ζ ← Qt, sζ ;
3 Ht ←

{
{F0}

}
;

4 i← 1;
5 while |Ht| < M ∧ i < |F| do
6 if ||~ζFi

− ~ζHj
||2 < ζ ∀ j ∈ Ht then

7 Ht ← Ht

⋃
{Fi};

8 end
9 i← i+ 1;

10 end
11 i← 1;
12 while |Ht| < M do
13 if Fi /∈ Ht then
14 Ht ← Ht

⋃
{Fi};

15 end
16 i← i+ 1;
17 end

37

4. Method

4.3.2. Factor Graph Construction
A person hypothesis resembles a set of corresponding person keypoint detections
from multiple views. From these 2D observations, we try to find the corresponding
3D locations in the global coordinate system. We use these 3D locations as an
intermediate result, to find the optimal camera poses that are consistent with all
considered 3D locations.

For each optimization cycle t, we construct a factor graph Gt, by using a selec-
tion of person hypotheses Ht. A factor graph is a bipartite graph, for which we
refer to one partition as variable nodes and the other partition as factor nodes.
Variable nodes represent the unknown random variables of the optimization prob-
lem, which are the 3D skeleton models for all person hypotheses in Ht and all
considered camera poses of the multi-camera system SN . Before optimization can
be performed, all variable nodes must be initialized with a concrete numeric value
that we need to estimate beforehand. Factor nodes constrain the variable nodes,
by encoding any available knowledge about the underlying distribution of the con-
sidered random variables. In particular, this refers to the obtained observations
contained in Ht, as well as the resulting camera poses from previous optimization
cycles. Each factor node uses a noise model that reflects the confidence in the
constraint it represents, controlling how susceptible the connected variable nodes
are to a change in value. Tuning and balancing all noise models, allows us to
determine whether the estimated 3D skeleton models will adapt to explain the
camera poses or vice versa. As we carefully filter and select the observations used
in the factor graphs, we generally trust them and want the camera poses to adapt
and explain them. Once Gt is constructed, we optimize it to find the most likely
solution for all variable nodes. In particular, we are interested in the estimated
camera poses of SN . If the optimization succeeds, we will obtain a new estimate
for all camera poses that were constrained in Gt. We smooth these estimates over
multiple optimization cycles (See Sec. 4.4.1) to obtain a new current estimate of
the extrinsic calibration. We use this current estimate to initialize the next opti-
mization cycle. On the other hand, if the optimization problem is ill-posed, the
optimization will fail and not yield any new solution. The mechanism for obtaining
Ht is designed to avoid this from happening, but this does not create any further
problems, such that we can simply continue with the next optimization cycle t.
Figure 4.6 illustrates Gt.

38

4.3. Optimization Stage

L0 L1 L2 L3

C0

C1 CN−1

Projection factors
Prior factors

...

...

Figure 4.6: Factor graph with camera variable nodes for the camera poses C and land-
mark variable nodes for the 3D joint positions L. Camera and landmark
nodes can be connected via binary projection factors to constrain the re-
projection error of a person keypoint detection. Each landmark node must
be connected to at least two projection factors for allowing triangulation.
All camera nodes are connected to a unary prior factor that encodes the
uncertainty of the camera pose.

Variable Nodes - Cameras & Landmarks

In a factor graph, variable nodes are used to depict the unknown random variables
of the optimization problem. We deploy two types of variable nodes, which we
refer to as camera nodes and landmark nodes.

Camera nodes represent the camera poses

Cti = {~T t
i ,

~Rt
i} , (4.19)

where ~T t
i is the position vector and ~Rt

i is the orientation vector of camera i in the
multi-camera system SN for i ∈ [1 . . N − 1] at optimization cycle t, embedded
in the global coordinate system. Note that we only deploy one variable node for
each camera Cti in a factor graph Gt, while the selected person hypotheses } ∈ Ht

consist of detections from different points in time tµ} . This approach implies the
assumption, that all true camera poses are static. Here, the notion of true camera
poses refers to the ideal extrinsic calibration, which we try to approximate with
this method. However, by increasing the emphasis for selecting person hypotheses
with newer timestamps tµ} in the hypothesis selection algorithm, we can loosen this
assumption and allow for small or slow movements of all true camera poses during
the calibration procedure.

Landmark nodes represent a 3D-joint location of a person hypothesis in the

39

4. Method

global coordinate system. In contrast to camera nodes, landmark nodes only
represent a position vector without an orientation component. During each op-
timization cycle t, we deploy one landmark node for each contained joint in the
selected person hypotheses Ht. For camera nodes, we possess a direct connection
between the sets of nodes for the factor graphs Gt of two consecutive optimization
cycles t, whereas, for landmark nodes, there is no such relation. Therefore, we
must estimate the 3D locations of all landmark nodes, based on the corresponding
2D detections contained in the selected person hypotheses Ht.

Factor Nodes - Priors & Projections

Factor nodes connect to variable nodes and constrain them. We distinguish be-
tween unary factor nodes, that connect to a single variable node, and binary factor
nodes, that connect to two variable nodes.

We equip every camera node Cti with a dedicated prior factor, which is a unary
factor node. Prior factors encode prior knowledge about the random variable,
which is represented by the variable node they are connected to. In this case,
they specify a value for Cti , as well as a 6D Gaussian noise model, that reflects
the uncertainty of the specified value. In particular, the noise model specifies the
uncertainty for all three components of the position ~T t

i and all three components
of the orientation ~Rt

i of Cti , providing control over each individual component of
the pose. We refer to these noise models as ~NCt

i
. We initialize them by specifying

~NC0
i

for i > 0 to reflect the uncertainty of the initial estimate for the extrinsic
calibration. For all following optimization cycles t > 0, ~NCt

i
will be adapted by

the refinement stage. The above definition excluded the case i = 0. As described
earlier, Ct0 serves as the static origin for the global coordinate system. Therefore,
we lock Ct0 in place, by specifying all components of ~NC0

0
to be zero. The refinement

stage will then retain ~NCt
0

for all t > 0.
We use projection factors to encode constraints based on person keypoint detec-

tions. They are binary factor nodes and connect camera nodes to landmark nodes.
In particular, for every detection D, contained in all selected person hypotheses
Ht in optimization cycles t, we place a projection factor between the camera node
that corresponds to the camera that D was detected by, and the landmark node
that corresponds to the joint that D represents. Projection factors calculate the
reprojection error for a 2D detection w.r.t. the corresponding camera pose and
landmark position. In order to do this, we must provide the camera calibration
matrix Ki of the respective camera. As we do not include these calibration ma-
trices as random variables in the optimization problem, we assume them to be
known and constant. Note that every landmark node is connected to at least two

40

4.3. Optimization Stage

projection factors, as the pre-processing stage is pruning all unique detections.
This property is necessary to enable triangulation.

4.3.3. Variable Initialization

Before the constructed factor graph Gt can be optimized, we must initialize all
variable nodes with concrete values.

The initialization of a camera node must coincide with the value of its associated
prior factor. Therefore, we initialize the camera nodes, by directly adopting the
values used for the prior factor connected to the camera node. Both represent
the current estimate for the extrinsic calibration of the multi-camera system. For
t = 0, we use the initial estimate for the extrinsic calibration, which is assumed
to be known. For t > 0, the refinement stage will interpret the results of the
optimization stage at optimization cycle t − 1, in order to estimate the current
extrinsic calibration and use it to specify Cti .

Triangulation using the Direct Linear Transformation

In order to initialize a landmark node, we must estimate the joint position of the
person hypothesis it represents. So far, we have enforced that all joints contained
in a person hypothesis are detected from at least two camera perspectives. This
allows us two triangulate all joints contained in a person hypothesis. We use
the optimal triangulation algorithm, based on the direct linear transformation, as
proposed by Hartley and Zissermann [26] to triangulate all joints contained in the
selected person hypotheses Ht in optimization cycle t.

If such a joint is detected from more than two camera perspectives, we use all
available corresponding detections to increase the precision of the triangulation
result. We control the emphasis of each detection on the triangulation result by
assigning weights, that reflect the confidence in each detection w.r.t. the other
detections of the same joint. Obtaining these weights is closely related to the
approach for selecting person hypotheses, as we use a subset of the same properties,
to retrieve a fitness value for all considered detections. In particular, we put a
higher emphasis on detections with larger confidence values, on detections with a
timestamp that is closer to the mean of all considered detections, and on detections
that are closer to the camera they are observed by. We normalize each property
to the interval [0, 1] using a similar approach as in Sec. 4.3.1. Lastly, we sum over
all terms and divide through the number of properties, to obtain the final weights.

Note that we perform triangulation in every optimization cycle, even when we
use a person hypothesis, that was already utilized in a previous optimization cycle.

41

4. Method

Figure 4.7: Illustration of a multiple 3D skeleton models where the joint locations ob-
tained in the triangulation procedure are depicted by the black skeletons
and the corresponding landmark locations after performing optimization are
depicted by the multicolored skeletons.

By this, we ensure to update the triangulation results based on the current estimate
of the extrinsic calibration, as opposed to reusing previous triangulation results,
that are based on an old estimate for the extrinsic calibration. We also need to
recompute the confidence weights for each detection, as the property of preferring
nearer detections, is dependent on the extrinsic calibration. However, when a
person hypothesis is used for the first time, we can store partials of the confidence
weights, in order to reuse them when the person hypothesis gets selected again.

4.3.4. Optimization

Once Gt is constructed and initialized, we can perform optimization. We deploy
the default dogleg optimizer provided by the GTSAM framework [30].

The optimization will fail if the variable nodes are underconstrained by the fac-
tor nodes, meaning that the system is underdetermined from a mathematical point
of view, in that there exists no unique solution. Generally, we try to avoid this, by
choosing enough person hypotheses, w.r.t. to the number of camera nodes in Gt.
More so, we ensure a minimum distance between all selected person hypotheses,
to increase the number of camera nodes being constrained by a projection factor.
Also, we only use detections of high quality, w.r.t. several metrics (See Sec. 4.3.1),
increasing the probability for obtaining a consistent set of constraints. However,
in the beginning of the calibration procedure, when the current estimate of the ex-

42

4.4. Refinement Stage

trinsic calibration is still relatively inaccurate, the available set person hypotheses
to choose from is homogeneous, or when the noise models of the prior factors that
constrain the camera nodes are relatively loose, to allow for larger deviations of the
camera poses, failures during optimization are likely to happen. In this case, we
keep the current estimate for the extrinsic calibration and reuse it for constructing
and initializing the next factor graph Gt+1. We repeat this procedure, until an
optimization is successful.

A successful optimization yields a new candidate for the extrinsic calibration
of SN . We forward this candidate to the refinement stage, where the current
estimate for the extrinsic calibration will be updated, based on this candidate. The
updated estimate for the extrinsic calibration will then be used for constructing and
initializing the factor graph in the next optimization cycle. This way, the obtained
knowledge of one optimization cycle, propagates into the next optimization cycles,
where it gets fused with the knowledge contained in new or other person keypoint
detections. This allows the method to learn over time and minimize the error of
the extrinsic calibration.

4.4. Refinement Stage
The refinement stage concludes each optimization cycle. It is executed directly
after each (successful or failed) optimization and interprets the result of it, in
order to determine its effect on the current estimate of the extrinsic calibration
(See Sec. 4.4.1), and to determine the noise models of the prior factors that will
be used in the next optimization cycle (See Sec. 4.4.2). Both tasks intent to
increase the precision of the current estimate of the extrinsic calibration and the
overall robustness of the method. As their effects interact with one another, it is
important to parameterize them jointly.

As described in Sec. 4.3.1, we update the properties of all person hypotheses that
were selected in the current optimization cycle. In particular, we increment their
counter for the optimization-usages, and if the optmization failed, we additionally
increment their counter for the optimization-failures. Lastly, if the optimization
was successful, we count the number of projections for each camera in the current
graph and increment the counters for all cameras accordingly.

4.4.1. Temporal Smoothing

After each successful optimization t, we obtain new candidates Ĉti for the extrinsic
calibration of a subset of cameras i ⊆ SN in the multi-camera system SN that

43

4. Method

were constrained by the factor graph Gt. Instead of directly updating the cur-
rent estimate of the extrinsic calibration Cti with these candidates Ĉti , we smooth
the candidates with past estimates Cji for some j < t to obtain Cti . This further
increases the propagation of knowledge about the true extrinsic calibration be-
tween optimization cycles, while also accounting for locally consistent solutions,
w.r.t to the limited selection of person hypotheses encoded in Gt. This approach
significantly boosts the precision that can be achieved by the method.

We deploy an exponential moving average filter, for which the filter coefficients
are defined by

εn =
λ(1− λ)n

M−1∑
m=0

λ(1− λ)m

, (4.20)

for n ∈ [0 . . M − 1], where M is the number of considered past optimization
cycles and λ is the smoothing factor of the exponential moving average filter. The
denominator normalizes the sum of all filter coefficients to one, which is important
to avoid unwanted scaling effects. Note that λ and M parameterize the entire
temporal smoothing algorithm.

The filter coefficients can be applied directly to compute the position vector ~T t
i

of the camera pose Cti , by

~T t
i = ε0 · ~̂T t

i +
M−1∑
n=1

εn · ~T t−n
i , (4.21)

where ~̂
T t
i is the position component of the candidate Ĉti .

Obviously, this assumes t ≥ M , so that we will not use any temporal smooth-
ing at the beginning of the calibration procedure until enough optimization cycles
t have been performed. Furthermore, the above definitions only hold if all op-
timization cycles t finish with a successful optimization and all cameras Cti are
constrained in all factor graphs Gt. In practice, this assumption is often violated,
which requires us to first collect the M − 1 past camera poses Cti , where i was
constrained in Gt and the optimization of Gt succeeded.

Averaging over multiple orientations is more cumbersome and requires a differ-
ent approach. We use the method proposed by Markley et al. [42] to determine
the weighted average from a set of quaternions. This requires us to provide the
orientation vectors ~Rt

i of the camera poses Cti and the orientation vectors ~̂
Rt

i of the
candidates Ĉti as quaternions. The weights for this method are then specified by
εt.

Note that we use the same filter coefficients, for the position and orientation

44

4.4. Refinement Stage

components of the camera poses Cti . This is important, because both components
of a camera pose relate to one another, w.r.t. being a solution for a factor graph
Gt. Using different filters for both components would decouple this correlation
and create new artificial camera poses, inconsistent with the observations. On
the contrary, using the same filter coefficients for both components of Cti averages
between existing optimization results, fulfilling the task of smoothing previously
obtained knowledge.

We refer to Alg. 2 for a pseudocode implementation of this algorithm.

Algorithm 2: Temporal Smoothing
Data: Candidate poses Ĉti ; N filter coefficients ε
Result: Current estimate for all camera poses Cti at time t

1 Ct0 ← Ĉt−1
0 ;

2 if t < N then
3 Cti ← Ĉti ∀ i > 0;
4 else
5 foreach i ∈ Cti \ 0 do
6 if |{Oj

+ is True and i ∈ Oj
C | ∀ j ∈ [0 . . t− 1] }| < N − 1 then

7 Cti ← Ĉti ;
8 else
9 Lpos ← {}; Lrot ← {}; ← −1;

10 while |Lpos| < N − 1 and |Lrot| < N − 1 do
11 if Oj

+ is True and i ∈ Oj
C then

12 Lpos ← Lpos

⋃
{Cji }pos;

13 Lrot ← Lrot

⋃
{Cji }rot;

14 j ← j − 1;
15 end
16 ~T t

i ← ε0 · {Ĉji }pos +
∑N−1

n=1 εn · Lpos[N − 1− n];
17 ~Rt

i ← quaternion_avg(Lrot

⋃
{Ĉji }rot , ε);

18 Cti ← {~T t
i ,

~Rt
i};

19 end
20 end
21 end

45

4. Method

4.4.2. Error Estimation
The noise models of all prior factors in a factor graph Gt must be set according
to a number of conditions. On the one hand, they must be set loose enough
to compensate for an inaccurate initial estimate of the extrinsic calibration. If
they would be set too strict in this case, optimizations would be likely to fail
and even when they succeed, convergence would be very slow. On the other
hand, noise models that are set too loosely lead to high fluctuations in the camera
poses Cti between consecutive optimization cycles t. This would prohibit a precise
extrinsic calibration. Thus, we want the noise models to adapt over time. In
the beginning, they should be set loose enough to accommodate for the quality
of the initial estimate of the extrinsic calibration. While the current estimate of
the extrinsic calibration is improving, the noise models should become stricter, to
reduce the likelihood of high fluctuations, and to increase the obtained precision
to a maximum.

As a solution to this problem, we propose a simple algorithm that analyses the
trajectories of the camera poses Cti over multiple optimization cycles t, to determine
whether the standard deviation, measured against the current camera pose, is
increasing or decreasing within this scope. Whenever a camera Cti is converging
toward its true pose, we expect a steady reduction of this standard deviation.
On the other hand, whenever this standard deviation is increasing, this indicates
an increase in error w.r.t. to the true camera pose. We exploit this behavior, by
adapting the noise models of each camera accordingly. As it is difficult to precisely
estimate the calibration error and to infer suitable noise values from this estimate,
we either reduce or increase the noise models by fixed percentages. Allowing the
noise models to increase in value can help to escape local minima for the current
estimate of the extrinsic calibration, or to compensate initial noise values that were
set too small w.r.t. the quality of the initial estimate for the extrinsic calibration.
However, this increase should be used conservatively and set to a smaller value
than the corresponding decrease. In general, the orientation components of each
camera pose converge faster and with greater accuracy. Therefore, we decouple the
noise models of the position and orientation components of each camera pose and
allow the algorithm to adapt them separately. Furthermore, we limit the minimum
and maximum values for both components, in order to avoid unreasonably loose
noise models, or noise models that are set so strictly that they practically lock the
camera in place, without any chance for it to recover from its current pose. This
yields a total of eight parameters to configure the error estimation. We refer to
Alg. 3 for a pseudocode implementation of this algorithm.

46

4.4. Refinement Stage

Algorithm 3: Error Estimation
Data: Optimization success Ot

+; constrained cameras Ot
C; parameters p

Result: Specification of noise models N t
i for cameras i at time t

1 N t
0 ← N init

0 ;
2 if t < N then
3 foreach Cti>0 do
4 N t

i ← N init
i ;

5 end
6 else
7 foreach Cti>0 do
8 if |{Oj

+ is True and i ∈ Oj
C | ∀ j ∈ [0 . . t− 1] }| ≥ N then

9 N t
i ← N init

i ;
10 else
11 j ← −1; Lnew ← {}; Lold ← {};
12 while |Lnew| < bN/2c and |Lold| < dN/2e do
13 if |Lnew| < bN/2c and Oj

+ is True and i ∈ Oj
C then

14 Lnew ← Lnew

⋃
{Cji };

15 else if Oj
+ is True and i ∈ Oj

C then
16 Lold ← Lold

⋃
{Cji };

17 j ← j − 1;
18 end
19 ~µ← mean(Lnew);
20 ~σnew ← std(Lnew);
21 ~σold ← std(Lold − µ);
22 foreach j ∈ [0 . . 6] do
23 if j < 3 then
24 if σnew[j] ≤ σold[j] then
25 N t

i [j]← max(pposmin,N t−1
i [j] · pposdec);

26 else
27 N t

i [j]← min(pposmax,N t−1
i [j] · pposinc);

28 end
29 else
30 if σnew[j] ≤ σold[j] then
31 N t

i [j]← max(protmin,N t−1
i [j] · protdec);

32 else
33 N t

i [j]← min(protmax,N t−1
i [j] · protinc);

34 end
35 end
36 end
37 end
38 end
39 end

47

5. Implementation

In this chapter, we present the implementation for our proposed method. After de-
scribing the tools we utilized during development, we describe the central features
of our implementation, give advice on its practical application and share insights
into the parameter setup procedure.

5.1. Utilized Frameworks & Hardware
The proposed method is implemented in roughly 5000 lines of python code. This
does not include the code running on the sensor boards performing 2D pose esti-
mation by Bultmann et al. [24], which is publicly available at https://github.
com/AIS-Bonn/SmartEdgeSensor3DHumanPose. We use the Robot Operating Sys-
tem (ROS) [39] as middleware for communication between the sensor boards and
the backend, as well as for publishing various intermediate results, and the cur-
rent estimate for the extrinsic calibration. We use the NumPy library [43] for
implementing vector algebra operations and the OpenCV library [40] for imple-
menting image based computations. Conversions between different representations
for orientations are carried out by the SciPy library [44]. For construction and
optimization of factor graphs we utilize the GTSAM framework [30].

In our experiments, we deploy two types of smart edge sensors:

• Sensor type A is based on a Google EdgeTPU Dev Board [45], equipped
with a quad-core ARM Cortex-A53 CPU, an Edge TPU, and 1GB of shared
RAM. It is connected to the 5-MP RGB camera accessory module with a
87.6°(H)× 84.0°(V) FoV, running at 30 FPS with a resolution of 640× 480

pixels. This is the same sensor that is introduced by Bultmann et al. [24].

• Sensor type B is based on a Nvidia Jetson Xavier NX Developer Kit [46],
equipped with a 6-core NVIDIA Carmel ARM CPU, 8GB of RAM, and
384 NVIDIA CUDA cores. It is connected to a 1-MP Intel RealSense D455
RGB-D camera with a 90°(H) × 65°(V) FoV, running at 30 FPS with a
resolution of 848 × 480 pixels. We do not utilize the depth sensor of this
camera.

49

https://github.com/AIS-Bonn/SmartEdgeSensor3DHumanPose
https://github.com/AIS-Bonn/SmartEdgeSensor3DHumanPose

5. Implementation

While sensor type B is the more powerful one, we run the same method and
parameters on both sensor types. In practice, there is no significant difference
between the two, w.r.t. to our experiments. Fig. 5.1 shows both sensor boards.

Figure 5.1: Comparison of the deployed smart edge sensor types. Type A (left) is based
on a Google EdgeTPU Dev Board [45]. Type B (right) is based on a Nvidia
Jetson Xavier NX Developer Kit [46].

The sensor boards are connected via LAN to the backend. The backend runs
on a workstation computer equipped with an Intel Core i9-9900K, 64GB of sys-
tem memory, and a NVIDIA GeForce RTX 2080 Ti graphics card. We devel-
oped and tested this method under ROS Melodic Morenia with Ubuntu 18.04 and
Noetic Ninjemys with Ubuntu 20.04.

5.2. Features & Usage
The implementation can be easily integrated into an existing ROS setup by pro-
viding the required data. The initial estimate for the extrinsic calibration, as well
as the intrinsic camera parameters, can either be read from a file or from a ROS
topic. Furthermore, reference data for the extrinsic calibration and the 3D hu-
man pose estimation can be provided, in order to test and evaluate the method,
by monitoring and comparing with the current results. We deploy two tools for
visualizing various components of the method in real-time. We use the rviz 3D vi-
sualizer provided by the ROS framework to depict the initial, current and reference
camera poses, the estimated and reference 3D human poses, as well as other com-
ponents, such as ray-casting and depth estimation. Additionally, we use a custom

50

5.3. Parameters

2D visualizer to depict the received person keypoint detections, where valid detec-
tions are marked, reasoning for rejected detections is provided, and corresponding
detections between views are illustrated (See Fig. 4.3).

Once the required data is provided, the calibration procedure can be started,
using the default parameters. For a practical description on how to obtain a
suitable set of parameters for a concrete scenario, please refer to Sec. 5.3. If the
initial estimate of the extrinsic calibration is very inaccurate, it is advisable to
prefabricate a better initial estimate, by running the method multiple times with
very forgiving and loose parameters according to Sec. 5.3, until multiple runs yield
similar results. Then, the results can be refined, by running the method with
stricter (default) parameters, until all camera poses become stable. The results
can be validated, by repeating the calibration procedure with the candidate for
the optimal set of parameters and checking if all camera poses reliably converge
toward the same poses.

5.3. Parameters

This section gives a brief overview of the essential parameters of our proposed
method. While we use a relatively large number of parameters, none of them
requires extensive fine-tuning. However, some parameters do need to be adapted
for the concrete scenario, w.r.t. the camera and room layouts, the quality of the
initial estimate of the extrinsic calibration, as well as the behavior and count of the
persons present in the scene. As most parameters interact with other parameters,
we categorize them in groups of related parameters, following the structure of
Sec. 4. We give a brief description for the parameterss, as well as a default value
that proved to be optimal in many scenarios during our experiments (See Sec. 6.2).
For more detailed descriptions, please refer to Sec. 4. Finally, we describe the
practical effect of the parameters in each group and give a general advice on how
to set and use them.

The parameters in Tab. 5.1 must be tuned w.r.t. to the properties of the received
person keypoint detections and the available computational resources on the back-
end. In general, the idea is to filter enough detections for being able to process
most incoming detections by the pre-processing stage and not miss a significant
amount. Here, the presence of many persons in the scene requires stricter filtering
to compensate for the larger amount of obtained detections. A good starting point
is to increase the minimum confidence threshold until most inputs get processed.
However, the minimum confidence threshold must bet set low enough to let the
pre-processing stage find a reasonable amount of person hypotheses. If a lot of

51

5. Implementation

Table 5.1: Parameters for the filtering step.
Parameter Default Description
fi_stamps_span 20.0 Maximum timing offset in a frame-set (in ms)
fi_stamps_std_max 5.0 Maximum std. for timing offsets (in ms)
fi_stamps_std_w 1.5 Scaling the std. to remove outliers
fi_scores_min 0.6 Minimum considered detection score
fi_scores_std_max 0.6 Maximum std. for scores
fi_scores_std_w 1.5 Scaling the std. to remove outliers
fi_scores_zeros 8 Max. number of invalid detections/person

movement is to be expected, w.r.t. the persons present in the scene, stricter filter-
ing constraints on the timing offsets help to reduce synchronicity related issues.

Table 5.2: Parameters for Data Association.
Parameter Default Description
da_scores_min 0.4 Minimum considered detection score
da_dist_treshold 1.0 Minimum distance to assign hypothesis
da_joints_min 4 Minimum number of joints per hypothesis
da_person_min 1.70 Minimum expected person height (in m)
da_person_max 2.00 Maximum expected person height (in m)

The parameters in Tab. 5.2 must be tuned w.r.t. to the height of the persons
present in the scene, the expected spacing between them, and the quality of the
initial estimate for the extrinsic calibration. Estimating the geometric distance
between all person detections becomes easier, once the current estimate for the
extrinsic calibration is relatively accurate and the distance between the persons
present in the scene is large. Reducing the distance threshold can help to resolve
scenarios where this is not the case. The downside of this is, that a person de-
tection might not be assigned to the appropriate person hypothesis, but instead
initialize a new person hypothesis. As unique detections are pruned because tri-
angulation is not possible there, this essentially filters correct associations. This
is not a problem, if such a multiples contain enough non-unique detections. In-
creasing the number of required joints for a valid person hypothesis increases the
certainty in the associations, but also acts as a filter for incomplete person detec-
tions. This should be set up in conjunction with the maximum number of invalid
detection in Tab. 5.1. The minimum confidence threshold for a detection to be
utilized during data association should be set slightly lower then the minimum
confidence threshold in the filtering step. This effectively increases the certainty

52

5.3. Parameters

in the associations while not significantly increasing the computational load.

Table 5.3: Parameters for the person hypothesis selection step.
Parameter Default Description
hs_cam_usage 2.0 Scaling effect of equal camera usage
hs_cam_dist_mean 0.25 Scaling effect of mean camera distance
hs_cam_dist_std 0.125 Scaling effect of std. camera distance
hs_valid_mean 0.5 Scaling effect of mean valid detections
hs_valid_std 0.25 Scaling effect of std. valid detections
hs_conf_mean 1.0 Scaling effect of mean confidence value
hs_conf_std 0.5 Scaling effect of std. confidence value
hs_stamps_mean 0.1 Scaling effect of mean timestamps
hs_stamps_std 1.0 Scaling effect of timing offsets
hs_opt_uses 1.0 Scaling effect of previous usages
hs_opt_fails 1.0 Scaling effect of previous opt. failures
hs_spacing 1.0 Scaling effect of minimum spacing

The parameters in Tab. 5.3 are relatively independent from the scenario, as each
considered property internally accommodates for its distribution. Multiple proper-
ties that originate from the same fundamental attribute, should be weighted lower,
such that their sum is roughly one. Setting a factor to zero, bypasses the effect of
the property on the fitness values of all person hypotheses. Increasing the effect of
up-ranking detections with newer timestamps can be useful to accommodate for
cameras that are not mounted perfectly stable and slightly move over time.

Table 5.4: Parameters for the optimization stage.
Parameter Default Description
op_interval 0.5 Interval between optimization cycles (in s)
op_scope 50 Number of person hypotheses per opt. cycle

The parameters in Tab. 5.4 must be tuned w.r.t. to the quality of the current
estimate of the extrinsic calibration. In general, there are two strategies that can
be applied. If the quality of the current estimate of the extrinsic calibration is
not accurate, one should perform many optimizations utilizing a small number of
person hypotheses in each cycle, in order to increase the chance for performing a
successful optimization by constraining only a few cameras in each cycle. Once the
quality of the current estimate of the extrinsic calibration is improving, one should
utilize more person hypotheses in each optimization cycle, in order to find results

53

5. Implementation

that are consistent with all camera poses. As this increases the computational
load, the optimization interval should be lengthened to accommodate for this.

Table 5.5: Parameters for the error estimation step.
Parameter Default Description
ee_pos_init 0.075 Initial prior position noise value
ee_pos_incr 0.001 Percentual stepsize for value increase
ee_pos_decr 0.002 Percentual stepsize for value decrease
ee_pos_max 0.75 Maximum value
ee_pos_min 0.015 Minimum value
ee_ori_init 2.5 Initial prior orientation noise value
ee_ori_incr 0.001 Percentual stepsize for value increase
ee_ori_decr 0.005 Percentual stepsize for value decrease
ee_ori_max 10.0 Maximum value
ee_ori_min 0.2 Minimum value
ee_history 10 Number considered opt. cycles

The parameters in Tab. 5.5 must be tuned w.r.t. to the quality of the current
estimate of the extrinsic calibration. They are used to allow an initialization of the
calibration procedure with a relatively rough estimate of the extrinsic calibration,
where larger noise values are required, while also enabling convergence toward a
precise extrinsic calibration, for which lower noise values are required. In order to
enforce this reduction over time, the step-size for increasing noise values should be
set smaller then the step-size for decreasing noise values. In general, these param-
eters should be used conservatively. Smaller step-sizes can be applied for longer
calibration procedures. The initial noise values can be reduced if the confidence
in the initial estimate for the extrinsic calibration is high.

Table 5.6: Parameters for the temporal smoothing step.
Parameter Default Description
ts_alpha 0.3 Decay for exponential moving avarage
ts_history 10 Number considered opt. cycles

The parameters in Tab. 5.6 must be tuned according to the parameters for
the error estimation in Tab. 5.5. In particular, large prior noise values should
be accompanied by stronger smoothing and vice versa. Choosing larger alpha
values leads to less smoothing as newer poses are used with a higher magnitude.
Accordingly, large alpha values should be accompanied by small history values to
save computational resources.

54

6. Evaluation
In this chapter, we evaluate our proposed method. First, we give a detailed de-
scription of the setup for our experiments. Then, we carry out experiments to
analyze the behavior and the components of our method. Finally, we summarize
and discuss the results of our experiments.

6.1. Setup
In this section, we describe the preliminary steps we must take before conducting
experiments and evaluating their results. We elaborate on the general scenarios
for our experiments, the used reference calibration, the testing procedures and the
used initial estimates of the extrinsic calibration.

Scenarios

We conduct all experiments in the robotics hall of our institute which is a large
room, with an area of 237m² and a height of 3.2m. The cameras are distributed
throughout the room at heights between 2.5m and 2.7m. As the room is partly a
robotics workshop and partly a regular desk-based workspace, it is densely filled
with all kinds of objects, which can cause false detections. One particular chal-
lenge with this room is the presence of multiple humanoid robots, which easily get
detected by the person keypoint detectors. We do not become proactive in avoid-
ing such wrong detections and trust the method in rejecting them autonomously.
Furthermore, tables and pillars can occlude the view of single keypoint detections
or complete persons.

We distinguish between two scenarios:

• In Scenario 1, we deploy 16 smart edge sensors of type A (See Sec. 5.1).
Fig. 6.1 depicts the camera poses within the room and Fig. 2.3 shows the
respective RGB images.

• In Scenario 2, we deploy 20 smart edge sensors, 16 of which are of type A

and 4 are of Type B. Fig. 6.2 depicts the camera poses within the room and
Fig. 1.1 shows the respective RGB images.

55

6. Evaluation

Note that some sensors are used in both scenarios.

5 meters

C0

C1C12 C2

C3

C7

C8

C9

C10

C11

C13C14
C15

C4 C5

C6

Figure 6.1: Sketched floor plan with camera poses for Scenario 1.

5 meters

C0

C1

C12

C17C2

C3

C7

C8

C9 C10 C11 C13

C14

C15
C16C18

C19

C4
C5

C6

Figure 6.2: Sketched floor plan with camera poses for Scenario 2.

56

6.1. Setup

Reference Calibration

In all our experiments, we compare the extrinsic calibration obtained by our
method with a reference extrinsic calibration obtained by a traditional calibra-
tion method. In particular, we use the kalibr [3] toolbox, which provides an offline
calibration method that requires the recording of a calibration sequence using an
AprilGrid calibration target. An Aprilgrid resembles a checkerboard type pattern
on a planar surface, where the cells are replaced by AprilTags [4]. Since the exact
dimensions of the calibration target are known, it is possible to fully resolve its
3D pose, independent of its orientation toward the cameras, even if the target is
only partially visible. During the recording of the calibration sequence, the target
must be positioned in areas where the FoV of multiple cameras overlaps so that it
can be detected simultaneously by as many cameras as possible. Kalibr not only
resolves this calibration sequence for the extrinsic calibration the cameras, but
also for their intrinsic parameters consisting of a calibration matrix and distortion
coefficients for each camera. In order to maximize the precision of the intrinsic
calibration, we additionally position the calibration target directly in front of each
camera to cover its entire FoV, ignoring its visibility from the other cameras. The
calibration sequence is then processed offline by Kalibr in a lengthy optimization
procedure. The results of this optimization must be interpreted and manually
tuned to obtain the final calibration. We refer to this calibration using the Kalibr
toolbox as reference calibration or reference.

It is worth noting that this reference is not ideal w.r.t. to the true camera
poses and the true intrinsic parameters. We performed the calibration with Kalibr
multiple times, including the recording of new calibration sequences, and obtained
similar but slightly different results.

As described in Sec. 6.1, we evaluate our method on two different scenarios.
Tab. B.1 and Tab. B.2 show the concrete extrinsic calibrations that we consider
our reference.

Testing procedures

We distinguish between two testing procedures w.r.t. the type of input we use.
In one setup, we do not forward the person keypoint detections transmitted

by the sensors directly to the backend. Instead, we record the data first and
then play it back later in real-time. From the perspective of the backend, this
setup is indistinguishable from using live inputs. The advantage of this approach
is being able to playback the same data multiple times. However, due to the
real-time nature of our method and its implementation on a computer, where
many processes run in a race condition with each other and the scheduler of the

57

6. Evaluation

system is switching between them, multiple runs with the same parameters and the
same input sequence can yield different results. Therefore, we run each experiment
multiple times and report average or representative results wherever possible. This
setup allows us to evaluate the effect of specific components or parameters on the
calibration procedure.

In a second setup, we forward the person keypoint detections transmitted by
the sensors directly to the backend. This setup allows us to analyze and interpret
intermediate results in real-time and reactively shape the input data, for example
by explicitly walking toward a specific camera and posing in front of it. However,
we explicitly do not look at the reported errors and only introduce the reference
calibration for evaluation purposes after we consider the calibration procedure
finished. Since this is a less controlled environment, this setup represents a realistic
application of our proposed method in practice.

Initial Estimates

Our method requires priming with a rough estimate of the extrinsic calibration of
the targeted multi-camera system.

In Sec. 3.3, we describe a method for obtaining such estimates by manipulating
the reference calibration. Here, we distinguish between two strategies. On the one
hand, we enforce that the position and orientation errors between the reference
poses and the initial estimate poses exactly match a specified distance, whereas
the direction of this distance is picked at random. On the other hand, we do
not enforce the initial estimate poses to match the specified distances exactly, but
normally distribute them. In both cases, we must specify the desired distances for
the position error and the rotation error.

In our experiments, we consider various initial error distances and evaluate the
performance of our method to accommodate them. However, the magnitude of this
error in a practical application of our method is unclear. To assess the realistic
quality of the initial estimate of the extrinsic calibration in practice, we conduct
an experiment where we measure the extrinsic calibration of Scenario 2 by hand,
using a floor plan and tape measure (See App. A). The results of this experiment
suggest that we can expect an average distance error of 0.1737m and 11.14° for
cameras C1 to C19. Obviously, these expected errors do not hold in the general case,
as they depend on the camera layout and the applied method of measurement.

58

6.2. Experiments

6.2. Experiments
In Experiments 1 to 3, we demonstrate the general behavior and usage of our
method within Scenario 1 by using a recording of a single person and analyzing
the position and orientation errors toward the reference calibration. In Experi-
ments 4 and 5, we switch to live inputs and Scenario 2 where we test our method
under realistic conditions with multiple persons. Additionally, we compare the
reprojection errors for our calibration results and the reference calibration. Ex-
periments 6 and 7 serve to demonstrate the sensitivity of the method w.r.t. the
intrinsic camera parameters and its behavior w.r.t. scaling ambiguities.

Experiment 1

We start our experiments by replaying a recording of a single person walking
across the entire room for roughly three minutes within Scenario 1. We use default
parameters (See Sec. 5.3) and an initial error of exactly 50cm and 15° in a random
direction w.r.t. the reference calibration for all cameras Ci for i > 0. We stop the
calibration procedure after the recording ends and analyze the results.

0 200 400 600 800 1000 1200
optimizations

0.0

0.1

0.2

0.3

0.4

0.5

po
sit

io
n

er
ro

r [
m

]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
avg

Position Error Distance (Raw)

Figure 6.3: Raw position error toward the reference calibration for Experiment 1.

Fig. 6.3 illustrates the raw position errors toward the reference calibration based

59

6. Evaluation

on the direct results obtained by our method. We see a fast decrease in error to
0.25m within the first 100 optimization cycles (∼ 20 seconds) and reach 0.2m after
300 optimization cycles. From there, the error continues to decrease slowly and
steadily until we stop the calibration procedure at 0.17m after 1100 optimization
cycles. Note that some cameras already show a relatively small position error.
For example, C2 reaches an error of 0.04m after only 400 optimization cycles. In
general, we observe that cameras with a central position in the room, or cameras
that are directed at the larger accessible areas of the room converge faster and
deeper compared to cameras that are positioned in or directed at the corners of
the room. For this last group of cameras, we can even see the trace of the person
at the beginning of the calibration procedure, as the cameras only start to change
their position after one of their detections was encoded in a factor graph. This
behavior is best visible for C6.

0 200 400 600 800 1000 1200
optimizations

0

2

4

6

8

10

12

14

or
ie

nt
at

io
n

er
ro

r [
°]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
avg

Orientation Error Distance

Figure 6.4: Orientation error toward the reference calibration for Experiment 1.

Fig. 6.4 shows the accompanying orientation error. Here, we clearly see the
behavior we discussed in the previous paragraph. The orientation errors drop
rapidly and reach 2.0° after 200 optimization cycles after which they stay roughly
constant for the remaining calibration procedure. Here, the exceptions are C5 and
C6, which stay between 6.0° and 8.0°. It is worth pointing out that both of them
are directed at the same area of the room, which is largely occluded by desks and

60

6.2. Experiments

monitors with little FoV overlaps w.r.t. other cameras (See Fig. 6.1).
When interpreting the orientation errors, we have to consider the corresponding

position errors. As the position error is non-zero, the ideal orientation for such a
position also has an error bigger than zero. From this one experiment, it seems like
the orientations are close to ideal for the given camera positions. In other words,
the hard part of solving the calibration problem seems to be about obtaining
the camera positions, while the corresponding orientations are easily resolved and
follow along.

So far, we have analyzed the raw errors of the obtained results toward the ref-
erence calibration. However, as we define C0 to be the origin of the coordinate
system, we imply that C0 has an error of 0.0m and 0.0°. In order to make for a
fairer comparison, we use Umeyama’s method [36] to distribute the position error
between all cameras. Fig. 6.5 shows the distributed position error for this experi-
ment. With respect to the raw position error in Fig. 6.3, we see a similarly shaped
curve for the average distributed position error, which now reaches a minimum of
0.12m. Furthermore, we see that the distributed position errors of all cameras are
closer together. We observe that only C5 is a clear outlier, which we noticed before
when comparing the orientation errors.

0 200 400 600 800 1000 1200
optimizations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

po
sit

io
n

er
ro

r [
m

]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
avg

Position Error Distance (Distributed)

Figure 6.5: Distributed position error toward the reference calibration for Experiment 1.

61

6. Evaluation

Experiment 2

We continue Experiment 1 by using its result as the initial estimate of the extrinsic
calibration and replaying the same recording of a single person walking across the
room. However, we change two parameters to increase precision, while neglecting
the reduced robustness of these parameter choices, as we knowingly use a relatively
accurate initial estimate. In particular, we increase the number of selected person
hypotheses from 10 to 70 and the optimization interval from 0.2s to 0.5s.

Fig. 6.6 illustrates that this further reduces the average distributed position error
from 0.12m to 0.08m. From this figure, we can no longer identify a clear outlier
as in Experiment 1. All cameras stabilize at distributed position errors between
0.027m and 0.124m. The optimal scaling factor obtained by Umeyama’s method
for the final camera positions is 0.994, where 1.0 would indicate a perfect resolve
of scale, assuming that the reference calibration is free of scaling ambiguities.

0 100 200 300 400
optimizations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

po
sit

io
n

er
ro

r [
m

]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
avg

Position Error Distance (Distributed)

Figure 6.6: Distributed position error toward the reference calibration for Experiment 2.

Fig. 6.7 shows that the average orientation error drops from 2.0° to 1.06°. In-
terestingly, we can identify C6 as an outlier, given the logarithmic scaling of the
plot, which we earlier identified as one of two outliers in Fig. 6.4. This is eas-
ily explained by the fact that the camera mount of C6 loosened slightly between
obtaining the reference calibration and performing Experiments 1 & 2, which we

62

6.2. Experiments

tried to accommodate for by manually pushing the mount back in place to our best
knowledge. Similar to Fig. 6.6, we see relatively stable errors from optimization
cycle 200 onward. This indicates an optimal calibration w.r.t. to the gathered
person hypotheses.

0 100 200 300 400
optimizations

100

or
ie

nt
at

io
n

er
ro

r [
°]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
avg

Orientation Error Distance

Figure 6.7: Orientation error toward the reference calibration for Experiment 2.

Experiment 3

We repeat Experiment 2 by using the same recording of one person crossing the
entire room and the same set of parameters. However, instead of using an initial
estimate that was obtained by a previous calibration procedure, we generate a
new initial estimate with an error of exactly 0.15m and 15° in a random direction
w.r.t. the reference calibration for all cameras Ci for i > 0. Note that this position
error is similar to that in Experiment 2, while the orientation error is larger and
matches that of Experiment 1.

Fig. 6.8 and Fig. 6.9 show the position and orientation errors for this experiment.
All curves look similar to their counterparts in Experiment 2, but this time we
achieve a lower average position error of 0.053m and a lower average orientation
error of 0.86°. Repeating these experiments multiple times yields similar results
and indicates that a systematic error obtained from a previous application of

63

6. Evaluation

our method is harder to resolve then random errors obtained from the reference
calibration, given that their magnitude is the same. The optimal scaling factor for
the shown result is 1.002.

We observe a similar distribution, or ranking, of the errors of specific cameras
between the two experiments. Again, C6 is an outlier and calibrates with the
largest errors w.r.t. to its position and orientation. This shows that the final errors
are largely independent of the input distribution of the initial estimate. Instead,
this behavior must inherit from either the reference calibration, the recording, or
possibly, some systematic error within out method. As the cameras with larger
errors repeatedly turn out to be ones for which we know the reference calibration
not to be ideal, e.g C6, and this behavior is the same for different input detections,
we have reason to believe that a substantial part of the reported errors actually
inherits from the inaccuracy of the reference calibration.

0 100 200 300 400
optimizations

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

po
sit

io
n

er
ro

r [
m

]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
avg

Position Error Distance (Distributed)

Figure 6.8: Distributed position error toward the reference calibration for Experiment 3.

64

6.2. Experiments

0 100 200 300 400
optimizations

100

101

or
ie

nt
at

io
n

er
ro

r [
°]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
avg

Orientation Error Distance

Figure 6.9: Orientation error toward the reference calibration for Experiment 3.

Experiment 4

In this experiment, we switch to Scenario 2 and use live inputs from the sensors.
During this experiment, two persons cross the room trying to generate detections
in all cameras while one other person is sitting at a desk working. Additionally,
a coat stand and two humanoid robots repeatedly generate false detections. We
use default parameters and an initial error of exactly 0.20m and 10° in a random
direction w.r.t. the reference calibration for all cameras Ci for i > 0.

Fig. 6.10 and Fig. 6.11 show the distributed position error and the orientation
error for this experiment. The final average distributed position error is 0.0583m
and the corresponding orientation error is 0.4289°. The final position errors range
from 0.0107m for C0 to 0.1197m for C12. Interestingly, we can identify two groups
of cameras, where one group centers tightly around a position error of 0.03m,
while the other (smaller) group centers around 0.09m with a wider spread. The
majority of the optimization takes place in the first 200 optimization cycles or
approximately 20 seconds. Afterward, the errors seem to be stable. When looking
closely, we can see sinusoidal oscillations with magnitudes of about 0.01m between
the cameras. We observed this behavior during other experiments as well. Gener-
ally, the frequency of these oscillations increases and their amplitude decreases.

65

6. Evaluation

0 200 400 600 800 1000 1200 1400 1600
optimizations

0.00

0.05

0.10

0.15

0.20

0.25

0.30
po

sit
io

n
er

ro
r [

m
]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
avg

Position Error Distance (Distributed)

Figure 6.10: Position error toward the reference calibration for Experiment 4.

0 200 400 600 800 1000 1200 1400 1600
optimizations

10 1

100

101

or
ie

nt
at

io
n

er
ro

r [
°]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
avg

Orientation Error Distance

Figure 6.11: Orientation error toward the reference calibration for Experiment 4.

66

6.2. Experiments

While we only show the results of one calibration procedure here, due to the
live nature of the experiment, we did repeat the experiment about five times.
Again, we notice that the same cameras repeatedly converge toward the same
magnitudes of error. As the errors are relatively small, we compare the accuracy
of our calibration against the reference calibration by measuring the reprojection
error for an unrelated recording of multiple persons within the same scenario. The
same recording was used by Bultmann et al. [47] to report reprojection errors. We
point out that our recording does not contain any semantic feedback.

Table 6.1: Comparison of the reprojection errors per joint between our method
and the reference calibration for Experiment 4.

Source Head Hips Knees Ankles Shoulders Elbows Wrists Mean

Reference 4.17px 5.40px 5.27px 6.50px 3.835px 4.88px 6.46px 5.01px
Method 3.80px 4.70px 4.77px 6.13px 3.534px 4.51px 6.18px 4.60px

The measured reprojection error per joint is shown in Tab. 6.1. We achieve
lower reprojection errors in all categories, implying that our calibration is more
precise than the reference calibration. Repetitions of this experiment reliably score
between 4.5 and 4.9 pixels. As one would expect, the reprojection error is generally
larger for faster moving joints like ankles and wrists, while it is smaller for more
stable joints. It is worth noting that the measured reprojection does not exclusively
originate from the provided extrinsic calibration, but also from other factors, e.g.
the approach for triangulation and pose estimation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

2

4

6

8

10

re
pr

oj
ec

tio
n

er
ro

r [
px

]

Reprojection Error per Camera
Method
Reference

Figure 6.12: Comparison of the reprojection error per camera between our method and
the reference calibration for Experiment 4.

67

6. Evaluation

Fig. 6.12 shows the reprojection errors per camera. We see that, with our
calibration the reprojection error decreases for all cameras, except C17 and C19 for
which it increases slightly.

Experiment 5

To validate our deduction from Experiment 4 which is that our method is capable
of achieving higher accuracy of the extrinsic calibration compared to our reference
calibration, we repeat the experiment by starting with the reference calibration as
the initial estimate. All parameters remain the default ones. The input for the
sensors is different in that only one person is crossing the room and two persons
are sitting at their desk. We let the calibration procedure run for less than one
minute.

Fig. 6.13 shows the distributed position error of this experiment. We observe
that all cameras converge toward roughly the same error distance w.r.t. Fig. 6.10.

0 100 200 300 400
optimizations

0.00

0.05

0.10

0.15

0.20

po
sit

io
n

er
ro

r [
m

]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
avg

Position Error Distance (Distributed)

Figure 6.13: Distributed position error toward the reference calibration for Experiment 5.

As in Experiment 4, we compare the reprojection error of the obtained calibra-
tion against the reference calibration (See Tab. 6.2). Again, our method achieves
lower reprojection errors (4.68 pixels on average) than the reference calibration.
However, these are slightly higher than in the previous experiment (4.60 pixels on

68

6.2. Experiments

average). Presumably, this is caused by the shorter duration of the calibration
procedure.

Table 6.2: Comparison of the reprojection errors per joint between our method
and the reference calibration for Experiment 5.

Source Head Hips Knees Ankles Shoulders Elbows Wrists Mean

Reference 4.17px 5.40px 5.27px 6.50px 3.835px 4.88px 6.46px 5.01px
Method 3.89px 4.85px 4.86px 6.17px 3.581px 4.58px 6.21px 4.68px

Analogously to Fig. 6.12, Fig. 6.14 shows the reprojection errors per camera
for this experiment. Both figures look similar. For example, we can observe
that the reprojection error for C17 and C19 slightly increases and that the largest
improvement is achieved for C18.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

2

4

6

8

10

re
pr

oj
ec

tio
n

er
ro

r [
px

]

Reprojection Error per Camera
Method
Reference

Figure 6.14: Comparison of the reprojection error per camera between our method and
the reference calibration for Experiment 5.

Experiment 6

In this experiment, we evaluate the sensitivity of our method toward the intrinsic
parameters which are assumed to be known for each camera. We use a recording
of two persons crossing the room for two minutes within Scenario 1. We use the
default parameters, but increase the optimization interval to one second in order
to get more consistent results by reducing the computational load for the system
and to avoid scheduling conflicts.

69

6. Evaluation

We capture a baseline by using the reference calibration matrix Ki and distortion
coefficients disti for each camera i. Then, we omit the distortion coefficients by
not undistorting the received detections. Finally, we keep omitting the distortion
coefficients, but randomly permute the set of calibration matrices such that no
camera uses its correct calibration matrix. Note that in Scenario 1, all cameras
are of the same type.

We repeat all three setups ten times. To further improve consistency, we use the
same initial estimate with an error of exactly 15cm and 15° in a random direction
w.r.t. the reference calibration for all cameras Ci for i > 0. Tab. 6.3 lists the
results of this experiment.

Table 6.3: Average distributed unscaled position errors for different configurations
of the intrinsic calibration over multiple runs for Experiment 6.

Baseline Omitted disti Permuted Ki

Max. 0.0916m 0.1000m 0.1336m
Min. 0.0911m 0.0968m 0.1107m
Avg. 0.0914m 0.0984m 0.1201m

When comparing the baseline setup against the setup with omitted distortion co-
efficients, we measure a slight increase in error of 0.007m on average. Note that the
maximum error of the former is below the minimum error of the latter. With the
permuted calibration matrices, we observe a more drastic increase in error against
both other setups. Here, we notice an increased amount of failed optimizations
in the beginning of the calibration procedures. Not only does the average error
increase, but the calibration results also become less consistent, which is reflected
in the larger span between the minimum and maximum errors. Nonetheless, the
method still works as intended while the errors increase by 0.029m on average
w.r.t. to the baseline setup.

Experiment 7

In this experiment, we analyze the scaling ambiguity of the method that originates
from not knowing the height of the detected persons. For this, we scale the position
components of the reference calibration by a scaling factor s and use it as the
initial estimate, in which we directly adopt the reference orientations. We use the
same recording as in Experiment 6 with two persons crossing the room for two
minutes within Scenario 1. We use default parameters. For each scaling factor, we
repeat the experiment ten times and report average results. For s = 0.5, we scale

70

6.3. Results

the minimum and maximum person height for the depth estimation accordingly,
otherwise all detections would be rejected during data association.

Tab. 6.4 shows the results of this experiment. All reported errors are distributed
by Umeyama’s method. In the fourth column, “Scaled” refers to the distributed
and scaled error, which equals zero in the beginning of the calibration procedure. In
the fifth column, “Factor” refers the corresponding scaling factor used to minimize
the error, which equals 1

s
in the beginning of the calibration procedure.

Table 6.4: Average distributed position error for a scaled reference calibration by
the factor s over multiple runs.

s Initial Final Scaled Factor
0.50 2.94687m 2.93073m 0.06251m 1.989293
0.97 0.17681m 0.17871m 0.05789m 1.028238
1.03 0.17681m 0.21166m 0.05745m 0.967419

We observe that the average distributed position error does not change signif-
icantly for an initialization with scaled reference positions. This demonstrates
that the method has no knowledge about the scale of the observations and can-
not resolve it. However, we see that the method is capable of maintaining some
initialized scale without drifting away from it. Furthermore, when looking at the
scaled error, we observe similar values as in the other experiments for Scenario 1,
affirming our suspicion that the reference calibration is not optimal.

6.3. Results
This section summarizes the results of our experiments and describes further ob-
servations we encountered during the process of experimentation.

We can report that our implementation is successfully integrated into the exist-
ing system of smart edge sensors and that our method works as intended, in that
the calibration error reduces over time, w.r.t. the initial estimate of the extrinsic
calibration and the reference calibration. Given sufficient detection inputs and a
feasible initial estimate, we have shown that the cameras converge quickly (. 30

seconds) to an almost optimal pose and then converge slowly (. 5 minutes) to
their optimal pose where they finally stabilize. We deduce that resolving the cor-
rect camera positions is the central challenge within this method, while the camera
orientations are easily resolved and follow along by matching the incorrect camera
positions. This is not surprising, as the orientation of a camera is independent
of the depth of a detection and does not require fusing corresponding detections
from multiple views.

71

6. Evaluation

During experimentation we notice that the cameras reliably end up in roughly
the same poses (for each scenario), between multiple calibration procedures with
varying initial estimates and different detection inputs. At the same time, we re-
liably achieve average distributed position errors below 0.1m and average orienta-
tion errors below 1.0°. To assess the quality of our calibration w.r.t. the reference
calibration, we calculate their reprojection errors and find that our calibrations
achieve slightly lower reprojection errors. Considering that the reference calibra-
tion is obtained by an offline method utilizing a traditional calibration target with
known correspondences, this might be considered surprising.

The above statements hold for feasible initial estimates, with an average position
error between ∼ 0.05m and ∼ 0.30m toward the reference calibration, which is an
accuracy that can be achieved by manual means (See App. A). With less accurate
initial estimates, we observe that a single calibration run does not always obtain
optimal camera poses. However, multiple (2) runs can resolve this problem, where
the first runs serve to find a better initial estimate, which is then utilized in the
following runs. When experimenting with more extreme initial estimates, with
average position errors of several meters and orientations errors above 90°, we find
that the method becomes unstable. However, through trial and error over multiple
calibration runs, it is still possible to improve the calibration until an accuracy is
reached that allows for normal operation. In this context, initial pose estimates in
which the cameras untruly look away from the scene are the most problematic, as
they can easily cause the failure of an optimizations cycle.

During most experiments, we use the default parameters presented in Sec. 5.3,
which seem to be optimal for a wide range of errors, w.r.t. the initial estimate of
the extrinsic calibration, and for a variety of different detection inputs, regarding
the number of persons present in the scene and their movement during the calibra-
tion procedure. As most parameters interact with each other, it can be difficult
to isolate and validate the effect of a single parameter. Under ideal conditions,
selecting person hypotheses at random achieves similar results as selecting them
according to our proposed algorithm (See Alg. 1). However, during calibration
procedures where the majority of detections are generated by single cameras and
the overall movement in the scene is little, we can clearly see that our algorithm
prevents excessive selection of person hypotheses with a similar localization and
encourages the calibration of as many cameras as possible w.r.t. the provided
detections.

The adaptive noise models (See Alg. 3) used in the prior factors for the camera
nodes are used conservatively with little effect. Choosing optimal values for a given
experiment achieves similar results as using the adaptive noise models with generic
starting values. We find that their main purpose is to simplify the application of

72

6.3. Results

the method by mitigating the requirement to fine-tune them.
The temporal smoothing algorithm (See Alg. 2) does significantly improve the

results in that it increases the reliability of our method. Deactivating this algo-
rithm does in rare cases produce similar results, compared to using it, but single
person hypotheses with wrong data association, large timing offsets or other sub-
optimal properties can easily distort an entire calibration and prohibit the overall
convergence.

In Experiment 6, we show that our method is robust against using wrong in-
trinsic parameters and not compensating for lens distortions. However, we can
measure a decrease in the accuracy of the resulting calibration.

In Experiment 7, we analyze the behavior of our method w.r.t. scaling ambigui-
ties in the calibration. We show our method maintains the scale of the calibration
that is inherent in the initial estimate. However, given an initial estimate with an
improper scale, our method cannot resolve the calibration to the correct scale.

During most experiments, we notice various false detections of humanoid robots
and a coat stand. It turns out that our approach for data association is effective
in filtering such detections, while simultaneously correctly associating the present
persons. For feasible initial estimates, the presence of multiple persons in the scene
is unproblematic in that we do not notice any wrong associations. This statement
holds in the case of two persons standing very close to each other in which both
persons are reliably rejected.

73

7. Conclusion

Throughout this thesis, we introduce the topic of extrinsic camera calibration
by discussing related works and establishing the relevant theoretical concepts. We
then develop an online method to perform extrinsic camera calibration on a system
of smart edge sensors, relying solely on the use of person keypoint detections.

The person keypoint detections get fused at a central backend by means of syn-
chronization, filtering, and data association. Then, the obtained person hypotheses
repeatedly get encoded in factor graphs to constrain the camera poses. Knowl-
edge obtained about the camera poses by the optimization of one factor graph
is forwarded and used during the construction of the next factor graph, enabling
the accumulation of knowledge and provoking the convergence of all cameras to-
ward an optimal pose. Lastly, the convergence behavior is improved by various
refinement schemes based on temporal smoothing and error estimation.

Our method is designed to be robust against false or sparse sets of detections.
Most of its internal parameters are adaptive w.r.t. the statistical distribution of
the properties of the received person keypoint detections, eliminating the need for
extensive fine-tuning of parameters. Compared to similar methods, our approach
is free of many of the typical assumptions. It can cope with and exploit the
detections of multiple persons being present in the scene simultaneously. Their
poses toward the cameras can be arbitrary, as long as their shoulders and hips
are detected. Lastly, the approach supports a wide variety of scene layouts w.r.t.
curvatures of the ground surface, occlusions from objects or the sensor topology.

After implementing the proposed method and integrating it into an existing
system of smart edge sensors, we evaluate the proposed method and our imple-
mentation in a series of experiments. We demonstrate that each component of
our method works as intended. We compare our calibration results to a reference
calibration obtained by an offline calibration method based on using traditional
calibration targets. Fortunately, we can show that our calibration results are more
accurate than the reference calibration by reliably achieving lower reprojection
errors while obtaining similar camera poses.

Not only proves our method to be a quick and easy-to-use calibration utility,
but it also achieves state-of-the-art accuracy. The general approach of our method
seems to be a promising foundation for further work in this area.

75

7. Conclusion

7.1. Discussion & Future Work
We conclude this thesis by discussing elements that could be improved within our
method and by suggesting further components that could be added to it.

We show that our method is capable of maintaining the scale that is implied
by the initial estimate of the extrinsic calibration and that it can improve the
calibration within this scale, but it certainly lacks a mechanism to correctly resolve
the scale in case the uncertainty in the scale of the initial estimate is high. One
straightforward way of achieving this is the use additional of factor nodes inside
the factor graphs, which constrain the distance between the landmark nodes of
each person according to some model of the human anatomy. A similar approach
is used by Bultmann et al. [24]. However, this could easily introduce a wrong
scale into the resulting calibration in case the scale of the initial estimate is mostly
correct. For a calibration procedure with a single person, one would need to
specify the exact dimensions of the considered person in order to resolve the scale
correctly. For calibration procedures with a few persons, this approach would likely
induce an incorrect scaling, as multiple persons have different dimensions and we
do not use any identification mechanism that finds the correspondence between
an observed person and its dimensions in some database. This scaling error might
be negligible when enough persons are present during the calibration procedure,
so that the assumption of some average anatomy becomes applicable. However,
multiple components of our pipeline, starting with the smart edge sensors, cannot
handle the required amount of persons.

Another solution to the problem of scaling ambiguity would be to equip each
person in the scene with a unique fiducial marker of known dimensions. The
extracted features of the fiducial markers could be encoded in the factor graphs,
similar to the approach of Reinke et al. [11], to resolve scale. Furthermore, the
markers could be used to replace the current approach for depth estimation and
data association. This approach would probably require the combination with a
tracking approach, in order to keep using detections of persons where the marker
is currently not visible but was visible before.

Consistent 2D and 3D tracking could help improve data association. Further-
more, this would allow the exploitation of the fact that the dimensions of each
person are constant during the calibration procedure by adding additional factors
into the factor graphs that constrain the dimensions of a person, i.e. the dis-
tance between the respective joints, once enough measurements of the person’s
dimensions are taken.

76

7.1. Discussion & Future Work

Data association could be improved for inaccurate initial estimates of the ex-
trinsic calibration by using visual descriptors as proposed by Hermans et al. [48].
In particular, we could compare the distances between the visual descriptors of
person detections from multiple views in a similar way we compare the distances
between line segments. It would be possible to use this alongside the existing geo-
metric solution. In fact, the extraction of such visual descriptors is currently being
implemented by colleagues on the sensors of type B. The computational resources
available on sensor type A do not suffice for this approach.

Due to fact that a large amount of the performed computations with this method
are distributed over the entire system of sensors, the approach could be easily
scaled for multi-camera systems of arbitrary size. In particular, one would need
to introduce a divide and conquer strategy that divides all cameras into clusters
of cameras with overlapping FoVs where each cluster is running our proposed
method independently. Then, the relative pose between two neighboring calibrated
clusters could be obtained by first identifying one camera in each cluster with
an overlapping FoV between them and finally constructing a factor graph for
the respective two-camera systems. For example, this strategy could be used for
calibrating cameras spread over neighboring rooms where at least one camera in
each room is facing the door toward the neighboring room.

As the time our method requires to converge toward an accurate calibration is
short, one might be tempted to adapt the method for non-static cameras. This
would require a different architecture for the construction of the factor graphs.
In particular, instead of connecting landmark nodes that originate from joint de-
tections of varying points in time to one set of camera nodes, we would need to
instantiate a unique set of camera nodes for each point in time and connect the
landmark nodes accordingly. To evade the problem of under-determination for
such sparse graphs, we would probably be required to build larger graphs where
each set of camera nodes is connected to a sufficient amount of landmark nodes.
Lastly, we would need to add additional constraints between the camera nodes
that represent the instances of the same camera at different points in time. For
example, this could be achieved by using inertial measurement units.

77

A. Manual Calibration

Figure A.1: RGB images from all cameras within Scenario 2 where each image center is
highlighted by a red cross.

We try to find the extrinsic calibration of the cameras within Scenario 2 (See
Sec. 6.1) by using a floor plan of the building, an RGB image of each camera and
a tape measure. First, we visually estimate the camera positions and draw them
onto the floor plan. Then, we find the center points within the RGB images of
all cameras (See Fig. A.1), which serve as an estimate of the principle points. We
try to find the location where the principle axis of each camera intersects with
the ground plane and draw them into the map. We conclude the preparation
of the floor plan by choosing a location on the ground plane, which serves as an
intermediate origin of the coordinate system in which we measure all camera poses.
Here, the z-axis points toward the ceiling, while the x- and y-axes point to the
right and top within the map (See Fig. A.2).

79

A. Manual Calibration

C0

C1

C12

C17C2

C3C7

C8

C9
C10 C11

C13

C14

C15
C16C18C19

C4C5

C6

Figure A.2: Visual estimation of the camera poses for Scenario 2 within the floor plan of
the building. Arrows indicate where the principle axes intersect the ground
plane. An arbitrary pose aligned with the room geometry serves as origin
of the coordinate system (green).

Inside the room, we measure the height of all cameras as well as the distance
between the two inner pillars of the room, which serves as a ratio to convert
between pixels and meters. Now, we can simply measure the x- and y-components
of the position of each camera on the map by converting the pixel-distances to
meters and use our height measurements for the z-components.

Similarly, we can measure the yaw- and pitch-components of the rotation of each
camera. For the roll-angles, we simply assume 0° for all cameras that are mounted
as intended and 180° for all cameras that are mounted upside-down (C0 to C3).
Finally, we can transform the position and orientation components of all cameras
into the coordinate system of camera C0 by applying the inverse of the obtained
transformation between the room coordinate system and C0 to all cameras C0 to
C19.

The resulting calibration of this experiment has an average error of 0.1737m and
11.14° for cameras C1 to C19 toward our reference calibration (See Sec. 6.1).

80

B. Reference Calibration

Table B.1: Reference extrinsic calibration for Scenario 1 with 16 cameras.
Camera Position Orientation
C0 (+ 0.00m,+ 0.00m,+ 0.00m)T (+ 0.00°,+ 0.00°,+ 0.00°)T

C1 (− 2.63m,− 2.92m,+ 3.90m)T (+ 92.95°,+ 38.87°,+142.93°)T

C2 (+ 0.30m,− 3.67m,+ 5.34m)T (+109.04°,+ 17.10°,+177.49°)T

C3 (+ 3.08m,− 0.74m,+ 1.61m)T (+ 14.16°,− 46.99°,− 31.41°)T

C4 (+ 6.11m,+ 0.88m,+ 0.29m)T (+ 29.51°,− 47.01°,− 39.68°)T

C5 (+ 6.31m,+ 0.87m,+ 0.33m)T (+ 13.87°,+ 21.69°,+ 24.80°)T

C6 (+ 3.67m,− 2.05m,+ 4.00m)T (+ 65.48°,+ 55.72°,+ 97.00°)T

C7 (+ 3.64m,− 1.87m,+ 3.72m)T (+115.78°,− 16.18°,−156.50°)T

C8 (+ 9.52m,− 5.04m,+ 8.94m)T (+ 93.20°,− 47.12°,−126.69°)T

C9 (+ 13.02m,− 0.62m,+ 3.38m)T (+ 37.79°,− 52.87°,− 49.14°)T

C10 (+ 6.32m,− 7.81m,+ 12.73m)T (+119.00°,− 4.57°,−169.25°)T

C11 (+ 3.34m,− 2.08m,+ 4.00m)T (+ 4.78°,+ 0.16°,+ 2.01°)T

C12 (− 4.68m,− 1.30m,+ 1.80m)T (+ 18.76°,+ 37.00°,+ 39.43°)T

C13 (+ 0.05m,− 5.91m,+ 9.06m)T (+ 82.71°,+ 52.01°,+120.76°)T

C14 (− 0.25m,− 5.83m,+ 8.82m)T (+115.17°,+ 2.35°,−178.45°)T

C15 (− 7.31m,− 4.27m,+ 5.45m)T (+ 74.98°,+ 55.33°,+112.67°)T

81

B. Reference Calibration

Table B.2: Reference extrinsic calibration for Scenario 2 with 20 cameras.
Camera Position Orientation
C0 (+ 0.00m,+ 0.00m,+ 0.00m)T (+ 0.00°,+ 0.00°,+ 0.00°)T

C1 (+ 0.28m,− 0.12m,− 0.23m)T (− 49.64°,+ 53.35°,− 78.31°)T

C2 (+ 3.51m,+ 1.91m,+ 2.93m)T (−115.31°,− 6.65°,−178.24°)T

C3 (+ 3.22m,+ 2.06m,+ 3.16m)T (− 75.23°,− 55.08°,+111.34°)T

C4 (+ 5.52m,+ 1.38m,+ 1.96m)T (+ 4.80°,− 4.11°,+172.46°)T

C5 (+ 10.67m,+ 4.62m,+ 6.99m)T (+ 66.52°,+ 55.75°,− 81.48°)T

C6 (+ 7.42m,+ 6.20m,+ 9.47m)T (+113.51°,+ 8.06°,− 0.51°)T

C7 (+ 3.57m,+ 2.28m,+ 3.46m)T (+ 8.31°,− 28.12°,+161.49°)T

C8 (+ 3.57m,+ 3.93m,+ 6.14m)T (+106.14°,+ 39.38°,− 32.98°)T

C9 (− 0.54m,+ 5.89m,+ 9.07m)T (+118.11°,− 0.12°,+ 2.06°)T

C10 (− 5.55m,+ 2.42m,+ 3.84m)T (+ 78.52°,− 57.34°,+ 67.82°)T

C11 (− 5.80m,+ 2.24m,+ 3.67m)T (+119.82°,− 5.84°,+ 3.54°)T

C12 (− 0.19m,− 0.06m,− 0.16m)T (+ 42.49°,+ 59.35°,−109.62°)T

C13 (− 10.97m,− 0.73m,− 0.84m)T (+ 65.45°,− 55.96°,+ 88.44°)T

C14 (− 7.03m,− 2.70m,− 4.37m)T (+ 6.96°,− 30.15°,+160.10°)T

C15 (− 0.77m,− 5.34m,− 8.38m)T (+ 8.99°,+ 8.69°,−170.14°)T

C16 (+ 3.85m,− 2.13m,− 3.39m)T (+ 92.41°,+ 50.63°,− 56.31°)T

C17 (− 0.24m,− 0.23m,− 0.43m)T (+122.16°,+ 6.42°,− 2.08°)T

C18 (+ 3.90m,− 2.02m,− 3.22m)T (+ 8.51°,+ 16.67°,−166.89°)T

C19 (+ 7.63m,+ 0.08m,− 0.19m)T (+ 59.85°,+ 56.54°,− 91.23°)T

82

List of Figures

1.1. RGB images from the targeted system of 20 smart edge sensors
showing the scene that serves as the scenario for this thesis. 2

2.1. 2D human pose estimation for multiple persons simultaneously.
Keypoint detections belonging to the same person are linked. [16] . 4

2.2. 3D human pose estimation on the Shelf dataset using four cameras
and four persons. Only three persons are detected. Data association
between views is indicated by numbers above the heads. [22] 5

2.3. Real-Time Multi-View 3D Human Pose Estimation using Semantic
Feedback to Smart Edge Sensors [24]. The image data is only shown
for illustration purposes. 6

3.1. Illustration of the projective camera model. c is the principle point
and C is the optical center. The local coordinate system of the
camera is placed at the optical center. The image plane is depicted
in front of the optical center. 7

3.2. Convention for positive rotations of a local coordinate system (a)
and an illustration of the extrinsic calibration where each camera is
represented by its local coordinate system embedded in the global
vector space (b). 10

3.3. Illustration of an exemplary factor graph consisting of four variable
nodes (X0, ..., X3) and one unary (f0), binary (f1) and trinary (f2)
factor node each. 11

3.4. Least-squares estimation of transformation parameters between two
point patterns A and B according to Umeyama [36]. 16

4.1. Overview of the proposed pipeline for extrinsic camera calibration
using smart edge sensors and person keypoint detections. Images
are analyzed locally on the sensor boards. Keypoint detections
are transmitted to the backend where multiple views are fused to
construct and solve optimization problems using factor graphs. A
queue decouples the pre-processing and optimization stages. 17

83

List of Figures

4.2. Visualization of the person keypoint detections for one person with
the corresponding RGB image shown in the background for illus-
tration purposes (left). Image of one deployed sensor running TPU
based inference locally and directly transmitting person keypoint
detections to the backend (right). 21

4.3. Illustration of the pre-processing stage where a synchronized set of
detections from eight sensors is filtered and associated. Keypoint
detection confidences are colored according to a heat color-map.
Accepted sensors and keypoints are highlighted while rejections are
provided with reasoning. Corresponding person detections between
sensors are surrounded by bounding boxes of the same color. 22

4.4. 3D back-projection rays embedded in the global coordinate system
for the joint detections of one person (black) and the corresponding
reduction to line segments after applying depth estimation (green).
3D human pose estimation according to [24] shown for illustration
purposes only. 27

4.5. Illustration of the selection of hypotheses for a person who has
traversed most parts of the room. The skeleton models are obtained
after optimization using the selected hypotheses. Free areas are
occupied or occluded by objects. 34

4.6. Factor graph with camera variable nodes for the camera poses C
and landmark variable nodes for the 3D joint positions L. Camera
and landmark nodes can be connected via binary projection factors
to constrain the reprojection error of a person keypoint detection.
Each landmark node must be connected to at least two projection
factors for allowing triangulation. All camera nodes are connected
to a unary prior factor that encodes the uncertainty of the camera
pose. 39

4.7. Illustration of a multiple 3D skeleton models where the joint loca-
tions obtained in the triangulation procedure are depicted by the
black skeletons and the corresponding landmark locations after per-
forming optimization are depicted by the multicolored skeletons. . . 42

5.1. Comparison of the deployed smart edge sensor types. Type A (left)
is based on a Google EdgeTPU Dev Board [45]. Type B (right) is
based on a Nvidia Jetson Xavier NX Developer Kit [46]. 50

6.1. Sketched floor plan with camera poses for Scenario 1. 56
6.2. Sketched floor plan with camera poses for Scenario 2. 56

84

List of Figures

6.3. Raw position error toward the reference calibration for Experiment 1. 59
6.4. Orientation error toward the reference calibration for Experiment 1. 60
6.5. Distributed position error toward the reference calibration for Ex-

periment 1. 61
6.6. Distributed position error toward the reference calibration for Ex-

periment 2. 62
6.7. Orientation error toward the reference calibration for Experiment 2. 63
6.8. Distributed position error toward the reference calibration for Ex-

periment 3. 64
6.9. Orientation error toward the reference calibration for Experiment 3. 65
6.10. Position error toward the reference calibration for Experiment 4. . . 66
6.11. Orientation error toward the reference calibration for Experiment 4. 66
6.12. Comparison of the reprojection error per camera between our method

and the reference calibration for Experiment 4. 67
6.13. Distributed position error toward the reference calibration for Ex-

periment 5. 68
6.14. Comparison of the reprojection error per camera between our method

and the reference calibration for Experiment 5. 69

A.1. RGB images from all cameras within Scenario 2 where each image
center is highlighted by a red cross. 79

A.2. Visual estimation of the camera poses for Scenario 2 within the
floor plan of the building. Arrows indicate where the principle axes
intersect the ground plane. An arbitrary pose aligned with the
room geometry serves as origin of the coordinate system (green). . . 80

85

List of Tables

4.1. Ordered list of detectable joints according to the COCO dataset [20]. 20

5.1. Parameters for the filtering step. 52
5.2. Parameters for Data Association. 52
5.3. Parameters for the person hypothesis selection step. 53
5.4. Parameters for the optimization stage. 53
5.5. Parameters for the error estimation step. 54
5.6. Parameters for the temporal smoothing step. 54

6.1. Comparison of the reprojection errors per joint between our method
and the reference calibration for Experiment 4. 67

6.2. Comparison of the reprojection errors per joint between our method
and the reference calibration for Experiment 5. 69

6.3. Average distributed unscaled position errors for different configura-
tions of the intrinsic calibration over multiple runs for Experiment 6. 70

6.4. Average distributed position error for a scaled reference calibration
by the factor s over multiple runs. 71

B.1. Reference extrinsic calibration for Scenario 1 with 16 cameras. . . . 81
B.2. Reference extrinsic calibration for Scenario 2 with 20 cameras. . . . 82

87

Bibliography
[1] Jérôme Maye, Paul Furgale, and Roland Siegwart. “Self-supervised calibra-

tion for robotic systems”. In: IEEE Intelligent Vehicles Symposium (IV).
2013, pp. 473–480. doi: 10.1109/IVS.2013.6629513.

[2] Zhengyou Zhang. “A flexible new technique for camera calibration”. In: IEEE
Transactions on Pattern Analysis and Machine intelligence (PAMI) 22.11
(2000), pp. 1330–1334. doi: 10.1109/34.888718.

[3] Joern Rehder, Janosch Nikolic, Thomas Schneider, Timo Hinzmann, and
Roland Siegwart. “Extending kalibr: Calibrating the extrinsics of multiple
IMUs and of individual axes”. In: IEEE International Conference on Robotics
and Automation (ICRA). 2016, pp. 4304–4311. doi: 10.1109/ICRA.2016.
7487628.

[4] Edwin Olson. “AprilTag: A robust and flexible visual fiducial system”. In:
IEEE International Conference on Robotics and Automation (ICRA). 2011,
pp. 3400–3407. doi: 10.1109/ICRA.2011.5979561.

[5] Przemysław Komorowski Jacekand Rokita. “Extrinsic camera calibration
method and its performance evaluation”. In: Computer Vision and Graphics.
2012, pp. 129–138. doi: 10.1007/978-3-642-33564-8_16.

[6] D.G. Lowe. “Object recognition from local scale-invariant features”. In: IEEE
International Conference on Computer Vision (ICCV). Vol. 2. 1999, 1150–
1157 vol.2. doi: 10.1109/ICCV.1999.790410.

[7] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A
paradigm for model fitting with applications to image analysis and auto-
mated cartography”. In: Commun. ACM 24.6 (1981), pp. 381–395. doi:
10.1145/358669.358692.

[8] Romil Bhardwaj, Gopi Krishna Tummala, Ganesan Ramalingam, Ramachan-
dran Ramjee, and Prasun Sinha. “AutoCalib: Automatic traffic camera cali-
bration at scale”. In: ACM Transactions on Sensor Networks (TOSN) 14.3-4
(2018), pp. 1–27. doi: https://doi.org/10.1145/3199667.

[9] Junzhi Guan, Francis Deboeverie, Maarten Slembrouck, Dirk Van Haeren-
borgh, Dimitri Van Cauwelaert, Peter Veelaert, and Wilfried Philips. “Ex-
trinsic calibration of camera networks based on pedestrians”. In: Sensors 16.5
(2016). doi: 10.3390/s16050654.

89

https://doi.org/10.1109/IVS.2013.6629513
https://doi.org/10.1109/34.888718
https://doi.org/10.1109/ICRA.2016.7487628
https://doi.org/10.1109/ICRA.2016.7487628
https://doi.org/10.1109/ICRA.2011.5979561
https://doi.org/10.1007/978-3-642-33564-8_16
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1145/358669.358692
https://doi.org/https://doi.org/10.1145/3199667
https://doi.org/10.3390/s16050654

Bibliography

[10] Anh Minh Truong, Wilfried Philips, Junzhi Guan, Nikos Deligiannis, and
Lusine Abrahamyan. “Automatic extrinsic calibration of camera networks
based on pedestrians”. In: IEEE International Conference on Distributed
Smart Cameras (ICDSC). Association for Computing Machinery, 2019. doi:
10.1145/3349801.3349802.

[11] Andrzej Reinke, Marco Camurri, and Claudio Semini. “A factor graph ap-
proach to multi-camera extrinsic calibration on legged robots”. In: IEEE
International Conference on Robotic Computing (IRC). 2019, pp. 391–394.
doi: 10.1109/IRC.2019.00071.

[12] Frank Dellaert and Michael Kaess. “Factor graphs for robot perception”. In:
Foundations and Trends in Robotics (FNT) 6.1-2 (2017). http://dx.doi.
org/10.1561/2300000043, pp. 1–139.

[13] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human
detection”. In: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR). Vol. 1. USA, 2005, pp. 886–893. doi: 10.1109/
CVPR.2005.177.

[14] M.A. Fischler and R.A. Elschlager. “The representation and matching of
pictorial structures”. In: IEEE Transactions on Computers C-22.1 (1973),
pp. 67–92. doi: 10.1109/T-C.1973.223602.

[15] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. “Pictorial structures for
object recognition”. In: International Journal of Computer Vision (IJCV)
61.1 (2005), pp. 55–79. doi: 10.1023/B:VISI.0000042934.15159.49. url:
https://doi.org/10.1023/B:VISI.0000042934.15159.49.

[16] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
“OpenPose: Realtime multi-person 2D pose estimation using part affinity
fields”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) 43.1 (2021), pp. 172–186. doi: 10.1109/TPAMI.2019.2929257.

[17] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu. “RMPE: Regional
multi-person pose estimation”. In: IEEE International Conference on Com-
puter Vision (ICCV). 2017, pp. 2353–2362. doi: 10.1109/ICCV.2017.256.

[18] Jiefeng Li, Can Wang, Hao Zhu, Yihuan Mao, Hao-Shu Fang, and Cewu
Lu. “CrowdPose: Efficient crowded scenes pose estimation and a new bench-
mark”. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2019, pp. 10855–10864. doi: 10.1109/CVPR.2019.01112.

[19] Yuliang Xiu, Jiefeng Li, Haoyu Wang, Yinghong Fang, and Cewu Lu. “Pose
Flow: Efficient online pose tracking”. In: British Machine Vision Conference
(BMVC). 2018. url: http://www.bmva.org/bmvc/2018/index.html.

90

https://doi.org/10.1145/3349801.3349802
https://doi.org/10.1109/IRC.2019.00071
http://dx.doi.org/10.1561/2300000043
http://dx.doi.org/10.1561/2300000043
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/T-C.1973.223602
https://doi.org/10.1023/B:VISI.0000042934.15159.49
https://doi.org/10.1023/B:VISI.0000042934.15159.49
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1109/ICCV.2017.256
https://doi.org/10.1109/CVPR.2019.01112
http://www.bmva.org/bmvc/2018/index.html

Bibliography

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Gir-
shick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and
Piotr Dollár. Microsoft COCO: Common objects in context. 2015. arXiv:
1405.0312.

[21] Mykhaylo, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. “2D human
pose estimation: New benchmark and state of the art analysis”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2014.
doi: 10.1109/CVPR.2014.471.

[22] V. Belagiannis, S. Amin, M. Andriluka, B. Schiele, N. Navab, and S. Ilic. “3D
pictorial structures revisited: Multiple human pose estimation”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI) 38.10
(2016), pp. 1929–1942. doi: 10.1109/TPAMI.2015.2509986.

[23] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu.
“Human3.6M: Large scale datasets and predictive methods for 3D human
sensing in natural environments”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI) 36.7 (2014), pp. 1325–1339. doi: 10.1109/
TPAMI.2013.248.

[24] Simon Bultmann and Sven Behnke. “Real-time multi-view 3D humanion
using semantic feedback to smart edge sensors”. In: Robotics: Science and
Systems XVII. 2021. doi: 10.15607/rss.2021.xvii.040.

[25] Julian Tanke and Juergen Gall. “Iterative greedy matching for 3D human
pose tracking from multiple views”. In: German conference on pattern recog-
nition. 2019. doi: 10.1007/978-3-030-33676-9_38.

[26] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. 2nd ed. USA: Cambridge University Press, 2003. isbn: 0521540518.

[27] Zhongwei Tang, Rafael Grompone von Gioi, Pascal Monasse, and Jean-
Michel Morel. “A precision analysis of camera distortion models”. In: IEEE
Transactions on Image Processing 26.6 (2017), pp. 2694–2704. doi: 10 .
1109/TIP.2017.2686001.

[28] Daphne Koller and Nir Friedman. Probabilistic graphical models: Principles
and techniques. Jan. 2009. isbn: 978-0-262-01319-2.

[29] Brendan J. Frey. “Extending factor graphs so as to unify directed and undi-
rected graphical models”. In: Proceedings of the Nineteenth Conference on
Uncertainty in Artificial Intelligence (UAI). UAI’03. Acapulco, Mexico: Mor-
gan Kaufmann Publishers Inc., 2002, pp. 257–264. doi: 10.48550/ARXIV.
1212.2486.

[30] Frank Dellaert. Factor graphs and GTSAM: A hands-on introduction. Tech.
rep. GT-RIM-CP&R-2012-002. GT RIM, 2012. url: https://research.
cc.gatech.edu/borg/sites/edu.borg/files/downloads/gtsam.pdf.

91

https://arxiv.org/abs/1405.0312
https://doi.org/10.1109/CVPR.2014.471
https://doi.org/10.1109/TPAMI.2015.2509986
https://doi.org/10.1109/TPAMI.2013.248
https://doi.org/10.1109/TPAMI.2013.248
https://doi.org/10.15607/rss.2021.xvii.040
https://doi.org/10.1007/978-3-030-33676-9_38
https://doi.org/10.1109/TIP.2017.2686001
https://doi.org/10.1109/TIP.2017.2686001
https://doi.org/10.48550/ARXIV.1212.2486
https://doi.org/10.48550/ARXIV.1212.2486
https://research.cc.gatech.edu/borg/sites/edu.borg/files/downloads/gtsam.pdf
https://research.cc.gatech.edu/borg/sites/edu.borg/files/downloads/gtsam.pdf

Bibliography

[31] Yan-Bin Jia. “Quaternions and rotations”. In: Com S 477.577 (2013).
[32] Jack B Kuipers. “Quaternions and rotation sequences”. In: Proceedings of

the International Conference on Geometry, Integrability and Quantization.
2000, pp. 127–143. doi: doi:10.7546/giq-1-2000-127-143.

[33] Jack B Kuipers. Quaternions and rotation sequences: A primer with appli-
cations to orbits, aerospace, and virtual reality. Princeton university press,
1999. isbn: 9780691102986.

[34] James Diebel. “Representing attitude: Euler angles, unit quaternions, and
rotation vectors”. In: Matrix 58.15-16 (2006), pp. 1–35.

[35] Du Q Huynh. “Metrics for 3D rotations: Comparison and analysis”. In: Jour-
nal of Mathematical Imaging and Vision 35.2 (2009), pp. 155–164.

[36] S. Umeyama. “Least-squares estimation of transformation parameters be-
tween two point patterns”. In: IEEE Transactions on Pattern Analysis and
Machine intelligence (PAMI) 13.04 (1991), pp. 376–380. doi: 10.1109/34.
88573.

[37] Andrew Howard, Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh Chen,
Mingxing Tan, Grace Chu, Vijay Vasudevan, Yukun Zhu, Ruoming Pang,
Hartwig Adam, and Quoc Le. “Searching for MobileNetV3”. In: IEEE/CVF
International Conference on Computer Vision (ICCV). 2019, pp. 1314–1324.
doi: 10.1109/ICCV.2019.00140.

[38] Josh Faust. Approximate time synchronizer. Accessed: 2022-02-17. 2010.
url: http://wiki.ros.org/message_filters/ApproximateTime.

[39] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Ng. “ROS: An open-source robot operating
system”. In: vol. 3. 2009, p. 5.

[40] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000).

[41] Stefan Wirtz and Dietrich Paulus. “Evaluation of established line segment
distance functions”. In: Pattern Recognition and Image Analysis 26 (2016),
pp. 354–359. doi: 10.1134/S1054661816020267.

[42] Landis Markley, Yang Cheng, John Crassidis, and Yaakov Oshman. “Av-
eraging quaternions”. In: Journal of Guidance, Control, and Dynamics 30
(2007), pp. 1193–1196. doi: 10.2514/1.28949.

92

https://doi.org/doi:10.7546/giq-1-2000-127-143
https://doi.org/10.1109/34.88573
https://doi.org/10.1109/34.88573
https://doi.org/10.1109/ICCV.2019.00140
http://wiki.ros.org/message_filters/ApproximateTime
http://www.robotics.stanford.edu/\protect \unhbox \voidb@x \protect \penalty \@M \ {}ang/papers/icraoss09-ROS.pdf
http://www.robotics.stanford.edu/\protect \unhbox \voidb@x \protect \penalty \@M \ {}ang/papers/icraoss09-ROS.pdf
https://doi.org/10.1134/S1054661816020267
https://doi.org/10.2514/1.28949

Bibliography

[43] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Shep-
pard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke,
and Travis E. Oliphant. “Array programming with NumPy”. In: Nature
585.7825 (2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url:
https://doi.org/10.1038/s41586-020-2649-2.

[44] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson,
K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-
riksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. In:
Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-2.

[45] Google. EdgeTPU dev board. Accessed: 2022-03-25. 2020. url: https://
coral.ai/docs/dev-board/datasheet.

[46] NVIDIA. Nvidia Jetson Xavier NX Developer Kit. Accessed: 2022-03-25.
2020. url: https://developer.nvidia.com/embedded/jetson-xavier-
nx-devkit.

[47] Simon Bultmann and Sven Behnke. “3D semantic scene perception using
distributed smart edge sensors”. In: Accepted for IEEE International Con-
ference on Intelligent Autonomous Systems (IAS). 2022.

[48] Alexander Hermans, Lucas Beyer, and Bastian Leibe. “In defense of the
triplet loss for person re-identification”. In: (2017). url: http://arxiv.
org/abs/1703.07737.

93

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://coral.ai/docs/dev-board/datasheet
https://coral.ai/docs/dev-board/datasheet
https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit
https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit
http://arxiv.org/abs/1703.07737
http://arxiv.org/abs/1703.07737

	Introduction
	Related Work
	Camera Calibration
	Human Pose Estimation

	Theory
	Projective Geometry
	Intrinsic Camera Calibration
	Extrinsic Camera Calibration

	Factor Graphs
	Error Metrics

	Method
	Person Keypoint Detection
	Pre-Processing Stage
	Synchronization
	Filtering
	Data Association
	Pruning
	Analysis and Queueing

	Optimization Stage
	Person Hypothesis Selection
	Factor Graph Construction
	Variable Initialization
	Optimization

	Refinement Stage
	Temporal Smoothing
	Error Estimation

	Implementation
	Utilized Frameworks & Hardware
	Features & Usage
	Parameters

	Evaluation
	Setup
	Experiments
	Results

	Conclusion
	Discussion & Future Work

	Appendices
	Manual Calibration
	Reference Calibration

