
Institute for Computer Science
Department VI
Autonomous Intelligent Systems

Rheinische
Friedrich-Wilhelms-

Universität Bonn

Rheinische
Friedrich-Wilhelms-Universität Bonn

Master Thesis

Transformers for 6D Object Pose Estimation

Author:
Arash Amini

First Examiner:
Prof. Dr. Sven Behnke

Second Examiner:
Prof. Dr. Jürgen Gall

Advisor:
Arul Selvam Periyasamy

Date: February 23, 2022





Declaration

I hereby declare that I am the sole author of this thesis and that none other than
the specified sources and aids have been used. Passages and figures quoted from
other works have been marked with appropriate mention of the source.

Place, Date Signature





Abstract
6D object pose estimation is the task of predicting the orientation and transla-
tion of objects in a given input image. This information is crucial in many fields,
e.g., robotics, autonomous driving, and augmented reality. In recent years, the
Transformer has dominated the natural language processing area and embarked
on achieving state-of-the-art results in many computer vision tasks. One of the
notable Vision Transformers is DETR, which models object detection as a set
prediction problem and demonstrates impressive results without any handcrafted
components. In this thesis, inspired by DETR performance, we formulate the
multi-object 6D pose estimation from a monocular image as a set prediction prob-
lem and investigate the usage of Transformers for this task. We propose a real-time
single-stage architecture that directly regresses the translation and rotation com-
ponents of the 6D object pose. To further improve the performance, we extend
our approach by employing keypoints as 2D projected sparse correspondences to
estimate rotation. The proposed methods yield performance competitive with or
better than state-of-the-art approaches on the challenging YCB-Video dataset.
Moreover, the inference time analysis shows the superiority of our models in terms
of inference time, making them ideal for real-world applications.
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1 Introduction

Object pose estimation is one of the crucial tasks in the computer vision field
which aims to determine the 3D rotation and 3D translation of an object in
camera-centered coordinates having the 3D model points as illustrated in Fig-
ure 1.1. Researchers have tried to tackle this problem due to its wide range of
applications in many areas such as robotics, autonomous driving, and augmented
reality. In robotics for instance, autonomous robotic object manipulation in real-
world scenarios like industrial bin picking depends on high-quality 6D object pose
estimation. The main challenges for this task is to handle symmetric, occluded
and texture-less objects.

Many approaches have been introduced that rely on both RGB and depth
data (W. Chen et al. 2020; Choi and Christensen 2016; Y. He et al. 2020; Wada
et al. 2020; C. Wang et al. 2019). These methods obtain top performance in terms
of accuracy; however, recently the approaches that rely on only RGB images have
shown stronger results when training with synthetic data provided by the BOP
challenge (Hodaň, Sundermeyer, et al. 2020). Additionally, more methods lately
focus on considering only the RGB information since the depth cameras informa-
tion is not always accessible due to failing of cameras in open air or capturing
objects and surfaces made from transparent, reflective, and absorptive materials.
The depth sensor also has the drawback of being energy-consuming (Rad and
Lepetit 2017).

In recent years, with the advent of Convolutional Neural Networks (CNNs),

Camera coordinates

Object coordinates

Figure 1.1: Illustration of the 6D object pose estimation task. The image is adapted
from (Xiang et al. 2017).
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1 Introduction

significant progress has been made to boost the pose estimation methods. Due
to the complex nature of the problem, the proposed pipelines favor multi-stage
architectures, i.e., object detection and/or instance segmentation to detect the
objects in a given RGB image, extraction of the target object crop, and finally
processing the cropped patch to estimate the 6D object pose. Motivated by the
success of deep learning methods for computer vision, in a strive for end-to-end
differentiable pipelines, many of the traditional components like Non-Maximum
Suppression (NMS) and Region of Interest cropping (RoI) have been replaced by
their differentiable counterparts (Girshick 2015; Hosang, Benenson, and Schiele
2017; Ren et al. 2015). Despite these advancements, the pose estimation accuracy
still heavily depends on the initial object detection stage.

Recently due to the impressive performance of Transformers in natural lan-
guage processing tasks, they also received attention in computer vision commu-
nity, e.g., Carion et al. (2020) introduced DETR, a single-stage non-autoregressive
Transformer model that treats object detection as a set prediction problem. In this
thesis, we develop end-to-end transformer-based approaches evolved from DETR
for multi-object 6D pose estimation from a single RGB image.

We formulate multi-object 6 Degrees-of-Freedom (6DoF) pose estimation as a set
prediction problem and introduce two real-time differentiable architectures for this
task. Our first proposed approach utilizes independent Multi Layer Perceptrons
(MLPs) to directly regress the rotation and translation components. To improve
the overall 6D pose estimation accuracy of the proposed direct model, and since
the key idea is to target the 6D pose estimation task rather than improving the
architecture, we extend our approach by exploiting keypoints as 2D projected
sparse correspondences to estimate 3D rotation using a fully connected module,
called Rotation Estimation (RotEst).

In this thesis, we attempt to employ Vision Transformers for 6D object pose
estimation from a single RGB image. Taking advantage of the non-autoregressive
Transformer architecture, our proposed approaches predict 6D pose for all the ob-
jects in an image in one forward-pass. We compare our proposed approaches with
the state-of-the-art methods on the multi-object single-instance 6D pose dataset,
YCB-Video introduced by Xiang et al. (2017).

A part of the material presented in this thesis has been published in the DAGM
German Conference on Pattern Recognition (GCPR), 2021 (Amini, Periyasamy,
and Behnke 2021). The organization of the thesis is as follows:

• Chapter 2 - Background
The key materials associated with the main topic of this thesis (6D object
pose estimation) and the proposed architectures are presented in the back-
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ground chapter.

• Chapter 3 - Related Work
In this chapter, we review works that have addressed the 6D object pose
estimation. The related work is divided into the following parts: (i) classical
approaches, (ii) deep learning based models.

• Chapter 4 - Method
This chapter presents the proposed approaches in this thesis. Each part of
the proposed methods and the choices we consider for the corresponding
part are explained in detail. The main feature of our approaches is to be
single-stage models generating the multi-object 6D poses in one shot.

• Chapter 4 - Experiments
In this chapter, we provide the details of the dataset and metrics utilized to
evaluate the proposed methods as well as the description of comprehensive
experiments conducted for the proposed approaches.

• Chapter 5 - Conclusion
This chapter summarizes the main contributions of the thesis and discusses
the observed results and future works.
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2 Background

In this chapter, we present the necessary background material for this thesis. Sec-
tion 2.1 provides an overview of the original Transformer architecture proposed
by Vaswani et al. (2017) and describes its usage in tackling computer vision prob-
lems. As the proposed methods are derived from DETR (Carion et al. 2020), the
transformer-based architecture, we introduce this model in Section 2.2.

Since the choice of rotation representations has a significant effect on the model
performance for 6DoF pose estimation, we briefly explain the commonly used
rotation representations in Section 2.3. Finally, in Section 2.4, we describe the
PnP algorithms that utilize 2D-3D correspondences to recover the 6D object pose.

2.1 Transformer
Transformer (Vaswani et al. 2017) is a multi-layered architecture based on a self-
attention mechanism that enables neural networks to learn long-term dependencies
in the input data (see Figure 2.1). One of the main advantages of this attention-
based model is the ability of parallel sequence generation, which makes them the
best choice for handling long sequences. As a result, Transformers have achieved
great success in natural language processing and speech recognition tasks (Devlin
et al. 2018; Y. Liu et al. 2019; Radford et al. 2019; Synnaeve et al. 2019). The
Transformer can be primarily utilized in three modes: encoder-only, decoder-only,
and encoder-decoder. In this thesis, we leverage the encoder-decoder model with a
multi-head self-attention mechanism in both encoder and decoder and a multi-head
cross-attention mechanism in the decoder.

Each layer of the Transformer encoder is comprised of a multi-head self-attention
mechanism, a feed-forward network, layer normalization (Ba, Kiros, and Hinton
2016) modules, and residual connections. The embed of input is added to the
positional encoding and passed through the encoder layer. Positional encodings
can be either fixed like sinusoidal functions (Vaswani et al. 2017) or learnable em-
beddings. The sinusoidal fixed encodings allow the model to attend the relative
positions since for any fixed offset k, the positional encoding at pos + k can be
represented as a linear function of positional encoding at pos (Vaswani et al. 2017).
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Figure 2.1: The Transformer architecture. The figure is taken from (Tay et al. 2020).

As illustrated in Figure 2.1, a Transformer decoder layer enjoys the same compo-
nents as the encoder layer along with a multi-head cross-attention mechanism that
provides the decoder with information from the encoder.

2.1.1 Transformers in Computer Vision

Lately, Transformers are also gaining attraction in the computer vision commu-
nity. Architectures that replace CNNs completely with Transformers are achieving
state-of-the-art results in image classification (Dosovitskiy et al. 2020; Z. Liu, Y.
Lin, et al. 2021; El-Nouby et al. 2021; Touvron, Cord, Douze, et al. 2020; Touvron,
Cord, Sablayrolles, et al. 2021; Zhang et al. 2021), object recognition (Dosovitskiy
et al. 2020; Z. Liu, Y. Lin, et al. 2021; Zhang et al. 2021), instance and semantic
segmentation (El-Nouby et al. 2021; W. Wang et al. 2021a), semantic segmenta-
tion (Z. Liu, Y. Lin, et al. 2021; Strudel et al. 2021; H. Wang et al. 2020; Zheng
et al. 2021), image synthesis (M. Chen et al. 2020; Esser, Rombach, and Ommer
2020; Jiang, Chang, and Z. Wang 2021), object tracking (Meinhardt et al. 2021;
Sun et al. 2020; Xu et al. 2021; Zeng et al. 2021), and video analysis (Arnab
et al. 2021; Z. Liu, Ning, et al. 2021). The proposed methods in this thesis are
derived from DETR (Carion et al. 2020), a single-stage Vision Transformer model
for objection detection, which is described in the next section.
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2.2 DETR

2.2 DETR

Carion et al. (2020) introduce DETR, an end-to-end differentiable object detection
model using the Transformer architecture. In contrast to the modern models
which address object detection, the problem of estimating the bounding boxes and
class label probabilities, as an indirect set prediction problem, DETR formulate
this problem as a direct set prediction task. The DETR architecture includes
three main components: a CNN backbone for feature extraction, an encoder-
decode Transformer with non-autoregressive parallel decoding, and a Feed Forward
Network (FFN) to generate the final predictions. Given an RGB input image, the
DETR model outputs a set of tuples with fixed cardinality. Each tuple consists of
the bounding box and class label probability of an object. To allow an output set
with a fixed cardinality, a larger cardinality is chosen, and a special class id Ø as
“no object class” is used for padding the rest of the tuples in addition to the actual
object detections. The tuples in the predicted set and the ground truth target set
are then matched by bipartite matching using the Hungarian algorithm.

The DETR model achieves competitive results for both object detection and
panoptic segmentation on the COCO dataset (T.-Y. Lin et al. 2014) compared to
standard CNN-based architectures. Although this model yields better performance
on detecting large objects, it shows poor results for small ones. The DETR also has
a slower convergence than the existing object detectors. One of the recent works
which addresses the mentioned limitations of DETR is Deformable DETR (Zhu
et al. 2021) in which perfectly combines the sparse spatial sampling of deformable
convolutions and the capability of Transformers in relation modeling.

2.3 Rotation Representation

Theoretically, it is possible to represent any 3D rotation with three dimension.
However, due to instabilities representing of this way, recent methods utilize more
compact rotation representations such as axis-angles and quaternions. Any 3D ro-
tation can be specified by an axis of rotation and a rotation angle around that axis.
Therefore, an axis-angle rotation can be represented by four numbers (θ, x̂, ŷ, ẑ),
where [x̂, ŷ, ẑ]T is a unit vector that defines the axis of rotation, and θ is the
amount of rotation around this vector. Generally, a quaternion is represented by
four elements (q0, q1, q2, q3) as follows (Vince 2011):

q = q0 + iq1 + jq2 + kq3, (2.1)
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where q0, q1, q2 and q3 are real numbers, and i, j and k are mutually orthogonal
imaginary unit vectors. The q0 term is referred to as the real component, and
the remaining three terms are the imaginary components. Given the axis-angle
components (θ, x̂, ŷ, ẑ), we can convert to a rotation quaternion q as follows:

q0 = cos(θ/2), q1 = x̂ sin(θ/2), (2.2)
q2 = ŷ sin(θ/2), q3 = ẑ sin(θ/2).

Zhou et al. (2019) show that there cannot exist any continuous representation
for 3D rotation in the Euclidean space with four or fewer dimensions. Moreover,
the mentioned representations are not ideal for the convergence of deep neural
networks; therefore, they introduce a novel 6D continuous representation for the
rotation matrix R in SO(3), which has shown superior performance compared
to other representations. Following the state-of-the-art methods, we utilize the
6D continuous rotation representation, which is further explained in the method
chapter.

2.4 PnP Algorithms and Variants
Given a set of n 3D keypoints and their corresponding 2D projections as well as
the camera intrinsic matrix, the goal of the Perspective-n-Point (PnP) problem
is to recover the 6D object pose consisting of rotation and translation. To solve
this problem, there has been proposed different algorithms including standard
PnP (Gao et al. 2003) and non-iterative EPnP (Lepetit, Moreno-Noguer, and Fua
2009).

Based on (Lepetit, Moreno-Noguer, and Fua 2009), four points are generally
sufficient to estimate the pose in the P3P problem. However, recent approaches
exploit dense 2D-3D correspondences; therefore, to deal with these correspon-
dences, the PnP algorithms are commonly used in combination with the RANdom
SAmple Consensus (RANSAC) algorithms. The RANSAC algorithm is employed
to improve the robustness against outliers. This algorithm aims to find the best
hypothesis that fits the given data containing outliers. It first finds the model
parameters that fit the measurements sampled randomly. Then the fitting model
is checked for all the measurements. If they fit, they are counted as inliers. The
RANSAC algorithm repeats the mentioned steps, and the estimated model with
the highest number of inliers is selected. Afterward, the model is refined by rees-
timating it using all inliers.

Although the PnP-RANSAC algorithms provide promising results, they are not
trivially differentiable. In order to realize an end-to-end differentiable pipeline for
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6D object pose estimation, the state-of-the-art approaches (B. Chen et al. 2020;
Hu, Fua, et al. 2020; S. Li et al. 2021; G. Wang et al. 2021) present a learning-based
PnP module. For instance, the learnable Patch-PnP module is introduced by G.
Wang et al. (2021) which contains three CNN layers in combination with Group
Normalization (Y. Wu and K. He 2018) and ReLU activation followed by two Fully
connected (FC) layers to reduce the dimension. This module takes dense 2D-3D
correspondences and surface region attention as inputs, and finally, two parallel
FC layers generate the 3D rotation and 3D translation components. B. Chen et
al. (2020) propose the differentiable BPnP module which can be backpropagated
through PnP by using the Implicit Function Theorem (Krantz and Parks 2002) to
compute the gradients.
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3 Related Work

This chapter reviews the literature proposed for 6D object pose estimation. First,
we briefly introduce the top-performance classical (RGB-D and depth-based) ap-
proaches in Section 3.1. The Point Pair Features-based (PPF-based) methods
show the best performance among the classical approaches. In recent studies,
architectures using the power of CNNs have been able to reach the PPF-based
methods.

Similar to many computer vision tasks, the recent significant progress on the
task of 6D object pose estimation from a single RGB image is driven by deep learn-
ing methods. Therefore, an overview of the CNN-based approaches are provided in
Section 3.2. These methods can be broadly classified into three major categories,
namely direct, indirect, and refinement-based approaches. Direct methods regress
object pose-related parameter presentations directly from an image. In contrast,
indirect approaches aim to retrieve the 6D pose from the estimated 2D-3D corre-
spondences using PnP algorithm. PnP algorithm is usually used in conjunction
with RANSAC for improving the robustness of the pose estimation. Refinement-
based methods formulate 6D pose estimation as an iterative refinement problem.
These approaches are often combined with direct or indirect methods, i.e., direct or
indirect methods produce initial pose estimate, and the refinement-based methods
are used to refine the initial pose estimate to predict the final accurate pose.

3.1 Classical Methods
Researchers have attempted to tackle the task of 6D object pose estimation for a
long time; therefore, there are numerous approaches proposed before the appear-
ance of CNNs. The classical methods can be divided into four categories:

First, PPF-based approaches (Drost et al. 2010; Vidal et al. 2018): where the
aim is to detect 3D objects in point clouds. Drost et al. (2010) utilize matching
oriented point pairs between the point cloud of the test scene and the object model
and group the matches with a local voting scheme. During training, point pairs
from the model are sampled and stored in a hash table. At test time, reference
points are fixed in the scene, and a low-dimensional parameter space for the voting
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scheme is created, which is restricted to those poses that align the reference point
with the model. Point pairs between the reference point and other scene points
are generated, similar model point pairs are searched through the hash table, and
a vote is cast for each matching point pair. Finally, pose candidates are extracted
from the peaks in the accumulator space, which are then refined by the coarse-to-
fine Iterative Closest Point (ICP) algorithm and re-scored by the relative amount of
visible model surface. While providing promising results, the PPF-based methods
are vulnerable to fail in the presence of sensor noise and background clutter.

Second, template matching methods (Hodaň, Zabulis, et al. 2015): templates
are the representations of an object utilizing images that depict the object from
different angles. The task can be considered as matching an image region to
the best fit within the templates. Although working perfectly on non-textured
objects, template matching approaches generally do not generate good results for
the occluded object.

Third, learning-based approaches (Brachmann, Krull, et al. 2014; Brachmann,
Michel, et al. 2016; Kehl, Milletari, et al. 2016; Tejani et al. 2014): in (Brachmann,
Krull, et al. 2014) a regression forest estimates the object identity and coordinate
for each pixel of an input image. Each object coordinate prediction defines a
3D-3D correspondence between the image and the 3D object model. A RANSAC-
based algorithm samples sets of feature correspondences to create a pool of pose
hypotheses. The final hypothesis is selected and iteratively refined to maximize
the alignment of predicted correspondences and observed depth with the object
model.

Finally, methods based on 3D local features (Buch, Petersen, and Krüger 2016;
Glent Buch, Kiforenko, and Kraft 2017): Buch, Petersen, and Krüger (2016) pro-
pose a RANSAC-based method that iteratively samples three feature correspon-
dences between the object model and the scene. These correspondences are gen-
erated by matching 3D local shape descriptors and are used to estimate the 6D
object pose which is refined by ICP. All of the mentioned methods take advan-
tage of RGB-D or depth information, and the approaches based on PPF provide
superior performance.

3.2 CNN-based Methods

3.2.1 Direct Approaches
One of the existing ways to estimate 6DoF pose is to formulate the pose estima-
tion problem as a regression of continuous rotation and translation components
directly from the RGB images. The state-of-the-art examples that follow the di-
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3.2 CNN-based Methods

rect approach for 6D object pose estimation include (Periyasamy, Schwarz, and
Behnke 2018; Xiang et al. 2017).

Xiang et al. (2017) propose an end-to-end regression method called PoseCNN
that decouples the object pose estimation into three related tasks (see Figure 3.1):
1) semantic labeling, i.e., prediction of an object label for each pixel in the input
image, 2) 3D translation estimation by localizing the 2D coordinates of the object
center via predicting a unit vector from each pixel towards the center and estimat-
ing the distance of the object center with respect to the camera, and 3) estimating
3D rotation by regressing a quaternion representation. Instead of regressing the
3D translation directly, PoseCNN proposes to localize the 2D object center in the
image and estimate object distance from the camera. The 3D translation is fi-
nally recovered using the known camera intrinsic matrix, 2D object center, and
its distance. Since the 2D object center can be occluded, it is not possible to
directly detect the center point. Therefore, PoseCNN network regresses the center
direction for each pixel in the image, and Hough voting is used to localize the
2D object center in which each pixel adds votes for image locations along the ray
predicted from the network. Moreover, this method introduces a novel loss func-
tion named ShapeMatch-Loss, which concentrates on matching the 3D shape of
an object. This new loss function handles symmetric objects during training, as
different orientations of symmetric objects may generate identical observations.

A RGB Image
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Figure 3.1: PoseCNN architecture, a direct method proposed for 6D object pose estima-
tion. The figure is taken from (Xiang et al. 2017).

In (Periyasamy, Schwarz, and Behnke 2018) authors present a direct pose esti-
mation network based on regression of a 5D pose, i.e., 3D rotation and 2D trans-
lation in the image plane. The 2D translation is then transformed into 3D using
depth information. In contrast to the RGB-D methods, their approach utilizes
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depth only for the capturing process before training the model and transforming
the inferred 5D pose estimate to 6D.

Conversely, Kehl, Manhardt, et al. (2017) and Sundermeyer et al. (2018a) pre-
dict the discretized rotation component instead of regression. SSD-6D (Kehl,
Manhardt, et al. 2017) introduces a direct prediction pipeline, which is the exten-
sion of the 2D object detection architecture, SSD (W. Liu et al. 2016). The idea of
SSD is that instead of considering input as discrete points, which results in contin-
uous output, we can treat the input as a dense space on the whole image and the
output as a discretized space into many overlapping bounding boxes of different
shapes and sizes. Following this approach, SSD-6D discretizes the rotation space
into classifiable viewpoint bins and handles rotation estimation as a classification
problem.

The direct methods have struggled to compete in terms of accuracy with indirect
architectures. The aim of indirect models is to establish 2D-3D correspondences
and solve them to predict pose-related parameters, which is introduced in the
following section. Although the indirect approaches have achieved state-of-the-art
results, these methods cannot be trained end-to-end and require extra computation
for pose optimization. Therefore, recently there has been an intensive research
effort to modify the indirect approaches to direct methods (Hu, Fua, et al. 2020;
Z. Li, G. Wang, and Ji 2019; G. Wang et al. 2021).

Hu, Fua, et al. (2020) present the Single-Stage method to adapt the indirect
methods to direct methods via using neural networks to estimate 2D-3D corre-
spondences directly and leveraging deep learning networks to approximate the
Perspective-n-Point (PnP). The proposed network directly regresses the 6D pose
from 2D-3D correspondences associated with each 3D object keypoints. The archi-
tecture is motivated from PointNet (Qi et al. 2017) with the main difference that
the order of the groups is considered fixed and corresponds to specific 3D keypoints,
which is opposite of the PointNet design that is invariant to rigid transformations.
Moreover, the Single-Stage framework is invariant to the order of the correspon-
dences in each group; therefore, they design a grouped feature aggregation method
to extract the representation of each cluster. They integrate the proposed network
with two state-of-the-art keypoints-based methods SegDriven (Hu, Hugonot, et al.
2019) and PVNet (Peng et al. 2019). The results show that the new end-to-end
trainable methods yield better accuracy and running time performance than the
original architectures. Although the results prove that the Single-Stage approach
works well, disregarding the fact that the correspondences are organized by the
image pixels leads to decline the performance strongly as shown in (Ma et al.
2020).

Coordinates-based Disentangled Pose Network (CDPN) is introduced by Z. Li,
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Figure 3.2: The architecture of GDR-Net. This model has end-to end differentiable
pipeline via leveraging learning-based PnP module. The figure is taken
from (G. Wang et al. 2021).

G. Wang, and Ji (2019) to disentangle the estimation of rotation and translation
components. The CDPN method first utilizes a lightweight detector for detect-
ing all objects. The model then zooms in on the target object one at a time
via the proposed Dynamic Zoom In (DZI) to predict the 6D object pose using
segmentation and coordinates maps which are fed to a PnP-RANSAC algorithm
for rotation estimation, and translation is directly estimated with the proposed
Scale-Invariant representation for Translation Estimation (SITE) based on the lo-
cal image patches. Even though CDPN shows robustness with respect to occlusion
and clutter, this method ignores the importance of handling symmetries.

Inspired by the CDPN method, G. Wang et al. (2021) present a framework to
estimate 6D pose via exploiting dense correspondence-based intermediate repre-
sentations in a fully differentiable way, called Geometry-guided Direct Regression
Network (GDR-Net). After detecting all objects using an off-the-shelf detector
as illustrated in Figure 3.2, GDR-Net zooms in on the corresponding Region of
Interest (RoI). The zoomed-in RoI will be fed to the proposed network to pre-
dict three intermediate geometric feature maps: the 2D-3D Correspondences Map
(M2D−3D), the Surface Region Attention Map (MSRA), and the Visible Object
Mask (Mvis). Finally, the 6D pose of the target object is directly regressed from
M2D−3D and MSRA using a learnable Patch-PnP solver consisting of 2D CNNs and
fully connected layers. The authors utilize the 6D continuous representation to
parameterize the 3D rotation proposed in (Zhou et al. 2019), and they follow the
method proposed in the CDPN approach for translation estimation.
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3.2.2 Indirect Approaches

As explained earlier, the indirect methods (Hodaň, Baráth, and Jiřı́ Matas 2020;
Hu, Fua, et al. 2020; Hu, Hugonot, et al. 2019; Peng et al. 2019; Rad and Lepetit
2017; Tekin, Sudipta N Sinha, and Fua 2018a) have a two-stage paradigm: first
using a deep network to estimate correspondences between 3D object points and
their 2D image projections, followed by a RANSAC based Perspective-n-Point
(PnP) algorithm to compute the 6D pose parameters.

As the pioneer of indirect approaches with a multi-stage framework, BB8 (Rad
and Lepetit 2017) exploits the object appearance itself instead of surface keypoints
to predict the 6D object pose. The target objects in 2D are detected using object
segmentation, and then another network is utilized to estimate 2D projections
of the 3D bounding box corners to create 2D-3D correspondences. Finally, the
3D pose is computed by solving a PnP algorithm based on these 2D-3D corre-
spondences. The BB8 framework has two main limitations: not being end-to-end
trainable and time-consuming for inference.

EPOS (Hodaň, Baráth, and Jiřı́ Matas 2020) represent the target object via
compact surface fragments. The correspondences between densely sampled pixels
and the surface fragments are estimated by utilizing an encoder-decoder convolu-
tional neural network. The proposed network generates three outputs per pixel:
the probability of each object’s presence, the probability of the fragments given the
object’s presence, and the exact 3D location on each fragment. The object pose
estimation from many-to-many 2D-3D correspondences is then estimated using a
variant of PnP-RANSAC algorithm, which is explained in the following, integrated
with the Progressive-X scheme (Barath and Jiri Matas 2019). Pose hypotheses are
proposed by GC-RANSAC (Barath and Jiri Matas 2018) which utilizes the spatial
coherence of correspondences, and the pose is estimated from sampled correspon-
dences using the EPnP solver (Lepetit, Moreno-Noguer, and Fua 2009) followed
by the Levenberg-Marquardt optimization (Moré 1978). Efficiency is achieved by
the PROSAC sampler (Chum and J. Matas 2005) that prioritizes correspondences
with a high predicted probability. The results prove that this method is capable
of handling objects with global or partial symmetries.

To be able to handle the poses of occluded or truncated objects, (Peng et al.
2019) propose the Pixel-wise Voting Network (PVNet) as illustrated in Figure 3.3.
Instead of directly regressing image coordinates of keypoints, PVNet predicts unit
vectors that represent pixel-wise directions of the object pointing to the keypoints.
Keypoints need to be on the object surface, and they should be spread out on the
surface to find a stable solution of the PnP problem. Therefore, PVNet exploit
the Farthest Point Sampling (FPS) algorithm to select eight keypoints. These unit
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Figure 3.3: The diagram of PVNet, one of the indirect methods. The figure is taken
from (Peng et al. 2019).

vectors then vote for the keypoint locations based on RANSAC (Fischler and Bolles
1981). As explained earlier, PoseCNN (Xiang et al. 2017) introduced a similar
idea for object detection. Generating a vector-field representation for keypoint
localization instead of coordinates or heatmaps has two advantages. The vector-
field representation makes the network focus on local features of objects and spatial
relations between object parts, which robustly estimates the occluded or truncated
keypoints from the visible parts and yields good performance. Moreover, the dense
outputs generated by the vector-field representation provide the uncertainty-driven
PnP algorithm in which the spatial probability distribution for each keypoint due
to the RANSAC-based voting helps the PnP solver to estimate the final pose based
on consistent correspondences.

Hu, Hugonot, et al. (2019) propose a segmentation-driven 6D pose estimation
network called SegDriven, where instead of a single global prediction, it utilizes
predictions of multiple local patches to estimate 6D poses robust to occlusions.
Each visible object patch contributes a pose estimate for the object it belongs to
in the form of the predicted 2D projections of predefined 3D keypoints. Then, using
confidence values also predicted by the SegDriven network, the most reliable 2D
projections for each 3D keypoints are combined. A RANSAC-based PnP algorithm
on these 2D-3D correspondences is applied to infer a pose per object.

While indirect methods are dominating in terms of accuracy, they suffer from
several drawbacks: 1) the loss function trained in this paradigm is designed to
handle a surrogate objective rather than the 6D pose estimation error, 2) due to
being multi-staged, these approaches are not differentiable and end-to-end train-
able, and 3) the iterative process of RANSAC is very time-consuming for dense
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Figure 3.4: The DeepIM network, which is a refinement-based approach. The figure is
taken from (Yi Li et al. 2018).

2D-3D correspondences.

3.2.3 Refinement-based Approaches
The third category of the pose estimation methods is refinement-based. These
methods formulate the task of pose estimation as iterative pose refinement, i.e.,
the target object is rendered according to the current pose estimate and a model is
trained to minimize the error between the current pose prediction and the ground
truth. Refinement-based methods (Labbe et al. 2020; Yi Li et al. 2018; Manhardt,
Kehl, et al. 2018; Periyasamy, Schwarz, and Behnke 2019; Shao et al. 2020) achieve
the highest pose prediction accuracy among the mentioned categories (Hodaň,
Sundermeyer, et al. 2020); however, these approaches are often slower than the
direct and indirect methods, and their speed depends heavily on the used renderer
and the number of iterations (Fan et al. 2021).

Yi Li et al. (2018) propose DeepIM as a deep learning-based pose refinement
network for iterative 6D pose matching. Given an initial pose estimation, DeepIM
generates the relative rotation and translation that can refine the initial 6D pose
estimation via minimizing the differences between the observed image and the
rendered image under the current pose as illustrated in Figure 3.4. The refined
pose is then utilized as the initial pose for the next iteration. This procedure
continues until the refined pose converges or iterations reach a pre-defined number.

CosyPose is developed by Labbe et al. (2020) to integrate the information from
multiple views to jointly predict poses of multiple objects for the reconstruction of
the input scene. The proposed method consists of three steps and generates a scene
model, including the number of per type objects, their corresponding 6D poses,
and the relative poses of the cameras. In the first step, 6D object pose hypotheses
are estimated from each view by following the render-and-compare approach of
DeepIM (Yi Li et al. 2018). In the second step, the object-level matching is
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conducted using RANSAC to optimize the overall scene consistency. Finally, the
6D poses of all objects and cameras are refined to minimize a global reprojection
error.

3.3 Our Approach
In this thesis, we propose two real-time transformer-based methods that estimate
multi-object 6D pose directly from a single RGB image in one forward-pass. Simi-
lar to the state-of-the-art RGB-based methods, our proposed approaches are direct.

Following the DETR (Carion et al. 2020) approach, we model 6DoF pose es-
timation as a set prediction problem and utilize a loss based on the Hungarian
algorithm to find a bipartite matching between prediction and ground truth. In
our first approach, we directly regress the 3D rotation and 3D translation compo-
nents. To improve the performance of rotation, we extend our direct method by
leveraging keypoints as 2D projected sparse correspondence.

Although in terms of the 6D pose prediction performance, refinement-based ap-
proaches achieve considerably better results than the direct methods, in this thesis
we will demonstrate that without any pose refinement, this gap in performance is
shrinking. Furthermore, we will show that our proposed methods enjoy the fastest
inference time compared to the state-of-the-art pose estimators.
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4.1 6D Object Pose

The object pose can be represented by a 4× 4 matrix P ∈ SE(3) constitutes of a
3× 3 rotation matrix R in SO(3) and 3× 1 translation vector t ∈ R3. The matrix
P transforms a 3D homogeneous point xm in the model coordinate system to a
3D point xc in the camera coordinate system:

xc =

P︷ ︸︸ ︷
[R, t; 01×3, 1] xm. (4.1)

As the choices of rotation and translation representations have major impacts on
the performance of 6D pose estimation, we describe our choices for representation
of each component in this section.

4.1.1 Parameterization of Rotation

Following the state-of-art-arts approaches, we exploit the 6D continuous rota-
tion representation introduced in (Zhou et al. 2019). The authors advance the
continuous representation definition by taking into account the training of deep
neural networks. As a result, they mathematically prove that for 3D rotations,
all representations, e.g., axis-angles and quaternions are discontinuous in the real
Euclidean spaces of four or fewer dimensions. Therefore, they present the 5D and
6D continuous representations, which among them the 6D representation yields
the best performance in practice. The 6D representation denoted as R6d is defined
as the first two columns of the rotation matrix R = [R·1 |R·2|R·3]:

R6d = [R·1 | R·2] (4.2)

Having a 6-dimensional vector R6d = [r1 | r2] and using the vector normalization
operation ϕ(.), the rotation matrix R can be calculated as follows:
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Figure 4.1: The egocentric vs allocentric rotation. The figure is taken from (Manhardt,
G. Wang, et al. 2020).

R =


R·1 = ϕ (r1)

R·3 = ϕ (R·1 × r2)

R·2 = R·3 ×R·1

(4.3)

Generally, the object rotation representation can be either egocentric, rotation
with respect to camera, or allocentric, rotation with respect to object (see Fig-
ure 4.1). In the case of the object’s egocentric representation, the azimuth of the
object does not change while the object appearance considerably changes. Con-
versely, objects with similar allocentric rotation will also have analogous appear-
ance (Kundu, Yin Li, and Rehg 2018).

4.1.2 Parameterization of Translation

Considering the translation t = [tx, ty, tz]
T ∈ R3 as the coordinate of the object

origin in the camera coordinate system, the naive approach for estimating t is to
regress it directly in 3D space. This method is not generalizable as objects can
appear in any location in the image; moreover, it cannot deal with multiple object
instances of the same category (Xiang et al. 2017). Therefore, we can consider
the proposed method in PoseCNN by Xiang et al. (2017) in which decouples the
estimation of t into directly regressing the object’s distance from the camera tz
and the 2D location of projected 3D object’s centroid in the image plane [cx, cy]

T .
Given the intrinsic camera matrix K which consists of the focal lengths of the
camera fx, fy and the principal point [x0, y0] parameters (Hartley and Zisserman
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Figure 4.2: The overall of our proposed pipeline for 6D object pose estimation.

2004), tx and ty can be recovered as follows:
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4.2 Overall Pipeline
The overview of the pipeline proposed in this thesis for 6DoF pose estimation
is demonstrated in Figure 4.2. We formulate 6D object pose estimation as a
set prediction problem and develop transformer-based architectures that take a
single RGB image as input and simultaneously generate a set of N elements where
each element corresponds to an object prediction. To facilitate the prediction of
a varying number of objects in the image, we choose N to be larger than the
expected number of objects in the image, enabling the network to have enough
options for freely embedding each object. After predicting all objects in the given
image, the rest of the elements are padded with Ø as no object predictions (see
Figure 4.2). The predicted and ground truth sets are then matched using bipartite
matching, and the model is trained to minimize the Hungarian loss between the
matched pairs.

4.3 Network Architecture
Our proposed end-to-end differentiable architecture is depicted in Figure 4.3.
Given an RGB input image, we extract lower-resolution image features using the
standard ResNet (K. He et al. 2016) model in the backbone network and flatten
them to create feature vectors suitable for an encoder-decoder Transformer model.
The flattened features are then supplemented with positional encodings and fed
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Figure 4.3: The proposed architecture in detail.

to the Transformer encoder. The encoder module consists of six standard encoder
layers. The output of the encoder is provided to the decoder module along with N

learnable positional encodings, called object queries. Similar to the encoder, the
decoder module also includes six decoder layers generating N output embeddings
(object queries). Each decoder output is processed independently by shared MLP
prediction heads to generate a set of N tuples in parallel.

4.3.1 Backbone
Among CNN-based models, the ResNet (K. He et al. 2016) model is commonly
chosen as the backbone network; however, only single-scale low-resolution features
from the last layer are used. The early layers of ResNet have more spatial in-
formation, whereas the network extracts more semantic information in the final
layers. As a result, the RefineNet (G. Lin et al. 2017) model, which improves
ResNet by exploiting multi-scale features, can be another candidate for the CNN-
based backbone. Additionally, we have the option of using vision Transformers
for the backbone network, namely Swin Transformer (Z. Liu, Y. Lin, et al. 2021),
Pyramid Vision Transformer (W. Wang et al. 2021b), or Focal Transformer (Yang
et al. 2021).

Since in this thesis, our main focus is to tackle the 6D pose estimation task rather
than improving the architecture, between the mentioned models, we opt for ResNet
due to the availability of its pretrained weights and our computational limitation;
although, having a more powerful backbone model yields better performance as
shown in DETR (Carion et al. 2020).

The first layer of ResNet is a 7×7 convolutional with stride 2, followed by a max-
pooling layer. The rest of the network consists of four modules of residual blocks
with higher depths and lower resolutions as the number of modules increases. Each
residual block includes two or three convolutional layers depending on the selected
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ResNet architecture, followed by batch normalization and ReLU activation, and
a shortcut connection. Moreover, we can consider the dilated version of ResNet
models where the feature resolution is increased by adding a dilation to the last
stage of the model and removing a stride from the first convolution of this stage.
This adaption expands the resolution twice while increasing the overall computing
cost two times.

In this thesis, we utilize the ResNet50 (K. He et al. 2016) backbone model
pretrained on ImageNet (Deng et al. 2009) with frozen batch normalization layers.
For an image size of height H and width W , the ResNet50 backbone network
extracts 2048 low-resolution feature maps of size H

32
× W

32
. We then reduce the

dimension of the feature maps to d using 1× 1 convolution, and finally flatten the
features into d×H

32
W
32

feature vectors to prepare them for the input of Transformer
model.

4.3.2 Positional Encoding
A multi-head self-attention mechanism, the core component of the Transformer
model, is permutation-invariant, i.e., Transformer ignores the order of the input
sequences. To address this limitation, we provide some information about the
position of tokens via positional encodings.

The positional encoding used in transformer-based architectures can be divided
into two categories: absolute and relative. In absolute positional encoding, the
positional encoding is added to the input embed, and the self-attention module
considers the absolute position (Vaswani et al. 2017). This absolute positional
encoding can be either fixed encodings using sinusoidal functions with different
frequencies (Vaswani et al. 2017) or the learnable encodings (C. Li et al. 2018;
Vaswani et al. 2017). Recently, there are methods proposed to encode the relative
positional between the input elements through embedding the positional encoding
vectors inside the self-attention module (Dai et al. 2019; Shaw, Uszkoreit, and
Vaswani 2018; K. Wu et al. 2021). In this thesis, we utilize the fixed absolute
positional encoding for the Transformer encoder and learnable absolute positional
encoding in decoder. More details are explained in Sections 4.3.3 and 4.3.4.

4.3.3 Transformer Encoder
The Transformer encoder module has the standard architecture as proposed by
(Vaswani et al. 2017) and consists of six layers, where each layer performs multi-
head self-attention of the input sequences. The inputs and output of the multi-head
self-attention block are connected by residual connections followed by dropout of
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0.1 and normalization layer as illustrated in Figure 4.4. The output of the multi-
head self-attention block is then passed to a two-layered Feed Forward Network
(FFN) with hidden size of 2048, where its input/output is similarly connected in
a residual fashion with dropout of 0.1 and layer normalization. As a result, the
Transformer encoder layer can be represented as:

X = LayerNorm (MultiHeadSelfAttention (I) + I) , (4.5)
O = LayerNorm (FFN (X) + X) ,

where I is the input of the Transformer encoder layer and O is the layer output.
The multi-head self-attention block is elaborated in the following section.

4.3.3.1 Multi-head Self-attention

The Transformer model takes advantage of a multi-head self-attention mechanism
in both encoder and decoder modules and a multi-head cross attention mechanism
in the decoder as shown in Figure 4.4.

Having the query sequence of length Nq, Xq ∈ Rd×Nq , and the key-value se-
quence of length Nkv, Xkv ∈ Rd×Nkv , and their corresponding additional positional
encodings Pq ∈ Rd×Nq and Pkv ∈ Rd×Nkv , the operation for a single attention head
of dimension d can be defined as:

[Q;K;V ] = [W ′
1(Xq + Pq);W

′
2(Xkv + Pkv);W

′
3(Xkv)] ,

Attni(Xq, Xkv,W
′) =

Nkv∑
j=1

αi,jVj,

Zi =

Nkv∑
j=1

e
1√
d/M

QT
i Kj+Mask

, αi,j =
e

1√
d/M

QT
i Kj+Mask

Zi

,

(4.6)

where the weight matrix W ′ ∈ R3×d/NH×d is the concatenation of W ′
1, W ′

2, and
W ′

3 in which NH = 8 is the number of heads, and αi,j is the attention weight
corresponding to a query index i and a key-value index j. As the size of input
images can be different, the padding is conducted in the input vectors to make
them have the same size. Mask ∈ RNq×Nkv is used to mask out the padding values
by setting them to −∞ so that they don’t participate in the attention score. All
the embeddings used in our models are 256-dimensional vectors (d = 256).

The multi-head attention is the concatenation of NH single attention heads
followed by a linear projection with weight matrix W̃ ∈ Rd×d, which can be repre-

27



4 Method

sented as:

X ′
q = [Attn (Xq, Xkv,W1) ; . . . ;Attn (Xq, Xkv,WNH

)] ,

X̃q = LayerNorm(Xq + Dropout(W̃X ′
q)), (4.7)

where [;] denotes concatenation on the channel axis, and the output X̃q ∈ Rd×Nq

has the same size as the input query sequence. Note that the multi-head self-
attention is the special case of the described multi-head attention where Xq = Xkv.
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Figure 4.5: The demonstration of absolute sinusoidal positional encodings for 256 feature
vectors of size 15× 20.

For the encoder, we utilize the absolute positional encoding as the original Trans-
former (Vaswani et al. 2017). As the DETR (Carion et al. 2020) model shows using
learnable positional encoding does not improve the results, we use the fixed sinu-
soidal positional encoding of 256-dimension with different frequencies that can be
specified as:

P(pos, 2i) = sin(pos/100002i/d), (4.8)
P(pos, 2i+1) = cos(pos/100002i/d),

where d = 256, pos is the position of sequence, and i is the index of dimension.
Since we need to represent two coordinates, we use d/2 of the dimensions to encode
the row and the other d/2 to encode the column as depicted in Figure 4.5. We
can add these positional embeddings to backbone feature vectors and pass them
once at the Transformer encoder input similar to the original Transformer or add
them to queries at every encoder attention layer, where they are shared across all
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encoder layers. The conducted experiments by DETR demonstrate that the latter
method leads to better performance. Therefore, following the DETR approach,
we pass the positional encodings directly to the attentions.

4.3.4 Transformer Decoder

The difference between the used Transformer decoder and the original version pro-
posed by Vaswani et al. (2017) is that our model simultaneously generates the N

output tuples at each decoder layer since objects that appeared in an image are
independent. In contrast, the original autoregressive model predicts the output
sequence one element at a time. The reason is that the autoregressive decod-
ing mechanism utilized in the original Transformer requires previously generated
outputs to produce each new token.

In our proposed architecture, from the encoder output embedding and N po-
sitional embedding inputs, the decoder generates N output embeddings of size d

using the multi-head self-attention and cross-attention mechanisms as shown in
Figure 4.4, where N is the cardinality of the predicted set.

Based on DETR (Carion et al. 2020), the decoder positional encodings, called
object queries, are required to be learnable. These learnable positional encodings
can be passed once at the decoder input or passed directly through the attention
of each decoder layer. We use the latter approach that yields better performance,
as mentioned in DETR.

We utilize an additional shared normalization layer to normalize the outputs
of decoder layers. From the N decoder output embeddings, we use feed-forward
prediction heads to generate a set of N output tuples, which more details are
explained in Section 4.3.5. Note that each tuple in the set is produced from
a decoder output embedding independently—lending itself for efficient parallel
processing.

Computational Complexity In the following analysis, we skip the computations
that are negligible. Every encoder self-attention block has complexity O(d2HW +

d(HW )2) : O(d2/M) is the computational cost of a single query/key/value em-
beddings, while the computational cost of the attention weights for one head is
O(d(HW )2/M). In the decoder, self-attention and cross-attention are in O(d2N+

dN2) and O(d2(N + HW ) + dNHW ), respectively. In practice, we have N <<

HW ; therefore, the computing cost in the decoder is much lower than the encoder.

29



4 Method

4.3.5 Prediction Heads
Each Transformer decoder output (object query) is processed independently by
four feed-forward prediction heads shared across object queries to generate a set of
N tuples in parallel. Prediction heads are three-layer MLPs with hidden dimension
256 in each layer and ReLU activation.

Each tuple contains class probability, 2D bounding box, rotation and transla-
tion components of 6D pose. The class probability is predicted using a softmax
function. The model predicts 2D bounding boxes as the center coordinates, height,
and width, all of which are normalized by the input image size. The model’s out-
put for rotation is the 6-dimensional vector R6d, and for translation it directly
predicts the t vector in meter.

4.4 Pose Estimation as Set Prediction
We model the problem of 6D pose estimation as a direct set prediction problem,
inspired by DETR (Carion et al. 2020). The output of the proposed method is a set
of tuples. To facilitate the 6D pose prediction of a varying number of objects in an
image, we fix the cardinality of the predicted set to N , which is a hyperparameter,
and we choose it to be larger than the expected maximum number of objects
in the image. We also introduce a no object class Ø, which is analogous to the
background class used in semantic segmentation models. In addition to predicting
the classes of objects presented in the image, our model is trained to predict Ø
class for the rest elements in the set.

4.4.1 Bipartite Matching
To compare the predicted and ground truth sets, we perform bipartite matching to
find the permutation of the predicted elements that minimizes the matching cost.
Given a predicted set denoted by ŷ and n ground truth objects {y1, y2, ..., yn},
where we pad Ø objects to create a ground truth set y of cardinality N , we search
for a permutation σ̂ among the possible permutations σ ∈ SN that minimizes the
matching cost Lmatch. Formally, it can be written as:

σ̂ = argmin
σ∈SN

N∑
i

Lmatch(ŷσ(i), yi), (4.9)

where Lmatch(ŷσ(i), yi) is the pair-wise matching cost between the prediction at
index σ(i) and the ground truth tuple yi. We have two options for defining
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Lmatch(yi, ŷσ(i)). One option is to use the same definition proposed by the DETR
model (Carion et al. 2020), i.e., to include only bounding box bi and class proba-
bility pi. We call this variant of matching cost Lmatch_object:

Lmatch_object(ŷσ(i), yi) = −1ci ̸=Øp̂σ(i)(ci) + 1ci ̸=ØLbox(b̂σ(i), bi). (4.10)

The second option is to consider the pose predictions in the matching cost as well,
which can be represented as:

Lmatch_pose(ŷσ(i), yi) = Lmatch_object(ŷσ(i), yi)+

1ci ̸=ØλposeLpose(R̂σ(i), t̂σ(i), Ri, ti). (4.11)

There are different choices for defining Lpose which will be explained thoroughly in
Section 4.4.2.3. Among them, we opt for the disentangled pose loss, as calculating
the coupled pose loss, especially its symmetric aware version over all the possible
permutations is significantly computationally expensive. Therefore, Lpose can be
written as:

Lrot(R̂σ(i), Ri) + Ltrans(t̂σ(i), ti), (4.12)

where Lrot is the angular distance between the predicted and ground truth rota-
tions, and Ltrans is the ℓ1 loss.

4.4.2 Loss Function

After establishing the matching pairs using the bipartite matching, our proposed
architecture is trained to minimize the Hungarian loss between the predicted and
ground truth target sets consisting of probability loss, bounding box loss, and pose
loss as described in Equation 4.13. In the following, further explanation for each
term is provided. It is worth mentioning that except for the class probability loss,
other terms of the Hungarian loss are normalized by the number of objects in each
batch.

LHungarian(ŷ, y) =
N∑
i=1

[−logp̂σ̂(i)(ci) + 1ci ̸=ØLbox(b̂σ̂(i), bi)+

1ci ̸=ØλposeLpose(R̂σ̂(i), t̂σ̂(i), Ri, ti)]. (4.13)
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4.4.2.1 Class Probability Loss

The first component in the Hungarian loss is the class probability loss. We use the
standard negative log-likelihood as the class probability loss function. Since we
choose the cardinality of the set to be larger than the expected maximum number
of objects in an image, the number of Ø classes are imbalanced in comparison to
the other object classes. Thus, we weight the log probability loss for the Ø class
with a factor of 0.4.

4.4.2.2 Bounding Box Loss

The commonly used bounding box loss is ℓ1 which suffers from the major disad-
vantage of having different scales for bounding boxes which their relative errors
are similar. Therefore, for bounding box loss Lbox(b̂σ(i), bi), we follow the DETR
method and use a weighted combination of the Generalized IoU (GIoU) introduced
by Rezatofighi et al. (2019) and the ℓ1 loss as provided in Equation 4.14. GIoU
similar to IoU has the appealing property of being scale-invariant. Furthermore,
GIoU has the advantage of being always differentiable , giving it the privilege to
be utilized for optimization.

Lbox(b̂σ(i), bi) = αLiou(b̂σ(i), bi) + β||b̂σ(i) − bi||1, (4.14)

Liou(b̂σ(i), bi) = 1−

(
|b̂σ(i) ∩ bi|
|b̂σ(i) ∪ bi|

−
|B(b̂σ(i), bi) \ b̂σ(i) ∪ bi|

|B(b̂σ(i), bi)|

)
,

where α, β ∈ R are hyperparameters. |.| means “area”, and the union and inter-
section of box coordinates are used as shorthands for the boxes themselves. The
areas of unions or intersections are computed by min/max of the linear functions
of b̂σ(i) and bi, making the Liou loss sufficiently well-behaved for stochastic gra-
dients. B(b̂σ(i), bi) is the largest box containing both the prediction b̂σ(i) and the
ground truth bi.

4.4.2.3 Pose Loss

Consider the predicted pose P̂σ(i) = [R̂σ(i), t̂σ(i)], the ground truth pose Pi = [Ri, ti],
and Mi which indicates the set of 3D model points for each object i, where in this
thesis, 1.5K points are subsampled from meshes provided for training. We can
supervise the 6D object pose either coupled or disentangled, i.e., the pose loss
Lpose(R̂σ(i), t̂σ(i), Ri, ti) can be presented as coupled or disentangled.
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Coupled Pose Loss The coupled pose loss, which is introduced in (Yi Li et al.
2018) as Point Matching loss, computes the average distance between points on the
transformed estimated model and their correspondings transformed by the ground
truth. The Point Matching loss is described as follows:

Lpose(R̂σ(i), t̂σ(i), Ri, ti) =
1

|Mi|
∑

x∈Mi

∥(R̂σ(i)x + t̂σ(i))− (Rix + ti)∥. (4.15)

Considering Point Match loss, we can handle the symmetric objects explicitly
via employing symmetric aware loss from (Xiang et al. 2017). In this case, we
measure the average closest point distance for symmetric objects which can be
expressed as:

Lpose(R̂σ(i), t̂σ(i), Ri, ti) =


1

|Mi|

∑
x1∈Mi

min
x2∈Mi

||(R̂σ(i)x1 + t̂σ(i))− (Rix2 + ti)|| if sym,

1
|Mi|

∑
x∈Mi

||(R̂σ(i)x+ t̂σ(i))− (Rix+ ti)|| otherwise.

(4.16)

Disentangled Pose Loss In disentangled pose loss, we individually supervise the
rotation and translation components of the 6D pose. Therefore, the disentangled
pose loss can be written as:

Lpose(R̂σ(i), t̂σ(i), Ri, ti) = LR(R̂σ(i), Ri) + ||t̂σ(i) − ti||, (4.17)

where the translation loss computes the distance between the predicted transla-
tion t̂σ(i) and the ground truth translation ti. The first option for rotation loss
LR(R̂σ(i), Ri) is to measure the average distance between each point on the esti-
mated model pose and its corresponding point on the ground truth model pose
which can be defined as:

LR(R̂σ(i), Ri) =
1

|Mi|
∑

x∈Mi

||R̂σ(i)x−Rix||. (4.18)

Moreover, similar to the coupled pose loss, we can utilize symmetric aware loss
introduced in (Xiang et al. 2017):

LR,sym(R̂σ(i), Ri) =


1

|Mi|

∑
x1∈Mi

min
x2∈Mi

||R̂σ(i)x2 −Rix1|| if sym,

1
|Mi|

∑
x∈Mi

||R̂σ(i)x−Rix|| otherwise.
(4.19)
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Figure 4.6: The representation of Interpolated Bounding Box (IBB) keypoints. The
corners of the bounding box and the intermediate keypoints are indicated
with red dots and blue crosses, respectively.

The symmetric aware rotation loss is minimized when the estimated and ground
truth 3D models match each other. As a result, rotations that are equivalent due
to the 3D shape symmetry of the object are not penalized (Xiang et al. 2017). The
other option for rotation loss is to compute the angular distance as follows:

LR(R̂σ(i), Ri) =
1

2
(tr(R̂T

σ(i)Ri)− 1), (4.20)

where the tr(.) is the trace operation. The angular distance is limited to [−1, 1]

for numerical stability and then normalized to [0, 1].
It has to mention that to compute the variants of the pose loss provided in this

section, we can also use the ℓ1 distance.

4.5 Keypoints-based Method

Formerly, we proposed the method that directly performs multi-object 6D pose
estimation, which we call T6D-Direct. To further improve the pose estimation ac-
curacy, we extend our direct approach to utilize keypoints as 2D projected sparse
correspondences. In this section, we explain the candidates for keypoints represen-
tation and the methods to recover the 6D object pose from the predicted keypoints.
We finalize the section with describing the Hungarian loss of our Keypoints-based
approach.
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4.5 Keypoints-based Method

Figure 4.7: Handpicked keypoints, which are objects of the YCB-Video dataset with
keypoints manually defined and their interconnections. The figure is taken
from (Zappel, Bultmann, and Behnke 2021).

4.5.1 Keypoints Representation

The recent approaches utilize different keypoints representations: 3D bounding box
corners, an obvious choice for selecting 3D keypoints is the 8 corners of the 3D
bounding box (Oberweger, Rad, and Lepetit 2018; Tekin, Sudipta N. Sinha, and
Fua 2018b). Farthest Point Sampling (FPS) algorithm utilized in PVNet (Peng
et al. 2019). Since the PVNet model generates keypoints using the vectors that
start at the object pixels, the longer distance between the keypoints representation
and the object pixels results in larger localization errors. Therefore, predicting
the projections of the 3D bounding box corners into the image plane, which are
far away from the object pixels in the image, is not an appropriate choice. The
authors instead exploit the FPS algorithm to automatically sample 8 keypoints on
the surface of the object meshes, which are also spread out on the object to help
the PnP algorithm find a more stable solution. The FPS algorithm starts with
the object center as the initial keypoint set. Afterward, it repeatedly searches for
a point on the object surface that is farthest to the current keypoint set and adds
it to the set until reaching the target size of the keypoint set—the center point is
not part of the final keypoint set.

Handpicked Keypoints, Zappel, Bultmann, and Behnke (2021) manually define
8 keypoints specific for each object. To facilitate the CNN-based detection, they
select keypoints that represent the object contour and locate on easy-to-find spots
of the object geometry and texture. The selected keypoints form a bounding box
(if applicable) as shown in Figure 4.7. The authors show that the FPS method
has inferior performance. The reason is that the FPS keypoints are less intuitively
placed; therefore, harder to infer especially for multi-object 6D pose estimation
using a single model due to geometrical differences between objects.

Interpolated Bounding Boxes (IBBs), S. Li et al. (2021) define the 3D repre-
sentation of an object as sparse Interpolated Bounding Box (IBB) depicted in
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Figure 4.6. Considering the 3D bounding box of an object with 8 keypoints and
12 lines as {li}12i=1, where each line is represented with start and end keypoints,
li = [ks

i , k
e
i ]

T , where k is a 3-dimensional vector representing the keypoint’s loca-
tion in the world coordinate system. We can derive n more keypoints from each
line given a pre-defined interpolation matrix M ∈ Rn×2 as follows:

k1
i

k2
i

. . .

kn
i

 = M

[
ks
i

ke
i

]
=


m1 1−m1

m2 1−m2

. . . . . .

mn 1−mn


[
ks
i

ke
i

]
(4.21)

Therefore, the 8 keypoints of the 3D bounding box and 12n intermediate key-
points located on 12 lines form a set of 8 + 12n keypoints. Although larger n

provides denser correspondences, it increases the complexity; thus, n is set to 2

and M =

[
3
4

1
4

1
4

3
4

]
in practice. This representation allows the authors to take into

account the property that the cross-ratio of every four collinear points is preserved
during perspective projection (Hartley and Zisserman 2004), i.e., the cross-ratio
of the keypoints A, B, C, and D in 3D remains the same after perspective pro-
jection in 2D as illustrated in Figure 4.6. The cross-ratio consistency is enforced
by an additional component in the loss function that the model learns to mini-
mize during training called the cross-ratio loss function, which will be explained
in Section 4.5.4. We opt for the IBB keypoints representation since, unlike other
methods, it makes sure geometrical representation is consistent across all object
classes due to preserving the geometrical features via the cross-ratio property. We
examine the efficiency of the mentioned keypoints representations in the following
chapter.

4.5.2 Prediction Heads
For each object query, we use FFNs to estimate the class probability, bounding
box, and Interpolated Bounding Box (IBB) keypoints independently. Except for
the class probability, we normalize the predictions by the size of the input image.

4.5.3 Recover 6D Object Pose
After establishing the sparse 2D-3D correspondences via using IBB keypoints, we
need to use a variant of the PnP-RANSAC algorithm to estimate the components
of the 6D pose that can be rotation and/or translation. Between the existing
algorithms such as EPnP (Lepetit, Moreno-Noguer, and Fua 2009) and learnable
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PnP algorithms (B. Chen et al. 2020; S. Li et al. 2021; G. Wang et al. 2021),
we utilize the RANSAC-based EPnP (Lepetit, Moreno-Noguer, and Fua 2009)
algorithm from OpenCV (Fischler and Bolles 1981) as our first choice. EPnP
presents a non-iterative method with O(n) complexity for all n ≥ 4 by expressing
the n 3D points as a weighted sum of four points, called virtual control points and
then estimating the 2D correspondences of these points.

As declared in (Z. Li, G. Wang, and Ji 2019), the factors that impact rotation
and translation components are different, e.g., the rotation is highly affected by
the object’s appearance in a given image. In contrast, the translation is more
vulnerable to the size and location of the object in the image. Therefore, we decide
to estimate rotation and translation separately. RANSAC-based EPnP algorithm
is utilized for the rotation estimation, while the translation is directly estimated
using a prediction head, where it estimates tz in meter and the 2D location of
projected 3D object’s centroid [cx, cy]

T normalized by the input image dimension.
The EPnP-RANSAC algorithm suffers from two main disadvantages of being

time-consuming due to the iterative RANSAC and non-differentiable. Therefore,
to have a real-time module that is also differentiable, inspired by the learnable
PnP algorithms, we introduce a fully connected module called Rotation Estimation
(RotEst) to predict the rotation given the 2D keypoints.

4.5.3.1 Rotation Estimation Module

Given a set of regressed keypoints, we use the fully connected Rotation Estimation
(RotEst) module to estimate the object rotation. For each object prediction, the
RotEst module takes 64-dimensional input corresponding to 32 keypoints coor-
dinates and predicts the object rotation represented as the 6D continuous repre-
sentation as explained in Section 4.1.1. The RotEst module consists of six fully
connected layers with hidden dimension 1024 and dropout of 0.5.

4.5.4 Set Prediction Loss

As described in Section 4.4.1, for the matching cost, we have the option of using
only the bounding box predictions and class probabilities (Lmatch_object) or adding
the pose predictions as well (Lmatch_pose). In the case of the Keypoints-based
method, we can also consider the keypoints predictions in the matching cost, called
this variant Lmatch_keypoints:

Lmatch_keypoints(ŷσ(i), yi) = Lmatch_pose(ŷσ(i), yi) + Lkeypoints(K̂σ(i), Ki), (4.22)
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where Lkeypoints is the ℓ1 loss between the predicted 2D keypoints K̂σ(i) and ground
truth 2D keypoints Ki.

Furthermore, for the Keypoints-based method, the Hungarian loss presented in
Section 4.4.2 enjoys an additional term related to keypoints loss as provided in
Equation 4.23. Similar to the T6D-Direct method, except for the class probability
loss, other terms of the Hungarian loss are normalized by the number of objects
in each batch.

LHungarian(ŷ, y) =
N∑
i

[−logp̂σ̂(i)(ci) + 1ci ̸=ØLbox(b̂σ̂(i), bi)+

1ci ̸=ØλposeLpose(R̂σ̂(i), t̂σ̂(i), Ri, ti) + 1ci ̸=ØLkeypoints(K̂σ̂(i), Ki)]. (4.23)

It has to mention that when we estimate the components of 6d pose by RANSAC-
based EPnP algorithm, i.e., rotation and/or translation, the corresponding loss will
be eliminated from the Hungarian loss.

Keypoints Loss Having γ and δ as hyperparameters, our keypoints loss can be
represented as:

Lkeypoints(K̂σ̂(i), Ki) = γ||K̂σ̂(i) −Ki||1 + δLCR. (4.24)

The first part of the keypoints loss is the ℓ1 loss, and for the second part, we
employ the cross-ratio loss LCR provided in Equation 4.25 to enforce the cross-
ratio consistency in the keypoints loss as proposed by S. Li et al. (2021). This loss
is self-supervised by preserving the cross-ratio of each line to be 4/3. The reason
is that after camera projection of the 3D bounding box on the image plane, the
cross-ratio of every four collinear points remains the same.

LCR = Smoothℓ1(CR2 − ||c− a||2||d− b||2

||c− b||2||d− a||2
), (4.25)

where CR2 is chosen since ||.||2 can be easily computed using vector inner product.
Given four collinear points A, B, C and D and their predicted 2D projections a,
b, c, and d, the ground truth cross-ratio CR is defined as:

CR =
||C − A|| ||D − B||
||C − B|| ||D − A||

=
4

3
. (4.26)
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The main goal of this chapter is to provide the experiments conducted to assess the
performance of the proposed T6D-Direct and Keypoints-based methods. There-
fore, the utilized dataset for the evaluation is described in Section 5.1, followed
by the explanation of baselines and metrics. Furthermore, the quantitative and
qualitative results are presented in Section 5.4. The chapter will be finalized by
the inference time analysis.

5.1 Dataset
We evaluate the performance of our models on the single-instance multi-object 6D
pose dataset YCB-Video (YCB-V) created by PoseCNN (Xiang et al. 2017). This
dataset is generated by capturing video sequences from cluttered indoor scenes of
a total of 21 objects placed in tabletop configuration (see Figures 5.1 and 5.2).
These 21 objects are a subset of the YCB objects (Calli et al. 2015), selected due
to their high-quality 3D models and good visibility in depth (Xiang et al. 2017).
YCB-V is a challenging dataset for benchmarking 6D object pose estimation meth-
ods. The reason is that the dataset includes textureless and symmetric objects,
where the objects exhibit varying geometric shapes, reflectance properties, and
very strong occlusions. Moreover, there are multiple objects in each image. It is
worth mentioning that the symmetric objects of the YCB-V dataset are “bowl”,
“wood block”, “large clamp”, “extra large clamp”, and “foam brick”.

YCB-V provides bounding box, segmentation masks, and 6D pose annotation for
133,936 RGB-D images, where the resolution of each image is 640×480. Since our
proposed models are RGB-based, we do not use the provided depth information.
YCB-V also provides high-quality meshes for all 21 objects. 3D mesh points of
the objects are used in computing the evaluation metrics, which will be discussed
in Section 5.3.

There are 92 video sequences in total, out of which 12 sequences are held out
for the test set with 20,738 images, and the rest are used for training. The final
test set is the subset of 2,949 key frames from 12 test scenes, and we employ the
BOP YCB-V test set, which will be explained in the following for the validation
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set. Additionally, we utilize the 80K synthetic data, generated by PoseCNN via
randomly placing objects in a scene, during training and add the backgrounds to
these synthetic images randomly from PASCAL VOC 2012 (M. Everingham et al.
n.d.) images. The statistic details of YCB-V and its synthetic data are as follows:

Table 5.1: Statistics of the YCB-V dataset and its synthetic data.
Features YCB-V Synthetic
#Object Classes 21 21
Min Object Count 3 5
Max Object Count 9 8
Mean Object Count 4.58 6.49
#Images 133,936 80,000
Resolution 640×480 640×480

Recently, the BOP challenge on 6DoF pose estimation (Hodaň, Sundermeyer, et
al. 2020) has captured more attention. Generally, the goal of BOP is to introduce a
benchmark for 6D pose estimation via proposing datasets with a unified format and
a standard evaluation methodology (Hodan et al. 2018). YCB-V is also one of the
BOP challenge core datasets; however, the BOP variant of YCB-V1 has two main
differences compared to the original YCB-V dataset. First, for the test set, only a
subset of 75 images, which have higher-quality ground truth poses, are manually
selected from each of the 12 test scenes resulting in 900 images. Second, the original
3D object meshes are converted from meters to millimeters, and the centers of their
3D bounding boxes are aligned with the origin of the model coordinate system and
the ground truth annotations are converted correspondingly. Moreover, apart from
the original YCB-V symmetric objects, “master chef can” and “large marker” are
also considered symmetric.

Furthermore, the BOP challenge 2020 introduced 50K synthetic training images
for each BOP dataset, including YCB-V. These synthetic images are generated
by the light-weight Physically-Based Renderer (PBR) tool proposed by the BOP
challenge 2020. The idea behind preparing this kind of photorealistic rendering
is to help reduce the synthetic-to-real domain gap in object detection and pose
estimation. However, we do not use the BOP synthetic data in our experiments
for fairness.

1https://bop.felk.cvut.cz/datasets
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Figure 5.1: The subset of 21 YCB ob-
jects selected for the YCB-V
dataset. The figure is taken
from (Xiang et al. 2017).

Figure 5.2: An instance scene from the
YCB-V dataset.

5.2 Baselines
The proposed architectures in this thesis are compared with all three categories
of the state-of-the-art 6D pose estimation approaches based on RGB images. We
utilize PoseCNN, CDPNv2, GDR-Net as direct baselines, Oberweger, PVNet, Seg-
Driven, Pix2Pose, EPOS, and Single-Stage as indirect baselines, and the refinement-
based methods are DeepIM and CosyPose.

• PoseCNN (Xiang et al. 2017): the extracted multi-scale feature maps from
the backbone network are embedded into low-dimensional features to be the
model input. The model then conducts semantic labeling, 3D translation es-
timation by decoupling translation representation, and quaternion regression
to estimate the 6D pose.

• CDPNv2 (Z. Li, G. Wang, and Ji 2019): Coordinates-based Disentangled
Pose Network, utilizes a lightweight detector for detecting all objects and
then zooms in on the target object via the proposed Dynamic Zoom In
(DZI). The rotation is estimated by a PnP-RANSAC algorithm from 2D-
3D correspondences, which are extracted using confidence and coordinates
maps. The translation is estimated based on the local image patches. For
evaluation, we consider the modified CDPN proposed for the BOP challenge
2020. The authors make the following adjustments to the original CDPN:
they substitute the lightweight detector with a more powerful one. The
color augmentation like (Sundermeyer et al. 2018b) and the truncation do-
main randomization proposed in (Z. Li, Hu, et al. 2020) are exploited to
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improve the robustness of the model to occlusion. Finally, in addition to
modifying the original structure, they use ResNet-34 instead of ResNet-18
for the backbone network.

• GDR-Net (G. Wang et al. 2021): Geometry-guided Direct Regression Net-
work, exploits the intermediate geometric features organized as image-like
2D patches which enables the model to recover the 6D pose directly by using
the proposed 2D convolutional Patch-PnP.

• Oberweger (Oberweger, Rad, and Lepetit 2018): using patches from the image
that is centered on the target object, their approach predict the 2D heatmaps
corresponding to the corners of the 3D bounding box for each image patch.
The predicted heatmaps from patches are then aggregated to extract the
global maxima for each heatmap. Finally, the object pose is recovered from
the heatmaps using a PnP algorithm with RANSAC.

• PVNet (Peng et al. 2019): Pixel-wise Voting Network, estimates unit vectors
that represent pixel-wise directions of the object pointing to the keypoints.
These unit vectors then vote for the keypoint locations based on RANSAC.

• SegDriven (Hu, Hugonot, et al. 2019): Segmentation-Driven 6D pose esti-
mation, consists of two main parts: object segmentation to predict the label
of the object observed at each grid location, and 2D projections regression
to estimate the 2D keypoint locations for that object. Finally, 6D pose
is inferred from the most reliable 2D projections using the PnP-RANSAC
strategy.

• Pix2Pose (Park, Patten, and Vincze 2019): is an auto-encoder architecture
with Generative Adversarial Network (GAN) which takes the cropped image
of a target object and predicts pixel-wise 3D coordinates of an object. The
proposed method first adjusts the input bounding box and removes unnec-
essary pixels, i.e., background and uncertain pixels. Then, the refined input
from the first stage in which each pixel forms a 2D-3D correspondence is
used to estimate object poses using the RANSAC-based PnP algorithm.

• EPOS (Hodaň, Baráth, and Jiřı́ Matas 2020): the proposed method repre-
sents an object as compact surface fragments to infer 2D-3D correspondences
used with a robust and efficient variant of the PnP-RANSAC algorithm to
estimate the 6D pose.

• Single-Stage (Hu, Fua, et al. 2020): utilizes SegDriven (Hu, Hugonot, et
al. 2019) method to extract 2D-3D correspondences, which will be used in
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the following parts of the proposed architecture. This model includes a
local feature extraction module, a feature aggregation module operating on
the 2D projections correspond to each 3D keypoint, and a global inference
module consisting of simple fully connected layers for 6D pose estimation as
a quaternion and translation.

• DeepIM (Yi Li et al. 2018): Deep Iterative Matching network, using an initial
estimated pose of an object and the object’s 3D model, the method generates
the rendered image of the target object. Then, the rendered image along with
the input image are fed to the network to predict a relative transformation,
applied to refine the input pose. The refined pose can be utilized as the
input pose for the next iteration.

• CosyPose (Labbe et al. 2020): Consistent multi-view multi-object 6D pose
estimation, this refinement-based method consists of three main stages. In
the first stage, the initial object candidates in each view is separately es-
timated. In the second stage, these object candidates are matched across
views to recover a single consistent scene. In the third stage, all object and
camera poses are globally refined to minimize multi-view reprojection error.

5.3 Evaluation Metrics
We utilize various metrics to evaluate our proposed models in both 3D and 2D.
For the 3D evaluation, the average distance metric ADD is employed from (Hinter-
stoisser et al. 2013) for evaluating the accuracy of non-symmetric objects. As for
the symmetric objects, the matching between points is ambiguous for some views;
we use the ADD-S metric for such objects. Given the set of 3D model points M,
predicted rotation and translation components R̂ and t̂, and the ground truth 6D
pose with rotation and translation components R and t, ADD metric is the average
distance between the 3D mesh points transformed according to the ground truth
pose and the estimated pose. In contrast, the symmetry aware metric ADD-S is
computed utilizing the closest point distance. The ADD(-S) metric combines the
mentioned metrics, where ADD-S and ADD are used for symmetric and the rest
of objects, respectively. Formally, these metrics can be represented as:

ADD(R̂, t̂, R, t) =
1

|M|
∑
x∈M

∥(R̂x+ t̂)− (Rx+ t)∥, (5.1)

ADD-S(R̂, t̂, R, t) =
1

|M|
∑
x1∈M

min
x2∈M

∥(R̂x2 + t̂)− (Rx1 + t)∥, (5.2)
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ADD(-S) =
{

ADD-S symmetric objects,
ADD otherwise. (5.3)

For the YCB-V dataset, we follow PoseCNN and report the Area Under the
accuracy-threshold Curve (AUC) of ADD, ADD-S, and ADD(-S) metrics. The
reason is that using a fixed threshold in computing pose accuracy cannot reveal
how a method performs on the incorrect poses with respect to that threshold.
Therefore, we aggregate all results for distance thresholds of maximum 0.1m and
measure the AUC for pose evaluation. We also provide the Average Recall (AR)
of ADD, ADD-S, and ADD(-S) metrics. Recall can be defined as the fraction
of annotated object instances, for which a correct pose is estimated. The AR
metrics measure whether the average deviation of the transformed model points
from ground truth lies below 10% of the object’s diameter (0.1d), where d is the
largest distance between any pair of model points.

Another commonly used 3D metric is the n◦, n cm introduced by Shotton et al.
(2013). In this metric, an estimated pose is accepted if its rotation error is less
than n◦ and its translation error is below n cm.

Recently, the evaluation protocol proposed by BOP (Hodaň, Sundermeyer, et
al. 2020) has become more popular. Therefore, we also present the results of
our proposed models on YCB-V under BOP setup. Based on BOP, the error of
an estimated pose P̂ with respect to the ground truth pose P in a test image I

can be measured by three different metrics. Visible Surface Discrepancy (VSD):
to calculate this metric, an object 3D model M is rendered in the ground truth
pose and the estimated pose to produce distance maps D and D̂, respectively. A
distance map stores at a pixel p the distance from the camera center to the 3D
point xp that projects to p. Following the method proposed in (Hodaň, Jiřı́ Matas,
and Obdržálek 2016), the distance maps are then compared with the distance map
DI of the test image I to obtain the visibility masks V and V̂ , i.e., the sets of pixels
where the model M is visible in the image I. Given a misalignment tolerance τ ,
the metric is calculated as:

VSD(D̂, V̂ , D, V, τ ) = avgp∈V̂ ∪V

{
0 if p ∈ V̂ ∩ V ∧ |D̂(p)−D(p)| < τ,

1 otherwise. (5.4)

According to (Hodan et al. 2018), due to the existence of multiple fits of the
visible part of an object surface to the entire object surface in a given image, multi-
ple poses can be existed that are indistinguishable. The visible part is determined
through (self-)occlusion and the multiple surface fits are induced by global or par-
tial object symmetries (Hodan et al. 2018). As the VSD metric is only computed
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over the visible part of the model surface, the indistinguishable poses are treated
as equivalent.

For the next two BOP evaluation metrics, Maximum Symmetry-Aware Surface
Distance (MSSD) and Maximum Symmetry-Aware Projection Distance (MSPD),
we need to compute a set of global symmetry transformations. The set of global
symmetry transformations of an object is identified in two steps. Firstly, a set
of candidate symmetry transformations S ′

M is obtained by calculating the Haus-
dorff distance between points of object model M in the canonical and transformed
locations. Then, the symmetry transformation S is selected if its corresponding
distance lies below max(15 mm, 0.1d). Secondly, the final set of symmetry trans-
formations SM is determined as a subset of S ′

M consisting of those symmetry
transformations that cannot be resolved by the model texture. Having a set of
global symmetry transformations SM and VM as a set of mesh vertices of object
model M, MSSD is defined as follows:

MSSD(P̂ , P, SM, VM) = min
S∈SM

max
x∈VM

∥P̂ x− PSx∥ (5.5)

In contrast to the average distance used in the variants of ADD metrics which
is dominated by higher-frequency surface parts, the MSSD metric due to the max-
imum distance, is less dependent on the sampling of model points.

The third BOP metric MSPD is represented as:

MSPD(P̂ , P, SM, VM) = min
S∈SM

max
x∈VM

∥ proj(P̂ x)− proj(PSx)∥, (5.6)

where proj(.) is the 2D projection operation with result in pixels. The MSPD
metric considers global object symmetries and replaces the average by the maxi-
mum distance to decrease the vulnerability to the sampling of model points which
demonstrates the superiority of this metric over other 2D metrics.

An estimated pose P̂ is considered correct with respect to the ground truth pose
P for each BOP metric ∈ {VSD, MSSD, MSPD} if the metric is less than θmetric,
where θmetric is the threshold of correctness specific to each metric. The Average
Recall with respect to metric denoted as ARmetric, is defined as the average of
the recall rates calculated for multiple settings of threshold θmetric, and also for
multiple settings of the misalignment tolerance τ in the case of VSD. The choice
of the misalignment tolerance τ and the correctness threshold θmetric depends on
the target application (Hodaň, Jiřı́ Matas, and Obdržálek 2016). For evaluation
of our models under BOP setup, we report ARV SD for the misalignment tolerance
τ with the range of 0.05d:0.05d:0.5d and the threshold of correctness θV SD with
the range of 0.05:0.05:0.5. Moreover, ARMSSD is calculated for θMSSD ranging
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in 0.05d:0.05d:0.5d, and ARMSPD is computed for θMSPD ranging from 5r to 50r

with a step of 5r, where r = w/640 and w is the image width in pixels. Finally,
the performance of our proposed architectures on YCB-V dataset is also measured
by AR = 1

3
(ARV SD + ARMSSD + ARMSPD).

It has to mention that based on our experiments, we notice that monitoring
object detection through bounding box estimations and keypoints predictions play
an important role to trace the performance of the proposed models. For both cases,
we follow the evaluation metrics used by COCO (T.-Y. Lin et al. 2014), before
elaborating on these metrics, we need to explain the calculation of the AP metric.
Based on the PASCAL VOC (Mark Everingham et al. 2010) definition, the AP
summarises the shape of the precision-recall curve and is defined as the mean
precision at a set of equally spaced recall levels, r ∈ {0:0.01:1} for each object:

AP =
1

101

∑
r∈{0,0.01,...,1}

pinterp(r). (5.7)

The precision at each recall level r is interpolated by taking the maximum precision
measured for a method for which the corresponding recall exceeds r:

pinterp(r) = max
r̃:r̃≥r

p(r̃), (5.8)

where p(r̃) is the measured precision at recall r̃. To follow the utilized evaluation
metrics by COCO, we compute the average of AP over multiple thresholds, i.e,
IoU values as Equation 5.9 for bounding box evaluation and OKS values provided
in Equation 5.10 for keypoint evaluation and then report the mean of averaged
APs over objects.

For evaluation of bounding boxes, we utilize the commonly used metric, Inter-
section over Union (IoU) between the predicted bounding box B̂ and the ground
truth bounding box B, presented in Equation 5.9. We measure the AP, AP50,
AP75, APM, APL, and AR metrics. AP is the mean average precision over 10 IoU
thresholds = [0.50:0.05:0.95]; however, AP50 and AP75 are computed at a single
IoU threshold of 0.50 and 0.75, respectively. APM is for medium scale object in-
stances (area < 322), and APL is for large scale instances (area > 962), where the
area of an object is measured as the number of pixels in the corresponding seg-
mentation mask. Finally, AR computes the mean of average recall over 10 OKS
thresholds.

IoU =
area(B̂ ∩ B)

area(B̂ ∪ B)
(5.9)
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For the keypoints evaluation, we use the Object Keypoint Similarity (OKS)
metric from the COCO keypoint dataset. The OKS of an object o between the
estimated (ŷoi) and its corresponding ground truth keypoint (yoi) can be written
as follows:

OKS(ŷo, yo) =
∑

i e
− ∥ŷoi−yoi∥

2
2

2a2k2
i δ(vi > 0)∑

i δ(vi > 0)
, (5.10)

where ki is a constant specific to each keypoint, here we set ki to 0.2 for all
keypoints. a is the segment area of the object instance measured in pixels, and
vi is the keypoint visibility flag in the ground truth (vi = 0 for the invisible
keypoint). The OKS metric is robust to the number of visible keypoints as it
gives equal importance to the object instances with different numbers of visible
keypoints. To evaluate the keypoints, we report the following metrics: AP (the
mean average precision over 10 OKS thresholds = [0.50:0.05:0.95]), AP50 (AP at
OKS threshold = 0.50), AP75, APM, APL, and AR (the mean of average recall
over 10 OKS thresholds).

5.4 Experimental Details

We implemented the proposed methods using PyTorch (Paszke et al. 2017). The
models take an RGB input image which is normalized based on the mean and
standard deviation of ImageNet dataset (Deng et al. 2009). For all experiments,
we use the synthetic data generated by PoseCNN (Xiang et al. 2017) for training
our models to avoid overfitting.

For evaluation, we require to use the official YCB-V toolbox2 provided by
PoseCNN in MATLAB. In this thesis, as we opt for the BOP version of the YCB-V
dataset, for a fair comparison, the original YCB-V meshes are converted to the
BOP variant accordingly, and the 2,949 YCB-V key frames are employed to report
the results. We re-implemented the evaluation toolbox in Python and verified our
results. In addition, we convert the BOP format to COCO, as it allows us to use
the COCO API3 for object detection and keypoints evaluation, and it supports
selecting subsets of object classes as well. Finally, the publicly available BOP
toolkit4 is utilized for evaluation under BOP setup.

2https://github.com/yuxng/YCB_Video_toolbox
3https://github.com/cocodataset/cocoapi
4https://github.com/thodan/bop_toolkit
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5.4.1 T6D-Direct
5.4.1.1 Training Details

To tackle the DETR drawback of having a slow convergence (Zhu et al. 2021),
we initialize our T6D-Direct model using the provided pretrained weights on the
COCO dataset (T.-Y. Lin et al. 2014) by DETR, and then train the complete
T6D-Direct model on the YCB-V dataset. After initializing our model with the
pretrained weights, there are two possible strategies while training for the pose
estimation task. In the first approach, we train the model for both object detection
and 6D pose estimation tasks simultaneously; therefore, the total loss function is
the Hungarian loss brought in Section 4.4.2. In the second approach, we employ
a multi-stage scheme, i.e., first train the model for the object detection task and
then only train prediction heads corresponding to 6D pose estimation and freeze
the rest of the network. Investigation on these training methods is conducted in
the following sections.

5.4.1.2 Hyperparameters

The best hyperparameters are selected as follows. α and β in computing the
bounding box loss Lbox are set to 2 and 5, respectively, and λpose related to the
pose loss is set to 0.05. The model generates the predicted set with the cardinality
of N = 20 and is trained using AdamW optimizer with an initial learning rate
of 1e−4 for 78K iterations where the learning rate is decayed to 1e−5 after 70K
iterations. The batch size is 32, and the gradient clipping with a maximal gradient
norm of 0.1 is applied.

5.4.1.3 Qualitative Results

In this section, we explore the effect of the mentioned training strategies, different
loss functions, and egocentric vs. allocentric rotation representations on the T6D-
Direct performance for the YCB-V dataset.

Effectiveness of Training Strategies As discussed in Section 5.4.1.1, there are
two training strategies: single-stage and multi-stage. In the multi-stage scheme,
we train the Transformer model for object detection and only train the prediction
heads for 6D pose estimation, i.e., rotation and translation. In contrast, we train
the complete model in one stage in the single-stage scheme. In our experiments,
as shown in Table 5.2, multi-stage training (row 2) yields inferior results, although
both schemes are pretrained on the COCO dataset. The results demonstrate that
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the Transformer model is learning the features specific to the 6D object pose esti-
mation on YCB-V; therefore, COCO fine-tuning mainly helps in faster convergence
during training and not in more accurate pose estimations. Thus, we believe that
most large-scale image datasets can serve as pretraining data sources.

We also examine the effect of utilizing either Lmatch_object as the bipartite match-
ing cost that consists of the class probabilities and bounding boxes or Lmatch_pose

considering the pose predictions as well. As we can see from Table 5.2, including
the pose component (row 3) does not provide any considerable advantage and it is
computationally expensive in terms of memory usage. Therefore, we exploit only
the class probabilities and bounding boxes in the bipartite matching cost for all
further experiments.

Effectiveness of Loss Functions We examine the performance of our T6D-Direct
method using either the coupled pose loss, known as Point Matching loss, or the
disentangled pose loss which are presented in Section 4.4.2. Based on Table 5.2,
exploiting the symmetric aware version of the Point Matching loss with ℓ1 distance
(row 1) results in the best AUC of ADD(-S) metric.

In the case of disentangled pose loss, in which rotation and translation compo-
nents are supervised individually, we train our model with the disentangled pose
loss in which both rotation and translation components use ℓ1 distance (row 5).
As we can observe from Table 5.2, interestingly, the ADD(-S) result of the model
trained using the symmetric aware Point Match loss (row 1) is only slightly better
than the model trained using the disentangled pose loss with LR. The model is
finally trained by the disentangled pose loss, including the symmetric aware ro-
tation loss (LR,sym) with ℓ1 distance as well as translation loss with ℓ1 distance
that provides the best ADD(-S) result (row 6). It is worth mentioning that uti-
lizing the symmetric aware version in both loss cases does not make a significant
contribution.

Table 5.2: Results of our method with different loss functions and training schemes
on YCB-V. The ADD(-S) metric reports the AR of ADD(-S).

Row Method ADD(-S) AUC of
ADD(-S)

1 T6D-Direct + Point Matching loss 47.0 75.6
2 1 + multi-stage training 20.5 59.1
3 1 + Lmatch_pose 42.8 71.7
4 1 + allocentric R6d 42.9 74.4
5 T6D-Direct + LR 45.8 74.4
6 T6D-Direct 48.7 74.6
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Effectiveness of Rotation Representations Furthermore, we compare the per-
formance of egocentric vs. allocentric rotation representations. The egocentric
rotation representation (row 1) performs slightly better than the allocentric rep-
resentation (row 4). We hypothesize that supplementing RGB images with posi-
tional encoding allows the Transformer model to learn spatial features efficiently.
Therefore, the allocentric representation does not have any advantage over the
egocentric representation.

The results of the previous investigations provided in Table 5.2 demonstrate
that training the model with single-stage fashion, in which we train the complete
model in one stage, using ℓ2 symmetric-aware disentangled loss as well as parame-
terizing rotation with the 6D continuous representation provides the best results.
Therefore, the T6D-Direct method with the mentioned settings will be utilized for
the following experiments.

Comparison to the State-of-the-art Methods The T6D-Direct is evaluated
against state-of-the-art approaches. In terms of approach, our method is compa-
rable to PoseCNN and Oberweger; all of them are direct methods, whereas DeepIM
is a refinement-based approach.

In Table 5.3, we present the per object AUC of ADD and ADD-S results of
T6D-Direct on the YCB-V dataset. For a fair comparison, we follow the object
symmetry definition and evaluation procedure proposed by YCB-V. In terms of
the AUC of ADD-S metric, T6D-Direct outperforms PoseCNN and outperforms
all the competing approaches, even the refinement-based method DeepIM. The
pose refinement approach achieves the best AUC of ADD result. However, in
terms of approach, refinement-based methods are orthogonal to the other methods,
as they can benefit from the improved pose estimation accuracy. Furthermore,
pose estimation models with admissible accuracy avoid the need for training an
additional pose refinement model that enables faster inference time.

5.4.1.4 Quantitative Results

To further understand the behavior of the mentioned training schemes, i.e., single-
stage and multi-stage, we demonstrate the decoder attention maps for the object
queries corresponding to the predictions. In Figure 5.4, the top row shows the ob-
ject detections predicted by bounding boxes. The middle and bottom rows depict
the attention maps from the complete and partial trained models, respectively,
corresponding to the predictions in the top row. The partial trained model has
higher activations along the object boundaries. These activations are the result of
training the partial model only on the object detection task. In this case, since
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Table 5.3: Comparison of T6D-Direct per object results with state-of-the-art meth-
ods on YCB-V. * denotes the symmetric objects. The best results are
shown in bold.

Method PoseCNN Oberweger T6D-Direct (Ours) DeepIM

Metric AUC of
ADD

AUC of
ADD-S

AUC of
ADD

AUC of
ADD-S

AUC of
ADD

AUC of
ADD-S

AUC of
ADD

AUC of
ADD-S

master_chef_can 50.2 83.9 81.9 91.4 61.5 91.9 65.2 87.8
cracker_box 53.1 76.9 83.6 90.0 76.3 86.6 82.6 89.8
sugar_box 68.4 84.2 82.1 89.8 81.8 90.3 89.7 93.8
tomato_soup_can 66.2 81.0 79.8 89.5 72.0 88.9 81.4 90.1
mustard_bottle 81.0 90.4 91.5 95.0 85.7 94.7 90.3 94.4
tuna_fish_can 70.7 88.0 48.7 71.7 59.0 92.2 85.4 94.5
pudding_box 62.7 79.1 90.2 94.1 72.7 85.1 84.9 91.8
gelatin_box 75.2 87.2 93.7 95.9 74.4 86.9 87.7 91.6
potted_meat_can 59.5 78.5 79.1 90.0 67.8 83.5 70.0 78.2
banana 72.3 86.0 51.7 67.8 87.4 93.8 83.3 92.0
pitcher_base 53.3 77.0 69.4 85.0 84.5 92.3 88.7 93.7
bleach_cleanser 50.3 71.6 76.2 85.5 65.0 83.0 75.9 86.8
bowl∗ 3.3 69.6 3.6 78.1 5.1 91.6 41.5 77.8
mug 58.5 78.2 53.9 75.8 72.1 89.8 70.3 86.1
power_drill 55.3 72.7 82.9 90.8 77.7 88.8 90.7 94.6
wood_block∗ 26.6 64.3 0.0 57.0 52.3 90.7 26.2 60.1
scissors 35.8 56.9 65.3 79.6 59.7 83.0 45.5 61.8
large_marker 58.3 71.7 56.5 70.2 63.9 74.9 68.1 77.5
large_clamp∗ 24.6 50.2 57.2 73.1 26.6 78.3 45.5 72.1
extra_large_clamp∗ 16.1 44.1 23.6 54.6 29.0 54.7 29.1 70.0
foam_brick∗ 40.2 88.0 32.1 88.9 72.0 89.9 70.5 83.0
MEAN 53.7 75.8 66.2 82.4 64.1 86.2 70.1 84.2
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Figure 5.3: The per-object area under the accuracy-threshold curve (AUC) of ADD-S
and ADD for distance threshold of maximum 0.1 m related to our T6D-
Direct method on the YCB-V dataset.

51



5 Experiments

Sc
en

e
Fu

ll
m

od
el

Fr
oz

en

0 0.2 0.4 0.6 0.8 1

Figure 5.4: Object detections predicted by bounding boxes in a given image (first row)
and decoder attention maps for the object queries (second and third rows).
In second row, single-stage training is utilized, and multi-stage training is
used in third row. Attention maps are visualized using the jet color map
(shown above for reference).

we freeze the transformer model and train only the prediction heads of 6D pose
estimation, the prediction heads have to rely on the features already learned. How-
ever, the complete trained model has denser activations than the partial-trained
model, and the activations are spread over the whole object and not just the object
boundaries. Thus, training the complete enables the model to learn more suitable
features for 6D pose estimation than object detection.

In Figure 5.5, we illustrate the self-attention maps for four pixels belonging to
four objects in the image. As we can see the encoder is able to separate individ-
ual instances. Figure 5.6 also shows some qualitative results of the T6D-Direct
predictions compared to PoseCNN (Xiang et al. 2017) on the YCB-V dataset.

5.4.2 Keypoints-based

In this section, we evaluate the performance of our Keypoints-based approach. We
utilize the 6D continuous representation for rotation like the T6D-Direct method
and represent translation via decoupling estimations of object distance from cam-
era and the 2D object center in the image plane.
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Figure 5.5: Encoder self-attention. We visualize the self-attention maps for four pixels
belonging to four objects in the image.
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Figure 5.6: Qualitative examples from the YCB-V Dataset. Top row: PoseCNN (Xiang
et al. 2017). Bottom row: our predictions.

5.4.2.1 Training Details

We train the Keypoints-based model with AdamW optimizer using the ℓ1 symmetric-
aware disentangle pose loss. The best hyperparameters are adjusted as follows.
The γ and δ in Lkeypoints are set to 10 and 1, respectively. λpose related to the
pose loss is set to 0.02. Other hyperparameters have the same settings as the
T6D-Direct approach. The model is trained with the initial learning rate of 2e−4

for 335K iterations and the learning rate is decayed to 2e−5 after 271K iterations.
We also use color augmentation for training the Keypoints-based model that has
the following procedure: (1) we convert 2% of all pixels to black on the 50% of
image size; (2) apply Gaussian blur to the images; (3) add random values between
-25 and 25 to all image, in 50% of all images the added value is different for each
channel while in the other half, the added value is the same for all channels; (4)
reverse the value of all pixels for all images; (5) for each channel, multiply 50% of
images by a value sampled uniformly from the interval [0.6, 1.4]; (6) multiply im-
ages by a random value sampled uniformly from the interval [0.6, 1.4] that makes
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some images darker and others brighter, and finally modify the contrast of images
with linear contrast function.

5.4.2.2 Qualitative Results

We first investigate the performance of our model with different 3D keypoints
representations explained in Section 4.5.1. Then, we evaluate the effect of the
proposed fully connected Rotation Estimation (RotEst) module.

Table 5.4: The effectiveness of keypoints representations and the RotEst module
evaluated on YCB-V.

Method ADD(-S) AUC of
ADD(-S)

FPS + EPnP 31.4 56.9
handpicked + EPnP 31.5 55.7
IBB + EPnP 56.0 74.7
IBB + EPnP for R; head for t 63.9 82.3
IBB + heads for R and t 65.0 82.6

Effectiveness of 3D Keypoints Representations We compare different key-
points representations, i.e., keypoints sampled using the Farthest Point Sampling
(FPS) algorithm (Peng et al. 2019), handpicked keypoints representation (Zappel,
Bultmann, and Behnke 2021), 8 corners of the 3D bounding box (BB), and the
Interpolated Bounding Box keypoints (IBB) proposed by S. Li et al. (2021). For
evaluating the ability of the model to estimate keypoints representations, in the
experiments, we use the OpenCV implementation of the RANSAC-based EPnP
algorithm with the same parameters to recover the 6D object pose from the pre-
dicted keypoints. Except for the case of IBB representation, the proposed model
is trained using only the ℓ1 loss. The BB representation provides results slightly
better than the handpicked keypoints. As the IBB representation is an extension
of BB, and due to utilizing the cross-ratio loss, we expect IBB provides the best
results.

Based on our experiments as provided in Tables 5.4 and 5.5, using the model in
conjunction with the RANSAC-based EPnP solver, the FPS performs worse than
all other representations. The reason is that the locations of FPS keypoints are
less intuitive, making them more difficult to predict, especially for our proposed
model that needs to deal with all objects in the YCB-V dataset. In contrast, the
IBB keypoints representation yields the best performance. We conjecture that as
the cross-ratio loss based on the prior geometric knowledge preserves the keypoints
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geometrically, this representation is the appropriate choice for our method where
a single model is trained for all objects.

Effectiveness of Rotation Estimation Module In contrast to the standard ap-
proach of estimating the 2D keypoints with the RANSAC-based PnP solver, which
is not trivially differentiable, we exploit the proposed learnable Rotation Estima-
tion (RotEst) module to estimate the object rotation from a set of predicted key-
points. After deciding on the keypoints representation, i.e., IBB keypoints, we
compare the performance of the learnable feed-forward rotation and translation
estimators against the analytical RANSAC-based EPnP algorithm. Based on Ta-
ble 5.4, interestingly, if we only estimate the rotation from the EPnP-RANSAC
result and directly regress the translation, the accuracy improves significantly.
The reason is that in the IBB keypoints representation, due to geometrical en-
forcement by cross-ratio, a small error in prediction of the 2D projected corre-
spondences of IBB results in dropping the translation performance considerably in
contrast to rotation which tends to be less vulnerable to the noise. Therefore, it
is not beneficial to utilize the IBB representation for translation. We can observe
that the RotEst module performs slightly better than using EPnP rotation and
direct translation estimation. However, it is worth noting that the proposed mod-
ule and the translation estimator are MLPs and thus do not add any overhead to
running time, unlike the EPnP-RANSAC algorithm. This advantage enables our
Keypoints-based model to perform inference in real-time.

Table 5.5: Ablation study on keypoints representations. The best results are shown
in bold.

Method AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

FPS 83.7 93.0 86.3 78.1 88.0 87.8 95.1 90.2 83.0 89.9
Handpicked 83.5 92.9 86.4 79.5 86.6 87.7 95.1 89.9 85.6 88.9
IBB Keypoints 86.2 92.9 88.3 89.1 86.0 90.2 95.0 91.8 91.2 90.0

Object Detection Evaluation As the object detection performance of the model
directly impacts the 6D pose estimation results, we examine the object detection
performance of our T6D-Direct and Keypoints-based methods in Table 5.6. It has
to mention that we utilize Generalized IoU (GIoU) introduced by Rezatofighi et
al. (2019) for the bounding box loss. As we can see, the Keypoints-based method
provides superior results for all metrics.

Comparison to the State-of-the-art Methods In Table 5.7, we provide the re-
sults of the AUC of ADD-S and ADD(-S) for each class. Except for DeepIM as a
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Table 5.6: Objection detection results of the proposed approaches. The best results
are shown in bold.

Method AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

T6D-Direct 79.8 98.0 92.1 69.5 82.9 83.7 83.8 83.8 70.6 88.4
Keypoints-based 84.5 99.4 97.8 80.9 86.6 88.2 88.3 88.3 82.0 90.7

refinement-based method and PVNet as an indirect approach, other methods esti-
mate the 6D pose directly. The results show that our Keypoints-based method out-
performs all of the competing approaches. The area under the accuracy-threshold
curves using both ADD-S and ADD metrics are also illustrated in Figure 5.7. We
vary the threshold to the maximum value 10 cm for the average distance and then
compute the pose accuracy.

Table 5.7: Comparison of Keypoints-based with the state-of-the-art methods on
YCB-V. The P.E. clarifies that one model is trained per object (N) or
a single model is trained for all objects (1). The symmetric objects are
denoted by *, and the best results are shown in bold.

Method PoseCNN PVNet GDR-Net T6D-Direct Keypoints-based DeepIM
P.E. 1 N 1 1 1 1

Metric AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

master_chef_can 84.0 50.9 81.6 96.6 71.1 91.9 61.5 91.3 64.0 93.1 71.2
cracker_box 76.9 51.7 80.5 84.9 63.5 86.6 76.3 86.8 77.9 91.0 83.6
sugar_box 84.3 68.6 84.9 98.3 93.2 90.3 81.8 92.6 87.3 96.2 94.1
tomato_soup_can 80.9 66.0 78.2 96.1 88.9 88.9 72.0 90.5 77.8 92.4 86.1
mustard_bottle 90.2 79.9 88.3 99.5 93.8 94.7 85.7 93.6 87.9 95.1 91.5
tuna_fish_can 87.9 70.4 62.2 95.1 85.1 92.2 59.0 94.3 74.4 96.1 87.7
pudding_box 79.0 62.9 85.2 94.8 86.5 85.1 72.7 92.3 87.9 90.7 82.7
gelatin_box 87.1 75.2 88.7 95.3 88.5 86.9 74.4 90.1 83.4 94.3 91.9
potted_meat_can 78.5 59.6 65.1 82.9 72.9 83.5 67.8 85.8 76.7 86.4 76.2
banana 85.9 72.3 51.8 96.0 85.2 93.8 87.4 95.0 88.2 91.3 81.2
pitcher_base 76.8 52.5 91.2 98.8 94.3 92.3 84.5 93.6 88.5 94.6 90.1
bleach_cleanser 71.9 50.5 74.8 94.4 80.5 83.0 65.0 85.3 73.0 90.3 81.2
bowl∗ 69.7 69.7 89.0 84.0 84.0 91.6 91.6 92.3 92.3 81.4 81.4
mug 78.0 57.7 81.5 96.9 87.6 89.8 72.1 84.9 69.6 91.3 81.4
power_drill 72.8 55.1 83.4 91.9 78.7 88.8 77.7 92.6 86.1 92.3 85.5
wood_block∗ 65.8 65.8 71.5 77.3 77.3 90.7 90.7 84.3 84.3 81.9 81.9
scissors 56.2 35.8 54.8 68.4 43.7 83.0 59.7 93.3 87.0 75.4 60.9
large_marker 71.4 58.0 35.8 87.4 76.2 74.9 63.9 84.9 76.6 86.2 75.6
large_clamp∗ 49.9 49.9 66.3 69.3 69.3 78.3 78.3 92.0 92.0 74.3 74.3
extra_large_clamp∗ 47.0 47.0 53.9 73.6 73.6 54.7 54.7 88.9 88.9 73.3 73.3
foam_brick∗ 87.8 87.8 80.6 90.4 90.4 89.9 89.9 90.7 90.7 81.9 81.9
MEAN 75.9 61.3 73.4 89.1 80.2 86.2 74.6 90.1 82.6 88.1 81.9

We present AR of ADD(-S) and AUC of ADD-S/ADD(-S) of our proposed
approaches compared to the state-of-the-art methods in Table 5.8. As we can see,
our Keypoints-based method achieves the state-of-the-art results among the pose
estimators in terms of AUC of ADD-S and AR of ADD(-S) 0.1d in which the
error is computed based on the diameter of an object. Therefore, it shows that
our model’s 6D object pose estimations are more accurate. Note that the pose
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Figure 5.7: The per-object area under the accuracy-threshold curve (AUC) of ADD-S
and ADD for distance threshold of maximum 0.1 m related to the Keypoints-
based method on the YCB-V dataset.

refinement approach CosyPose achieves the best result in terms of the AUC of
ADD(-S) metric; however, it requires training an additional pose refinement model.
It is worth mentioning that our method can be combined with an additional refiner
like CosyPose to improve the results.

Table 5.8: Comparison with the state-of-the-art methods on YCB-V. ∗ indicates
that the method is refinement-based. The best results are shown in
bold.

Method ADD(-S) AUC of
ADD-S

AUC of
ADD(-S)

PoseCNN 21.3 75.9 61.3
SegDriven 39.0 - -
Single-Stage 53.9 - -
GDR-Net 49.1 89.1 80.2
T6D-Direct (Ours) 48.7 86.2 74.6
Keypoints-based (Ours) 65.0 90.1 82.6
CosyPose∗ - 89.8 84.5

As explained in Section 5.3, we also compare the performance of our pro-
posed methods with the state-of-the-art RGB-based approaches under BOP setup
in Table 5.9. Pix2Pose and EPOS are indirect approaches, and CosyPose is a
refinement-based method, whereas other approaches directly regress the 6D object
pose. The results of the baselines are reported from the BOP challenge leader-
board5. We can observe that in terms of the AR metric, our Keypoints-based

5https://bop.felk.cvut.cz/leaderboards
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5 Experiments

Table 5.9: Performance comparison of the methods on YCB-V under BOP setup.
The time is the average over the averaged inference time of images in
the BOP test set. The P.E. indicates one network is trained per object
(N) or a single network is trained for all objects (1). ∗ indicates that
the method is refinement-based, and the best results are shown in bold.

Method P.E. ARV SD ARMSSD ARMSPD AR Time [s]
Pix2Pose 1 37.2 42.9 57.1 45.7 1.025
EPOS 1 62.6 67.7 78.3 69.6 0.572
CDPNv2 N 39.6 57.0 63.1 53.2 0.143
GDR-Net 1 58.4 67.4 72.6 66.1 0.065
T6D-Direct (Ours) 1 53.9 56.2 53.6 54.6 0.036
Keypoints-based (Ours) 1 66.2 72.3 76.4 71.6 0.038
CosyPose∗ 1 77.2 84.2 85.0 82.1 0.241

method outperforms the direct GDR-Net approach. Comparison of the T6D-
Direct and Keypoints-based results show the beneficial effect of using keypoints as
2D intermediate correspondences on improving the estimation performance, espe-
cially for the rotation component. Furthermore, the results of the inference time
confirm the speed superiority of our proposed methods compared to other pose
estimators.

5.4.2.3 Quantitative Results

In Figure 5.8, we depict the object bounding boxes and the decoder cross-attention
feature maps corresponding to the detected objects. We can observe that the
attended regions indicate the spatial position of the objects in the image very
well. To further show the performance of our Keypoints-based method for the 6D
pose estimation task, we demonstrate the predicted IBB keypoints and estimated
object poses on the YCB-V test set in Figure 5.9.

5.5 Inference Time Analysis
In terms of the inference speed, one of the major advantages of our models is to
generate a set of N predictions in parallel; therefore, the inference of the models is
not dependent on the number of objects in an image. We set N to 20 since having
a smaller cardinality of the prediction set results in estimating fewer object queries
and facilitates faster inference time. We compute the inference time on an NVIDIA
2080 GPU and Intel 2.20GHz CPU. Our proposed models run almost similarly at
27 fps. The number of parameters in T6D-Direct is 41.5M, and Keypoints-based
has extra 6.8M parameters due to the lightweight RotEst module.
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Figure 5.8: Top: Object detections predicted by bounding boxes in a given image. Bot-
tom: Decoder cross-attention maps for the object queries corresponding to
the predictions in the first row.

Figure 5.9: Qualitative results on YCB-V test set. The predicted IBB keypoints overlaid
on the input images. Ground truth and predicted object poses are visualized
as object contours in green and blue colors, respectively.

To demonstrate the superiority of our proposed approaches in terms of real-time
performance, we present the AR score vs. inference frame rate under BOP setup
for the state-of-the-art methods in Figure 5.10. As we can see, our methods enjoy
the fastest inference among the state-of-art-approaches.
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Figure 5.10: Comparison of AR score and inference frame rate (fps) under BOP setup.
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6 Conclusion

In this thesis, inspired by DETR (Carion et al. 2020), we model the multi-object
monocular 6D pose estimation as a direct set prediction problem and propose
two end-to-end differentiable transformer-based methods, T6D-Direct and its ex-
tension Keypoints-based. We evaluate the performance of the developed models
on a challenging multi-object single-instance 6D pose dataset, YCB-V. Our T6D-
Direct approach directly regresses the 3D rotation and 3D translation of the 6D
pose, achieving competitive results compared to the state-of-art methods. To
further improve the model performance, we extend T6D-Direct by utilizing key-
points as 2D projected sparse correspondences from 3D Interpolated Bounding Box
(IBB) for rotation estimation. We employ the fully connected Rotation Estimation
(RotEst) module to estimate the object rotation from the predicted keypoints. Our
Keypoints-based approach outperforms other competing pose estimators without
leveraging intermediate geometric feature maps.

Our proposed approaches in this thesis offer two main advantages. First, these
single-stage models, equipped with a non-autoregressive Transformer including a
multi-head attention mechanism, enable estimating the 6D pose of all objects in
a given image in one forward pass. Second, in contrast to the existing methods,
inference time is invariant to the number of objects in an image. The conducted
inference time analysis shows that our proposed architectures enjoy the highest
frame rate that gives our models the privilege to be utilized for real-world appli-
cations.

The main goal of this thesis is to utilize Vision Transformers for 6D object pose
estimation. During developing our models, we mainly focused on the 6D object
pose estimation problem and explored the potential of Transformers. Therefore,
there are several directions remain to be investigated.

For future work, one of the possible extensions to our Keypoints-based model
is to examine variants of Transformer such as Swin Transformer (Z. Liu, Y. Lin,
et al. 2021), Pyramid Vision Transformer (W. Wang et al. 2021a), Focal Trans-
former (Yang et al. 2021) that aim to advance the vanilla Transformer by benefiting
from CNN inductive biases and hierarchical representation. We expect that using
adapted Transformers will increase the accuracy and/or provide lighter models.
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6 Conclusion

Although our experiments showed that adding keypoints improves the results
of our T6D-Direct approach, the Keypoints-based model has reached its limita-
tion and requires denser intermediate geometric features to achieve more robust
results, as 6D pose estimation is applicable on a wide range of objects with dif-
ferent characteristics. Thus, another venue to be explored is to exploit additional
intermediate features for recovering a more accurate 6D object pose since our
Keypoints-based method estimates the 6D pose of all objects with various levels
of occlusion in a scene using a single model. Moreover, we can consider other geo-
metrical prior knowledge apart from preserving the cross-ratio as suggested by S.
Li et al. (2021).
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