
Rheinische
Friedrich-Wilhelms-Universität Bonn

Master thesis

Video Prediction at Multiple Levels with
Hierarchical Recurrent Networks

Author:
Ani Karapetyan

First Examiner:
Prof. Dr. Sven Behnke

Second Examiner:
Prof. Dr. Joachim K. Anlauf

Advisor:
M. Sc. Angel Villar-Corrales

Submitted: June 6, 2022

Declaration of Authorship

I declare that the work presented here is original and the result of my own
investigations. Formulations and ideas taken from other sources are cited as such.
It has not been submitted, either in part or whole, for a degree at this or any
other university.

Location, Date Signature

Abstract
Effective human-robot collaboration requires autonomous agents not only to per-
ceive the dynamic environment they are interacting with, but also to have the
ability of making predictions about the behavior and future state of the nearby
agents. The problem of predicting a plausible continuation for the given sequence
of video frames is known in the literature as video prediction. Despite the recent
advances in deep-learning based video prediction, existing methods lack the abil-
ity to make reliable long-term predictions suitable for perceptual inference and
spatial reasoning applications. Although for relatively longer time horizons it is
not even feasible to forecast pixel-level details, reliable prediction of more abstract
representations, such as human poses or scene semantics, can be more beneficial
than blurry pixel-level predictions.

In this thesis we propose and investigate MSPred (Multi-Scale Hierarchical
Prediction), a novel hierarchical video prediction model able to simultaneously
predict future possible outcomes of different levels of granularity at distinct time
resolutions, conditioned on the given video frames. We evaluate the performance of
our model on three datasets, namely Moving-MNIST [95], KTH-Actions [88] and
SynPickVP [46, 79]. We empirically demonstrate that MSPred achieves quite com-
petitive results for future frame prediction, outperforming several popular video
prediction baselines, while simultaneously making plausible future predictions at
distinct abstraction levels and time-scales. In addition, we conduct an extensive
ablation study and analysis to investigate the importance and effect of different
components of our model.

Contents

1 Introduction 1

2 Theoretical Background 5
2.1 Deep Learning Essentials . 5

2.1.1 Popular Activation Functions 5
2.1.2 Learning Paradigms . 7
2.1.3 Training of Neural Networks 8
2.1.4 Regularization . 9
2.1.5 Popular Loss Functions . 10

2.2 Convolutional Neural Networks . 11
2.3 Recurrent Neural Networks . 12

2.3.1 LSTM . 14
2.3.2 Convolutional LSTM . 16

2.4 Autoencoders . 16

3 Related Work 19
3.1 State of the Art . 19
3.2 Stochastic Video Prediction . 22
3.3 High-Level Structured Prediction 24
3.4 Multiscale/Hierarchical RNNs . 26

4 Approach 29
4.1 Architecture . 29

4.1.1 Encoder . 29
4.1.2 Multi-Scale Predictor . 30
4.1.3 Decoder . 32
4.1.4 Stochastic Components . 32

4.2 Model Inference . 33
4.3 Model Training . 34
4.4 Implementation Details . 36

3

Contents

5 Evaluation and Results 39
5.1 Datasets . 39

5.1.1 Moving-MNIST . 39
5.1.2 KTH-Actions . 40
5.1.3 SynPickVP . 40

5.2 Metrics . 41
5.2.1 Image Similarity Metrics . 42
5.2.2 Pose Estimation Metrics . 44
5.2.3 Semantic Segmentation Metrics 45

5.3 Results . 46
5.3.1 Evaluation on Moving-MNIST 46
5.3.2 Evaluation on KTH-Actions 47
5.3.3 Evaluation on SynPickVP 49
5.3.4 Comparison to Other Methods 51

5.4 Ablation Study . 59
5.4.1 Effect of Hierarchy . 59
5.4.2 Effect of Each RNN-Level 61
5.4.3 Effect of Stochastic Prediction 63

6 Conclusion 67

4

1 Introduction
To achieve effective human-robot collaboration, autonomous systems, such as in-
dustrial or domestic robots, should not only recognize the dynamic environment
they are interacting with, but also be able to make predictions about the behav-
ior and future state of the nearby agents. The problem of video prediction is
formally defined as follows. Given C input (or context) frames, the goal is to gen-
erate next N frames that make up a plausible continuation for the given sequence
(Figure 1.1). This is a very challenging task, since the model should be able to
estimate the spatio-temporal dynamics of the environment, striving to capture its
inherent uncertainty. The problem of future frame prediction complies with the
self-supervised learning paradigm, since no expensive annotations are needed for
training. Moreover, video prediction is a particularly promising task, due to its
representation-learning nature, since rich internal representations are required for
making coherent predictions.

The necessary level of abstraction of the predicted representations depends on
the specific scenario and the desired time horizon. For example, highly detailed
pixel-level predictions are desirable when forecasting the immediate future. Al-
though for relatively longer time horizons it is no longer feasible to forecast pixel-
level details, it can be beneficial to predict more abstract structures, such as object
poses or scene semantics. Moreover, in order to plan longer into the future, re-
liable prediction of representations of higher abstraction level, such as actions or
locations, can be more beneficial than blurry pixel-level predictions.

Figure 1.1: Illustration of the future frame prediction task for C context and N
predicted frames. Figure adapted from Oprea et al. [77].

1

1 Introduction

In recent years, many deep-learning-based approaches [15, 102, 54, 87, 77] have
been designed for future frame prediction. However, existing models mainly spe-
cialize on predicting detailed future frames for the next few time-steps, and suffer
from blurry and poor generations for longer time-horizons, which makes it not
feasible to apply them for perceptual inference and spatial reasoning scenarios.
Moreover, most of these methods employ an autoregressive flow in pixel-space,
hence requiring a lot of iterations to make predictions for larger time-steps, and
therefore are prone to fast error accumulation.

Most of the successful efforts towards long-term video prediction rely on making
predictions in a more tractable structured space, such as the space of human
poses [103, 104, 71, 27] or semantic maps [68, 96, 67, 58]. A number of these
models [103, 104, 27, 58] concatenate multiple networks making predictions in
an intermediate structured space, prior to the actual future frame generation.
However, most of these models are not trained in an end-to-end manner, and
are often constrained to specific domains. A few other approaches [68, 67, 71, 96]
attempt to directly make predictions into a high-level space from raw image frames.
However, these models are limited to making predictions of specific structure,
such as segmentation maps, which can result in a loss of relevant information for
other tasks. Furthermore, these models lack the flexibility to simultaneously make
predictions in different levels of abstraction.

In this thesis, we propose and investigate a novel hierarchical video predic-
tion model MSPred (Multi-Scale Hierarchical Prediction), addressing the above-
mentioned issues. MSPred is a convolutional and recurrent neural network de-
signed to predict future plausible outcomes of different levels of abstraction at
different temporal resolutions in parallel, conditioned on the given video frames.
In order to better model the world dynamics, MSPred leverages a hierarchical
predictor module, with different levels operating at different spatial and temporal
resolutions.

The thesis has the following structure:

• Chapter 2: Theoretical Background
Summarizes deep-learning prerequisites and popular architectures that make
up the main building blocks of video prediction models.

• Chapter 3: Related Work
Reviews the related work on video prediction problem, the existing efforts
towards long-term video prediction, as well as hierarchical architectures for
improved future frame prediction.

2

• Chapter 4: Approach
Outlines the overall architecture and design choices of different components
of the proposed MSPred model, and describes some implementation details.

• Chapter 5: Evaluation and Results
Specifies the datasets and metrics used for evaluation of the model, reports
the quantitative and qualitative results on each dataset, and comparison with
existing video prediction models. Presents the conducted ablation study and
analysis of our model.

• Chapter 6: Conclusion
Encloses the thesis with a conclusion on the presented method and results,
as well as some notes on the future work.

The thesis has been partially submitted as a paper to IROS 2022 (International
Conference on Intelligent Robots and Systems), as well as published as an arXiv
preprint by Karapetyan et al. [46].

3

2 Theoretical Background

In this chapter we briefly summarize the essential theoretical background and
concepts for the thesis.

2.1 Deep Learning Essentials
Traditional machine learning and computer vision algorithms rely on hand-crafted
features (e.g. SIFT [64], SURF [3]) designed by domain-experts, for processing
high-dimensional data. In contrast, deep neural networks are able to extract pow-
erful representations from unstructured data (such as images and videos) and learn
function approximations based on those features, within the same model.

Deep learning encompasses the methods and paradigms enabling deep neural
networks to learn hierarchical representations from data [55]. The standard fully-
connected feedforward neural network, also known as a multilayer perceptron
(MLP), defines a computational graph that stacks multiple layers of neurons (com-
putational units), where each neuron is connected to all the neurons on its previous
and the next layers. In a broad sense, the purpose of a neural network is to ap-
proximate an unknown function f∗ by a category of functions y = f(x;Θ) defined
by the computational graph of the network, mapping input x to output y [28].
The parameters (or weights) Θ of the network are learned from the observed data.
Figure 2.1 illustrates an example of a simple feedforward neural network with two
hidden layers. Each neuron first computes a pre-activation as a linear combination
of its inputs and the respective incoming edge weights, then applies a non-linear
activation function and passes the output to the next layer.

2.1.1 Popular Activation Functions
The most popular activation functions used in the modern deep networks, es-
pecially in the area of computer vision, include rectified linear unit [41, 98, 28]
(ReLU), logistic sigmoid [116], hyperbolic tangent (tanh) [69], softmax [28], and
their different variants, such as Leaky ReLU [44] among others. ReLU [28] repre-
sents a default choice for the activation function in many scenarios, and is simply

5

2 Theoretical Background

Figure 2.1: An example of a simple MLP. At each layer, the output of the pre-
vious layer (or the input in case of the first hidden layer) is linearly transformed
and passed through an element-wise non-linear activation function to produce the
input for the next layer. Parameters (or weights) of the network are denoted by
w, whereas bias terms are omitted in the visualization. Figure extracted from
LeCun et al. [55].

Figure 2.2: Visualization of some popular activation functions: Sigmoid, Tanh,
ReLU and Leaky ReLU. Figure extracted and modified from J. Yang et al. [113].

6

2.1 Deep Learning Essentials

defined as g(z) = max{0, z}. Due to its piecewise-linearity, ReLU makes the net-
works easier and faster to optimize [28]. Despite being widely used, ReLU has the
drawback of being prone to “dying” [31] during training. This can happen when,
for instance due to very large learning rate, the weights of the network arrive at a
state where a ReLU unit always outputs the same score (zero) for any input. In
this case it will forever stay in that state, since there is no gradient signal to help
it recover. The Leaky ReLU [44] activation function adds a small positive gradient
for the negative range of inputs, in order to address the “dead” ReLU problem. It
is defined as g(z) = max{α · z, z} where α is set to a small number, such as 0.01.
Two reknown sigmoidal activation functions are the logistic sigmoid (2.1) and hy-
perbolic tangent (2.2), which are closely related through the tanh(z) = 2 · σ(2z) – 1
formula [28].

σ(z) = 1
1 + e–z (2.1) tanh(z) = ez – e–z

ez + e–z (2.2)

The logistic sigmoid is usually applied at the final layer to map the output to
the (0, 1) range, for example when predicting the probability that an input belongs
to a certain class in binary classification problems. However, hyperbolic tangent is
relatively more preferable for hidden units in terms of optimization [28], due to its
resemblance to the identity function, and it is more common in recurrent networks
and autoencoders. The problem with sigmoidal functions resides in their highly
saturating behaviour [28] on most of the input range, i.e. both at very positive and
very negative input values. Therefore, when using these functions on the output
layer, it is recommended to employ a loss function (e.g. negative log-likelihood)
that can cancel this saturation behavior [28]. While logistic sigmoid units model
Bernoulli distributions, softmax [28] units model multinoulli distributions, such
as the output of a multi-class classification model. A vector z of length n is
transformed by the softmax operation to another vector of the same length, where
each component is defined as:

softmax(z)i = ezi∑n
j=1 ezj . (2.3)

Figure 2.2 visualizes the four activation functions discussed above.

2.1.2 Learning Paradigms
The most widely applied paradigms for learning of neural networks are the su-
pervised and unsupervised learning. Supervised learning refers to the scenarios

7

2 Theoretical Background

when the data is labeled according to the task requirements, whereas unsupervised
learning implies no available annotations of the data [28]. In contrast, semi-
supervised learning [28, 18] methods make use of large amount of unlabeled data
to learn effective feature representations that are then used to train the model
on a smaller number of labeled samples. Self-supervised learning [6] entirely
relies on unlabeled data, and in this sense can be considered as a special case
of unsupervised learning. However, while unsupervised learning problems include
clustering and dimensionality-reduction, self-supervised learning aims to make pre-
dictions based on the data, for instance in the scope of classification or regression
tasks. The video prediction task [77] investigated in this work also fits in the
self-supervised learning paradigm.

2.1.3 Training of Neural Networks

Neural networks are trained to minimize a so called cost (or loss) function [28],
which has the following general form:

J (Θ) = 1
m

m∑
i=1

L(f(x(i);Θ), y(i)), (2.4)

where L denotes the loss defined for a single data point (x(i), y(i)) with input x(i)

and target value y(i), and the final objective function averages L over the given m
training examples. The goal is to find some parameter values Θ∗ for the network,
so that the cost function J (Θ) is minimized, i.e. Θ∗ = arg minJ (Θ).

Stochastic gradient descent [28] (SGD) and its variants are the most popular
optimization algorithms used for training of the modern deep neural networks.
Similar to the standard Gradient descent (Cauchy [9]), SGD starts from a random
initialization of the network parameters, and iteratively updates them according to
the gradient estimate of the cost function at the current state. The key difference is
that in classical Gradient descent the update step uses the average of the gradients
over all training samples (batch), whereas SGD uses a random subset of the training
data (minibatch) at each iteration for gradient estimation.

The update operations of SGD at iteration k are depicted in Figure 2.3. At each
step, the gradient of the cost function is estimated by averaging per-sample gra-
dients over m random training samples, and the network parameters are updated
along the opposite direction of the estimated gradient vector. The learning rate
εk, usually decreased over time, is an important hyperparameter controlling size
of the parameter updates.

8

2.1 Deep Learning Essentials

Figure 2.3: Stochastic gradient descent update step at iteration k. Figure ex-
tracted from Goodfellow et al. [28].

During training, the cost function’s value is produced by propagating the input
values across the network (forward propagation). Afterwards, the gradient of the
cost function with respect to the network parameters is computed through a so
called back-propagation [85] algorithm. It starts from the last layer of the network
and recursively applies the chain rule of calculus (2.5), to compute the partial
derivatives for all the nodes and weights of the network in backward order [28].

z = f(y) = f(g(x)), then ∂z
∂x = ∂z

∂y · ∂y
∂x (2.5)

The calculated gradients are then used by the optimization algorithm (e.g. SGD)
to adjust the weights of the network. The most widely used optimization al-
gorithms, such as RMSProp [35] and Adam [48], employ adaptive learning rate
methods.

2.1.4 Regularization

One of the problems with training of deep neural networks is concerned with
overfitting on the training data, resulting in poor generalization performance.
Different regularization methods [28] have been designed that control the rep-
resentational capacity of the network in order to avoid overfitting. Among the
most effective regularization techniques for deep neural networks is the dropout
(Srivastava et al. [94]). As a rule, dropout is applied to entire layers of the net-
work. At each training iteration, it randomly removes some of that layer’s units
by setting their output values to zero with some probability. Thus, dropout has
the effect of reducing the network capacity during training, moreover, it helps the
model to learn several representations of the same input, stopping each of the
network units from specializing only on a specific aspect of the input.

9

2 Theoretical Background

Batch normalization (Ioffe et al. [38]) can also be considered as a regularization
technique. It standardizes the output of any input or hidden layer as follows.
Given a minibatch of data, let matrix H denote the output activations of the
given layer, with each row corresponding to a single data sample. Then batch
normalization [28] transforms the activations H to:

H′ = H – μ
σ

, (2.6)

where μ and σ vectors are composed of the mean and standard deviation values for
each unit’s activations over the given minibatch. In practice, during training the
model tracks average estimates for the values of μ and σ, and freezes these values
at inference time.

Other methods indirectly constrain the effective capacity of the network. In
particular, in order to avoid overfitting due to a very large number of training
iterations, it is common to separate a so called validation set from the training
dataset, and stop the training once the loss value on the validation set stops
decreasing. This technique is known as “early stopping” [28].

2.1.5 Popular Loss Functions
The most widely used loss functions for regression problems include mean-squared
error (MSE) and mean-absolute error (MAE) [28]. MSE and MAE measure the
mean-squared and mean-absolute deviation, respectively, between the ground-
truth y(i) and predicted ŷ(i) values over a minibatch of m data points:

MSE = 1
m

m∑
i=1

(ŷ(i) – y(i))2, (2.7) MAE = 1
m

m∑
i=1

∥ŷ(i) – y(i)∥. (2.8)

Both functions can be generalized to multidimensional inputs, such as images.
For instance, pixel-wise MSE computed on two images produces the average of the
squared differences between corresponding pixel values.

For classification problems, it is common to use the cross-entropy [5] (CE) func-
tion. Consider the classification problem for K-classes. Given two probability
vectors of length K, namely the predicted class-labels ŷ and the target label y
(normally a one-hot vector), for a specific data sample, the cross-entropy loss is
computed as:

CE = –
K∑

k=1
yk · log(ŷk). (2.9)

10

2.2 Convolutional Neural Networks

In case of “hard-labeling” [28] of the samples, i.e. when the ground-truth vectors
y are represented as one-hot vectors, the cross-entropy reduces to negative log-
likelihood –log(ŷc) for the target class c.

Similar to MSE, cross-entropy can also be generalized to high-dimensional in-
puts. For instance, pixel-wise cross-entropy [11] is a common loss function in
semantic segmentation tasks. In such cases, the model normally predicts a prob-
ability vector of length K (number of classes) at each pixel location of the image.
Pixel-wise cross-entropy computes the standard cross-entropy averaged across all
pixels.

2.2 Convolutional Neural Networks
Traditional fully-connected networks densely connect neurons between layers and
operate on flat vectors neglecting any spatial information. Hence, they are not
effective for tasks such as image recognition. In contrast, convolutional layers
are able to extract feature representations that reflect the spatial structure of the
input.

The mathematical operation of convolution [28] for an input I and a kernel K
(2d arrays) is defined as follows:

(I ⋆ K)(i, j) =
∑
m

∑
n

I(m, n) · K(i – m, j – n). (2.10)

Convolutional layers typically convolve the input with multiple learnable kernels
(filters), and are often followed by a non-linear activation function (ReLU) and a
pooling operation. The convolution stride specifies the number of pixels by which
the kernel is shifted at each step when sliding over the image. The pooling [28]
operation summarizes the input by sliding a rectangular window over it and ex-
tracting a single statistic for each region. The popular pooling functions include
max-pooling, average-pooling and L2-norm. It is common to set the pooling stride
equal to the size of the pooling window, so that the spatial size of the input is
decreased.

In general, convolutional layers have fewer parameters than fully-connected ones,
and therefore are more memory efficient and faster to compute [28]. The key
advantages of convolutional layers are their sparse and local connectivity, as well
as parameter sharing properties [28]. Choosing a kernel size much smaller than
the input size provides the sparse connectivity, since each unit of a convolutional
layer is computed based on a local region of its input corresponding to the size of
the kernel. Moreover, the kernel weights (parameters) are shared across the input,

11

2 Theoretical Background

Figure 2.4: Transposed convolution of a 4 × 4 kernel with a 5 × 5 input. In
contrast to convolution layer, here the padding is applied to the output instead of
the input. Figure extracted from Dumoulin et al. [16].

since a single kernel extracts the same type of features from all input locations.
This greatly reduces the number of learnable parameters in the layer.

Convolutional neural networks (CNN) usually stack several convolutional and
pooling layers, thereby extracting hierarchical features from the data, which is
followed by a few fully-connected layers at the end. It is also common to include
batch normalization layers [38] between convolutional layers and ReLU activations.
CNNs are widely used as feature extractors, e.g. in encoder-decoder architectures.

A CNN typically reduces the spatial size of the input. However, sometimes one
needs to increase the size of the constructed feature maps, such as in the decoder
of a convolutional autoencoder (Section 2.4). One way is to apply a standard 2d
interpolation method, such as bilinear interpolation [80]. A more effective way is to
use a learnable layer with transposed convolution [62, 16] operation. As mentioned
by Dumoulin et al. [16], transposed convolution corresponds to the gradient of
simple convolution operation, and vice versa. Figure 2.4 illustrates a few steps of
an example transposed convolution operation. At each step, the kernel is scaled
by the input value at the current location, and the result is accumulated to the
output.

2.3 Recurrent Neural Networks
While CNNs have become very popular in applications including spatial data pro-
cessing (images and videos), recurrent neural networks [17] (RNN) have shown
success in processing of sequential data [28]. RNNs model functions involving a
recurrence relation. This is implemented by maintaining a “memory” called the
hidden-state of the network, which represents an accumulated history of inputs
from all the previous time-steps. The most general form of recurrence relation is
(2.11), when the hidden-state h(t) at each time-step gets updated based on the

12

2.3 Recurrent Neural Networks

Figure 2.5: Computational graph (left) of an RNN and the visualization of cor-
responding unrolled graph (right), showing the replicated network across t + 1
time-steps. Figure extracted from Olah [75].

previous hidden-state h(t–1) and the current input x(t) [28].

h(t) = f(h(t–1), x(t);Θ) (2.11)

The output of the network is then computed based on the current hidden-state
and the current input.

RNNs can be categorized into three main classes [28], corresponding to different
task scenarios:

• One-to-many: The RNN takes a single value as input and maps it to a
sequence of output values (e.g. image captioning).

• Many-to-one: A sequence of input values is mapped to a single value by the
RNN (e.g. sentiment classification, action recognition).

• Many-to-many: A sequence is mapped to another sequence by the RNN (e.g.
machine translation, video prediction).

The recurrence relation (2.11) allows RNN to operate on a sequence of any
length, and to capture the history of inputs in its hidden-state. Moreover, the
flexibility of RNN also resides in the fact that a single transition function f is
learned for all time steps.

The standard optimization techniques can be applied for training RNNs, with
a difference that the backpropagation algorithm, for computing the gradients of
the loss function with respect to the network parameters, is applied to the un-
rolled computational graph. This procedure is called backpropagation through
time [28] (BPTT). Since the network parameters are shared across T time-steps of
the unrolled computational graph (Figure 2.5), T gradients are computed for each
parameter (weight). Then the optimization algorithm updates the model weights
with the sum of the changes contributed by individual gradients.

13

2 Theoretical Background

If there is a recurrent connection from the output of the RNN to its hidden-
state, then it is common to employ a so called teacher-forcing [28] method for
training. Instead of feeding the previously predicted outputs back into the network,
teacher-forcing uses the target output of the current time-step as the next input.
This technique can ease the training process, and hence is widely used in various
scenarios, particularly for training of video prediction models. However, in case
of open-loop inference mode [28] (current prediction serving as the next input),
teacher-forcing is prone to causing performance discrepancy between training and
inference time, due to varying input distribution fed to the model. This is the
reason why we avoid adopting teacher-forcing in this thesis.

RNNs trying to capture long-term dependencies from the data, inevitably con-
struct computational graphs that become very deep when unrolled. This makes
the gradient backpropagation quite challenging, since it includes repeated matrix
multiplications (with the same matrix), which is prone to producing vanishing
or exploding gradients [97, 28]. Vanishing gradients cause slower (or no) training
convergence, whereas exploding gradients make the learning very unstable. This
makes a motivation for this work to design a model that has smaller temporal
frequencies (larger RNN processing periods) in upper hierarchy-levels, and is able
to make long-term predictions by forecasting for only a few time-steps in different
temporal resolutions.

Several techniques have been introduced to mitigate these issues, such as gra-
dient clipping [28] (specifying the maximum possible gradient value) to address
exploding gradients, as well as various ways of proper weight initialization to
avoid vanishing gradients problem. However, the most effective models achieve
long-term dependencies by employing special types of recurrent networks, e.g. a
long short-term memory (LSTM).

2.3.1 LSTM

Long short-term memory [36, 30, 75] (LSTM) cells are specialized in learning long-
term dependencies from data. In addition to maintaining a hidden-state, LSTM
has a so called cell-state, which interacts with the rest of the cell units through only
a few linear operations. This creates a path for smoother gradient flow through
the network, alleviating the problems related to gradient backpropagation. The
building blocks of the LSTM cell are called the gates, which control the information
flow of the cell-state. Each gate is composed of a linear (fully-connected) layer
followed by a sigmoid activation. Figure 2.6 illustrates the structure of the LSTM
cell.

14

2.3 Recurrent Neural Networks

Figure 2.6: Long short-term memory cell structure. The three linear layers with
sigmoid activation (forget, input and output gates), as well as the linear layer
with tanh (for creating the candidate values of the next cell-state) are plotted
using yellow boxes. The pointwise operations (sum and multiplication) of vectors
are shown in pink circles. Figure extracted from Olah [75].

First, the forget gate determines the amount of information that should be
thrown away from the previous cell-state.

ft = σ(xt · Wxf + ht–1 · Whf + bf) (2.12)

The new information is then extracted in two stages. The input gate decides the
amount of new information to be added to the current cell-state (2.13). And a
vector of candidate values for the new cell-state is created through another linear
layer followed by a tanh activation (2.14). Afterwards, the cell-state is updated
according to the previously computed information (2.15).

it = σ(xt · Wxi + ht–1 · Whi + bi) (2.13)

C̃t = tanh(xt · Wxc̃ + ht–1 · Whc̃ + bc̃) (2.14)

Ct = ft ⊗ Ct–1 + it ⊗ C̃t (2.15)

Finally, the output gate filters the information from the cell-state and determines
the output of LSTM cell at the current time-step which in turn serves as the next

15

2 Theoretical Background

hidden-state.
ot = σ(xt · Wxo + ht–1 · Who + bo) (2.16)

ht = ot ⊗ tanh(Ct) (2.17)

In the above formulas, ft, it and ot denote the outputs of the forget, input and
output gates respectively. Ct and ht correspond to the cell-state and the hidden-
state of the LSTM. The learnable weights and biases of the cell are denoted by W
and b symbols. Finally, the arithmetical operations applied in the above formu-
las are the matrix multiplication (·), pointwise multiplication (⊗) and pointwise
sum (+).

2.3.2 Convolutional LSTM
The standard LSTM is composed of fully-connected layers, hence it is not ben-
eficial for processing grid-like data, such as images. In contrast, convolutional
LSTM [91] (ConvLSTM) replaces the linear layers of the LSTM with convolu-
tional layers. The only change to the formulas (2.12) to (2.17) is that the weights
W are exchanged with learnable kernels, and the matrix multiplication (·) is re-
placed with convolution operation (⋆).

2.4 Autoencoders
Autoencoder [28, 84] (AE) is a special type of neural network that is trained to
replicate its input to the output. Autoencoders have many applications, such
as dimensionality-reduction and representation-learning among others. The main
goal of an AE is to capture an efficient low-dimensional hidden representation that
can aid in learning other tasks. Autoencoders are composed of two main building
blocks, namely an encoder and a decoder. In a standard deterministic AE, the
encoder (E) maps the input to a code (embedding) h, and the decoder (D) attempts
to reconstruct the original input x from h. The loss L is then minimized so that
the reconstruction x̂ matches the input x as close as possible:

L(x, x̂) = L(x, D(E(x))). (2.18)

An undercomplete AE [28] is a very common type of autoencoder, where the code
h has a much smaller dimensionality than the input x. This encourages the AE to
extract the most essential features from the data for a particular task. There are
several techniques of regularizing an AE, in order to force it to learn a more robust

16

2.4 Autoencoders

Figure 2.7: Illustration of the structure of a simple Variational Autoencoder (left),
and the reparametrization trick used for training of VAEs. Figures extracted from
Rocca [84].

hidden representation h. In particular, a denoising AE [28] tries to reconstruct the
initial input x from its corrupted version x̃, thus achieving robustness to noisy
data.

In image processing tasks, the encoder of an AE is typically implemented as a
convolutional network, and the decoder is a mirrored version of the encoder with
simple upsampling [80] or transposed convolutional [16] layers.

VAE

Typically, the latent space of the standard AE is not organised in a way that
enables the decoder to serve as a data generator, since there is no guarantee that
most of the points in the latent space correspond to meaningful reconstructions.
Variational Autoencoder (VAE) [50, 83, 84, 28] resolves this problem by employing
explicit regularization during training, to force the construction of a latent space
suitable for the generative process.

Instead of computing a single encoding for the given input, VAE estimates a
probability distribution q(z | x) over the latent space, parameterized as the mean
and standard deviation of a Gaussian distribution N (μx,σx). During the forward
pass through the network, a single sample z is drawn from the predicted distribu-
tion and passed through the decoder to compute the final output. Figure 2.7 (left)
depicts the structure of a simple VAE.

VAE includes a regularization to enforce the distributions produced by the en-
coder to be close to a standard normal distribution (prior). The final objective
function is composed of reconstruction and regularization terms. The regulariza-
tion term is realized through a Kullback–Leibler divergence [53] (KL-divergence)
loss between the predicted q(z | x) and the prior p(z) distributions. Thus, the

17

2 Theoretical Background

combined loss function has the following general form:

L(x, x̂) = ∥x – x̂∥ + DKL(q(z | x) ∥ p(z)), (2.19)

where ∥·∥ denotes the reconstruction error.
For the given discrete probability distributions Q and P over the space X ,

KL-divergence [53] is defined as:

DKL(Q ∥ P) = –
∑
x∈X

Q(x) · log P(z)
Q(x) . (2.20)

An important advantage of predicting Gaussian distributions in VAEs is that the
KL-divergence [53] between two Gaussians can be implemented as a closed-form
expression [84] based on the means and covariance matrices of the two distribu-
tions.

In order to enable the backpropagation algorithm on a VAE, a so called re-
parameterization trick [49] is used (Figure 2.7, right). The sampling of a random
vector z from the produced distribution N (μx,σx) presents a stochastic operation
(node) in the computational graph of the network. Re-parameterization trick
moves this stochastic node out of the path of gradient flow, by first sampling a
random vector ξ from standard normal distribution, then calculating the vector z
based on ξ and the estimated mean and standard deviation values:

ξ ∼ N (0, I), and z = σx · ξ+ μx. (2.21)

18

3 Related Work

Video prediction has been extensively studied as a promising avenue for intelli-
gent decision-making systems, due to its representation-learning power, since rich
internal representations are required for making coherent predictions. To a cer-
tain extent, the interest behind future frame prediction task is attributable to the
plethora of unlabeled video data available for learning, which makes it a suitable
feature-learning framework for different downstream tasks, in the hope of generaliz-
ing to various real-life scenarios. The applications include anomaly detection [61],
weather forecasting [91, 92], autonomous driving [63, 102] and semantic video
segmentation [43, 73] among others.

3.1 State of the Art
The field of future frame prediction has seen much progress in the last ten years.
Many deep-learning based approaches have been designed and investigated to solve
this problem. In this section, we review the most relevant prior works. For an ex-
tensive review and categorization of deep-learning-based video prediction methods
we refer the interested reader to [77].

In 2014, Ranzato et al. [82] introduced a baseline for video prediction inspired
by natural language processing models at that time. It applies vector quantization
technique and makes patch-level short-term predictions. Srivastava et al. [95] ap-
plied a long short-term memory (LSTM) [36] network for predicting future frames
based on extracted low dimensional feature representations, which are in turn used
for improving classification of human actions through transfer learning. A few
other methods, such as PixelRNN/PixelCNN [76] and Video Pixel Network [45],
estimate the conditional probability distribution over values of each pixel location
in video frames and generate the next frames in a raster scanning manner. Inspired
by the biological function of human brain to repeatedly predict and improve its
virtual model of the environment based on observations, Lotter et al. [63] designed
the Predictive Coding Network (PredNet).

To take into account the spatial similarity between consecutive frames, some of
the early approaches re-parameterize the problem to explicitly learn local trans-

19

3 Related Work

Figure 3.1: Video Ladder Network
(VLN) architecture. ConvLSTM mod-
ules, processing feature maps from dif-
ferent encoder layers, provide the de-
coder with a hierarchy of predicted fea-
tures. Residual connections, descending
from different levels of the encoder, are
meant to aid in reconstructing the static
parts of the scene. Figure extracted
from [13].

Figure 3.2: MCnet [101] model ar-
chitecture. The Content Encoder cre-
ates relevant spatial features from last
input frame, whereas the Motion En-
coder extracts motion component from
the sequence of frame differences. The
next frame is then predicted by the De-
coder which receives inputs from both
encoders (directly and through skip con-
nections). Figure extracted from [101].

formations rather than directly predicting raw images [40, 78, 25, 65]. Jaderberg
et al. [40] design a Spatial Transformer (ST) module to enhance the existing convo-
lutional networks with an estimator of a set of parameters for several affine trans-
formations applied on the input feature maps. Finn et al. [25] propose the Spatial
Transformer Predictor (STP) network constructing 2D affine transformations for
the next frame computation. A number of works simplify the video prediction
problem, and rely on forecasting optical flow fields to capture the changes in the
environment [112, 70, 99, 66]. Optical fields present per-pixel 2D displacement
vectors that, when applied to an image (“warping”), result in a slightly modified
arrangement of the scene [26]. Terwilliger et al. [99] make use of FlowNet [26]
to predict semantic segmentation of future frames based on segmented current
frame and predicted optical flow for the next frames. Z. Luo et al. [70] develop
an encoder-decoder-RNN network to predict optical flow sequence conditioned
on RGB-D inputs. More recent works by Farazi et al. [21, 22] perform video
prediction by estimating transformations and forecasting future frames in the
frequency domain. To achieve long-term stable predictions, Oh et al. [74] and
Chiappa et al. [10] assume control actions to be given at each time-step, consid-
ering synthetic environments, such as video games. Chiappa et al. [10] develop an

20

3.1 State of the Art

action-conditioned LSTM, which fuses the input action with the current hidden
state when processing visual inputs at each time-step.

An extensive line of work in video prediction is based on recurrent networks
in combination with convolutional autoencoders, that extract features from the
context frames and make predictions in feature space, employing various exten-
sions and modifications of the standard LSTM [36] cell. Our proposed MSPred
model can be categorized into this group. The most famous among them are
ConvLSTM [91], VLN [13], MCnet [101], PredRNN [107], PredRNN++ [105],
TrajGRU [92], SVG [15], HRPAE [19] and PhyDNet [54], several of which are
chosen as baselines for the evaluation of our approach presented in Chapter 5.
A pioneer work in this line by X. Shi et al. [91] proposes ConvLSTM model for
precipitation forecasting, which proved to outperform the existing methods based
on optical-flow prediction. Another work by X. Shi et al. [92] presented Trajectory
GRU (TrajGRU), which employs location-dependent feature extraction to address
precipitation nowcasting. Video Ladder Network (VLN) by Cricri et al. [13] is one
of the first successful encoder-decoder networks for video prediction, consisting
of a few stacked convolutional layers followed by upsampling layers, along with
convolutional long short-term memory [91] (ConvLSTM) blocks serving as lateral
connections between different encoder-decoder levels (Figure 3.1). PredRNN by
Y. Wang et al. [106] introduces a spatio-temporal recurrent module (ST-LSTM)
composed of ConvLSTM cells [91], with a zigzag memory flow delivering informa-
tion in both horizontal and vertical directions (Figure 3.3). PredRNN++ [105]
extends PredRNN, replacing the ConvLSTMs with so called Causal LSTM units,
comprising two cascaded memory cells, which increases the expressiveness of the
model. Furthermore, the authors enhance the model with so called Gradient High-
way Unit (GHU) cells in order to achieve a better gradient flow. Recently, a new
version of PredRNN has been published by Y. Wang et al. [107], where they in-
troduce a novel curriculum learning method (reverse scheduled sampling), which
encourages the model to capture long-term dependencies by processing a random
subsequence of the input at each iteration, and ignoring fewer inputs as train-
ing progresses. The Motion-Content network (MCnet) by Villegas et al. [101],
illustrated in Figure 3.2, is a pioneer work in making future frame prediction
by disentangling visual content from scene dynamics. A more successful recent
model PhyDNet by Le Guen et al. [54] makes video prediction by capturing ob-
ject movement and appearance details separately conditioned on the same feature
representations, prior to combining them into the actual future frames through a
convolutional decoder.

Video prediction, as a suitable representation-learning framework, can have
a variety of useful applications for downstream tasks. A remarkable work by

21

3 Related Work

Figure 3.3: Memory flow of Spatiotemporal-LSTM (ST-LSTM) unit. Figure
extracted from [107].

Jin et al. [43] leverages the features learned by video prediction, introducing “Pars-
ing with prEdictive feAtuRe Learning” (PEARL) for improved segmentation of
video frames. To achieve better temporally coherent semantic segmentation of
video frame sequences, the authors [43] fuse the predicted segmentation map,
based on the frames up to the current time-step, with pre-segmentation output of
the sole current frame. A concurrent work by Nilsson et al. [73] employs a spatial
transformer module [40] in a convolutional RNN network [17], and improves video
segmentation by assembling features both from previous and future frames.

3.2 Stochastic Video Prediction

Deterministic models dealing with real-life datasets are prone to blurry and low-
quality generations due to the inherent uncertainty of dynamic environments. Sev-
eral approaches have been proposed that integrate variational inference into the
recurrent networks in order to model the underlying uncertainty of data.

Babaeizadeh et al. [2] introduce an inference network to approximate the true
latent distribution, from which a time-invariant latent vector is sampled, trying to
model the stochastic properties of the data. Denton et al. [15] adopt a more flexible
latent variable network, that produces a different distribution at each time-step,
hence learning a more expressive stochastic model. To address the problem of
unrealistic generations of existing stochastic models, A. X. Lee et al. [57] combine
latent variable networks with adversarial-training, achieving both diverse and more
realistic predictions.

22

3.2 Stochastic Video Prediction

Figure 3.4: SVG-LP [15] model components used during training. The red boxes
show the individual loss terms. At inference time, the Inference model is used only
while processing the context frames, whereas the Learned-prior network is applied
during the actual prediction stage. Figure extracted from [15].

SVG
The design choices for some components of our MSPred model are highly inspired
by the famous Stochastic Video Generation (SVG) architecture, introduced by
Denton et al. [15]. Being the first efficient method for stochastic video prediction,
SVG serves as a quite simple and strong baseline, as well as a core component for
several extensions [60, 102, 108]. The authors propose two models for stochastic
video generation, namely SVG-FP (fixed-prior) and SVG-LP (learned-prior, Fig-
ure 3.4) variants. The main components of SVG are the convolutional encoder
for extracting a feature representation from an input frame, a recurrent predictor
and latent variable networks operating on the feature space, and a convolutional
decoder for generating the next frame based on the predicted feature vector. All
recurrent modules are implemented using vanilla LSTM blocks [36]. SVG repre-
sents a probabilistic framework, where the next frame xt is generated based on the
current frame xt–1 and a latent sample zt drawn from a latent distribution. Due
to the recurrence of predictor PΘ, the next frame depends on all previous inputs
and latent samples: x̂t = PΘ(x̂1:t–1, z1:t).

The design of SVG model adopts some key paradigms used for training of vari-
ational autoencoders [50, 83] (VAE, Section 2.4). In order to approximate the real
posterior distribution over the latent space, a so called posterior (inference) net-
work qΦ(zt | x1:t), conditioned on the target frames up to time-step t, is employed
while training. To prevent the posterior network from learning to simply copy the
target frame xt, without encoding any useful information into zt, the learned distri-

23

3 Related Work

bution is forced to be close to a prior distribution p(z). The outputs of both prior
and posterior distributions are parameterized as the mean and standard deviation
of a Gaussian distribution N (μ,σ).

In the SVG-FP model, the prior is a fixed standard normal distribution N (0, I).
Whereas, SVG-LP employs a learned-prior network pΨ(zt | x̂1:t–1) conditioned on
the previous predicted frames (Figure 3.4). Similar to the regularization method
of variational autoencoders, the posterior network of SVG is trained to produce
distributions close to the prior distributions, through the minimization of a KL-
divergence term [53, 15] added to the reconstruction loss (MSE). The combined
loss for single data sample has the following form:

L = 1
N

N∑
i=1

[
∥Ii – Îi∥

2 + β · DKL
(
N (μiΦ,σi

Φ) ∥ N (μiΨ,σi
Ψ)
)]

, (3.1)

where the sum is taken over N predicted time-steps. The Ii and Îi denote the
ground-truth and predicted frames, respectively, at prediction time-step i. And
the (μiΦ,σi

Φ) and (μiΨ,σi
Ψ) correspond to the Gaussian distribution parameters

produced by the posterior and prior networks respectively. The β coefficient of KL-
divergence term in the loss is an important hyperparameter controlling the trade-
off between minimizing reconstruction error of the predicted frame and fitting the
prior. On the one hand, if β is too small, the posterior network may acquire large
enough capacity to copy the target frames resulting in undesirable discrepancy
between training and testing performances. On the other hand, in case of very
large β values, the latent space might collapse, resulting in a deterministic model.

The SVG model is autoregressive in image space, i.e. the currently predicted
frame becomes the input for the next time-step. Moreover, the authors use teacher-
forcing [28] method to train the model. Similar to VAE [50, 83], each training step
(backpropagation) of SVG is based on a single latent sample zt. However, SVG
applies the prior model for drawing latent samples at inference time (during the
actual prediction stage).

3.3 High-Level Structured Prediction

Most of the successful approaches towards long-term video prediction reduce the
problem to forecasting in a high-level and more tractable space, such as the
structured space of human poses [103, 104, 71, 27] or semantic segmentation
maps [68, 96, 67, 58], prior to the actual future frame generation.

24

3.3 High-Level Structured Prediction

Figure 3.5: Video prediction model by Villegas et al. [103]. Figure extracted from
[103].

A series of such methods [103, 104, 27, 58] perform future frame prediction by
concatenating multiple models, namely a model for mapping the context frames
into some intermediate space, another one for making predictions in this space,
and finally the actual future frame generator. However, most of these models are
not trained in an end-to-end manner, and are often limited to specific domains. A
second line of methods [68, 67, 71, 96] focus on making predictions directly into a
high-level space from raw image frames. Nevertheless, these models are constrained
to making predictions of specific structure, such as segmentation maps, which can
result in a loss of relevant information for other tasks.

One of the first effective methods for long-term future prediction in this line of
work has been proposed by Villegas et al. [103], depicted in Figure 3.5. It stacks
three models to first make human pose estimation from the context frames, then
predict future states of the extracted poses, and finally generate the actual future
frames based on the predicted poses and the last observed frame. A similar ap-
proach by Fushishita et al. [27] adopts generative adversarial learning (GAN [29])
adding stochasticity to human pose prediction. The model predicts multiple possi-
ble sequences of poses, conditioned on not only input poses and a latent noise vector
z, but also two additional latent codes reflecting different actions and trajectories,
encouraging diversity of the generated poses (Figure 3.6). Another GAN-based
method by W. Lee et al. [58] applies a segmentation generator to autoregressively
forecast a sequence of future semantic label maps, followed by an image generator
that estimates the next frame combining the predicted segmentation map and the
previously predicted frame.

A few recent works adopt multitask-learning to simultaneously predict multiple
structured outputs within the context of the same task. Jin et al. [42] make the
first attempts to jointly predict motion flow together with scene parsing, in order to
extract more meaningful spatio-temporal features and aid the main scene parsing
task. Hu et al. [37] present a model to simultaneously predict full-frame ego-
motion, static scene, and object dynamics on challenging urban driving datasets.

25

3 Related Work

Figure 3.6: Video prediction model by Fushishita et al. [27]. Figure extracted
from [27].

3.4 Multiscale/Hierarchical RNNs

Since the introduction of RNNs [17, 36], a number of extensions [34, 8, 51, 12,
47, 87, 60] have been designed that construct temporal hierarchies of recurrent
modules, in order to better model the underlying dynamics and uncertainty of the
data.

Hihi et al. [34] propose different architectures using several RNNs processing the
input at different time-scales to capture long-term dependencies from sequential
data. Clockwork RNN [51] (CW-RNN) is a modification of the simple RNN that
splits the hidden layer into several sub-modules each processing its inputs at a
different temporal granularity level, hence allowing the model to capture depen-
dencies between distant inputs (Figure 3.8). In a similar spirit, Chung et al. [12]
propose HM-RNN, a multi-scale recurrent network with different modules oper-
ating at distinct clock-rates. Moreover, they develop an adaptive mechanism for
learning the specific clock-rate values for the given dataset. Kim et al. [47] propose
Hierarchical Recurrent State Space Model (HRSSM), the first model to perform
stochastic vector estimation in a hierarchical manner, assigning different “tem-
poral abstraction factors” to each level of recurrent blocks. Inspired by these
ideas, Saxena et al. [87] design Clockwork VAE (CW-VAE), a video prediction
network constructing a hierarchy of recurrent latent variable models with increas-
ingly coarser time-scales along the hierarchy levels, where each level is conditioned
on all the upper ones. Moreover, the authors deal with error accumulation problem
in pixel space, by making the model autoregressive in latent space. In order to
leverage the full representational power of deep hierarchical latent variable models
for real-world datasets, and to overcome the difficulty of training such models,
Wu et al. [111] have recently proposed an efficient method for training of hierar-
chical autoencoders, level-by-level in a greedy fashion.

26

3.4 Multiscale/Hierarchical RNNs

Figure 3.7: HRPAE [19] model architecture. Figure extracted from [19].

Figure 3.8: Clockwork RNN architecture. Similar to vanilla RNN, CW-RNN
consists of input, hidden and output layers. Different clock rates are assigned
to different hidden sub-modules, such that each module’s update rate is twice as
small as the previous one. The units within each block are fully connected, and
units in faster modules depend on the ones in slower modules. Figure extracted
from [51].

The architecture of our MSPred model mostly resembles Hierarchical Recurrent
Predictive Auto-Encoder (HRPAE) proposed by Fan et al. [19], depicted in Fig-
ure 3.7. The idea is to simultaneously make predictions in different levels of the
feature space, using the hierarchy of features constructed by a CNN. ConvLSTM
blocks [91] are bridging between different encoder-decoder layers, providing the
decoder with both low-level predicted features helping to reconstruct static scene
details, and high-level predicted features capturing moving objects and identities
as a whole. In addition, our model employs a hierarchy of recurrent predictor
networks along with recurrent latent variable modules, operating at distinct time-
scales, in order to capture representations at distinct temporal resolutions, inspired
by the ideas of CW-VAE [87].

27

4 Approach

4.1 Architecture
Video prediction [77] is formally defined as the task of generating a possible con-
tinuation Î = Î1, Î2, ..., ÎN of a given sequence of C input (or context) frames
C = C1, C2, ..., CC. In this thesis, we extend the task of video prediction to fore-
cast future frames along with higher-level representations (Ĥ1, Ĥ2), such as human
poses or object locations, conditioned on the same context frames.

In this section, we introduce MSPred (Multi-Scale Hierarchical Prediction)
architecture, depicted in Figure 4.1. MSPred is able to simultaneously forecast
future possible outcomes of different abstraction levels at distinct time resolutions,
conditioned on the given video frames. More precisely, the model makes predictions
at three different abstraction levels, i.e. it forecasts subsequent video frames into
immediate future, as well as predicts more abstract representations longer into the
future using coarser temporal resolutions.

The design of MSPred in terms of a probabilistic framework follows the famous
SVG-LP [15] architecture. The key extension by MSPred resides in its hierarchi-
cal predictor module, inspired by HRPAE [19], CW-RNN [51] and CW-VAE [87],
which makes predictions at distinct spatial and temporal granularity levels. Dur-
ing the processing stage of the context frames, a convolutional encoder network
extracts a hierarchy of feature representations, which initializes the memory of the
predictor network. The predicted multi-scale features are then decoded into future
image frames and higher-level representations through the convolutional decoders.

4.1.1 Encoder
MSPred utilizes a 2d convolutional encoder for processing the context frames. The
encoder network consists of four convolutional blocks, that extract increasingly ab-
stract features of coarser spatial resolution. The three recurrent modules of the
predictor network are descending from the second, third and fourth encoder levels,
providing features of different abstraction levels to corresponding decoder layers,
as shown in Figure 4.1. Low-level features of high spatial-resolution aim to prevent
loss of details in the reconstruction process, whereas high-level representations of

29

4 Approach

Figure 4.1: MSPred architecture. The encoder blocks are plotted in green, fol-
lowed by the hierarchy of ConvLSTMs in purple, and the decoder blocks in blue.
Decoder heads stemming from different blocks of the main decoder branch predict
representations of distinct abstraction levels, such as object poses and locations.
The skip connections between different encoder-decoder levels are not shown in
order to unclutter the figure.

lower resolution provide the decoder with abstract semantic features. The combi-
nation of these features allows the model to achieve feasible future predictions for
increasingly complex structures.

4.1.2 Multi-Scale Predictor
Image processing methods often leverage features of different spatial resolution
and abstraction levels by extracting hierarchical representations from the input.
In similar fashion, in case of video data the information flow can be modeled
via a temporal hierarchy. Faster-changing details are represented by lower-level
features, whereas slowly-changing information is captured by higher-level repre-
sentations. MSPred constructs such a temporal hierarchy of features through a
predictor network consisting of three recurrent modules (Figure 4.1) processing
the input at distinct time-scales, i.e. at processing periods of T0, T1 and T2, such
that upper levels operate at coarser temporal resolutions (T0 < T1 < T2). In
between two processing time-steps, each RNN module simply copies forward its
latest predicted output.

As depicted in Figure 4.2, the input to each recurrent module is a feature repre-
sentation extracted by the corresponding encoder level. The recurrent network of
the lowest-level, with fixed processing period of T0 = 1, receives low-level feature
representations of high spatial resolution, which correspond to fine-grained details

30

4.1 Architecture

Figure 4.2: Illustration of the MSPred model flow. The Seed Stage shows the
encoding and processing of the context frames. In this example, LSTM modules
are operating at time-periods of T0 = 1, T1 = 2 and T2 = 4. The LSTM-flow
is indicated with dot-lines. The decoder blocks come into action only during the
Prediction Stage. The middle and upper-level decoder heads are displayed only at
the last time-step, as well as the skip connections are not plotted, to unclutter the
visualization. Figure reused and modified from Karapetyan et al. [46].

that can differ highly across successive frames, such as texture or edges. The sec-
ond level’s recurrent network processes feature maps of smaller spatial resolution,
that represent more abstract and slowly changing information. Thus, it is assigned
a larger temporal period of T1. Finally, the upper-most RNN receives abstract
representations of even coarser spatial resolution, which contain high-level features
that remain relatively constant and can be predicted over longer time intervals.
Therefore, the highest level processes the input at only one out of T2 time steps.

The design of such a hierarchy of RNNs combines ideas from several architec-
tures, such as HRPAE [19], CW-RNN [51] and CW-VAE [87]. This hierarchical
design helps our model to capture features varying at different time-scales by
disentangling temporal information flow into three levels. Each level of recur-
rent predictors learns to make predictions at a different time-scale by processing
feature encodings at its own temporal stride. Furthermore, the larger temporal
abstraction factors in upper levels allow the model to predict high-level features
far into the future using only a handful of RNN iterations, thus mitigating the
error accumulation problem inherent to long-term prediction scenarios.

31

4 Approach

4.1.3 Decoder

Each branch of the convolutional decoder network resembles a mirrored version of
the encoder, with transposed convolutional [16] layers or simple 2d interpolation
methods [80] (bilinear, nearest-neighbor) for upsampling the input feature maps.
At each decoder stage, the representations decoded by the previous decoder block
are channel-wise concatenated with the predicted feature maps from the corre-
sponding recurrent network. In addition, similar to SVG [15] model, MSPred
includes residual connections directly connecting the encoder blocks with their
corresponding decoder counterparts, and providing feature encodings of the last
context frame. These feature maps get added to the predicted feature maps of
respective RNN levels, in order to aid in reconstruction of the static objects and
background.

As depicted in Figure 4.1, MSPred employs three different decoder heads each
corresponding to one predictor level, in order to forecast representations of different
abstraction levels. Each decoder head leverages the most recent predicted feature
maps from the current and all higher levels. For instance, generating pixel-level
detailed predictions requires both low-level information, such as object texture and
shape, as well as high-level representations, which capture dynamic and semantic
knowledge from video data.

As upper levels generate actual predictions less frequently, the predicted feature
maps of each RNN are re-used by lower levels until the next operating time-step.
The decoder of the lowest level generates an output at each time step, while the
upper decoder heads clone forward the previously generated outputs according
to the respective RNN ticking periods. More precisely, the main decoder branch
uses the most recent predicted features of all levels of the RNN hierarchy in order
to predict the next video frame. The mid-level decoder head produces abstract
representations, such as object keypoints or semantic maps, at each T1 time-step
by indirectly utilizing the most recent feature maps of the middle and highest
levels. Finally, the decoder head of the uppermost level generates even more
abstract representations, such as object locations, every T2 time steps, using only
the predicted features from the highest RNN module.

4.1.4 Stochastic Components

To account for the stochasticity of real-world datasets and to give our model the
ability to make diverse and sharper predictions, we employ similar approach to
SVG-LP model [15], described in Section 3.2.

32

4.2 Model Inference

SVG-LP makes predictions based on the feature embeddings of the observed
frames and additional latent vectors, sampled from a latent distribution model at
each time-step. SVG-LP trains a recurrent posterior network qΦ, conditioned on
the previous target frames, to approximate the real posterior distribution over the
latent space. Another recurrent learned-prior model pΨ is trained along with the
posterior model, to regularize the training process. The learned-prior model takes
as input the previously seen or predicted features and is trained to output distribu-
tions close to those output by the posterior model. The learned-prior model is then
applied at inference time. The output of each of these stochastic models is param-
eterized as the mean and standard deviation of a Gaussian distribution N (μ,σ),
from which latent vectors are sampled. A KL-divergence [53] error term, between
the produced posterior and prior distributions, is added to the reconstruction loss.

Although we adopt a very similar approach to SVG-LP, our method employs a
hierarchy of latent distribution models, i.e. different recurrent modules for each
level. This is motivated by the presence of different prediction levels in our model,
as well as inspired by the success of several existing approaches towards more ex-
pressive latent distribution modeling [34, 8, 51, 12, 47, 87, 60]. Separate recurrent
posterior qΦh and prior pΨh networks are trained to capture the latent variable
distribution for each abstraction level. Each pair of latent variable models takes as
input the same feature map as the recurrent predictor network of respective level.
Similar to SVG, the training procedure adopts the re-parameterization trick [49]
used for learning of variational autoencoders [50, 83], and draws a single set of
latent samples at each iteration [15].

4.2 Model Inference
The data-flow of MSPred model is illustrated in Figure 4.2. First, the context
frames are processed by the CNN encoder and the embeddings are fed into the re-
spective recurrent modules. These recurrent networks, operating at distinct time-
periods, make predictions in different abstraction levels. Finally, the multi-branch
convolutional decoder receives the predicted pyramid of features as input to its
different stages, and makes the future frame and high-level structured predictions.
While image frames are forecasted at each time-step, more abstract future repre-
sentations are predicted at coarser time-scales, i.e. according to the clock-rates of
the respective recurrent predictor modules.

Although the main components of MSPred model, especially the stochastic ones,
follow the SVG-LP [15] architecture, the key differences reside in the hierarchical
predictor structure, the auxiliary decoder heads and the autoregressive flow used

33

4 Approach

for inference. SVG is autoregressive in pixel-space, i.e. the currently predicted
frame is fed back to the encoder in order to predict the next frame. Since we
only aim to achieve feasible image-level predictions for a quite short time span, we
employ a more flexible variant of autoregressive flow in our model, similar to [87].
During the prediction stage (Figure 4.2 right), instead of encoding the predicted
image frame and using it as the next input, our model operates autoregressively
in feature-space, i.e. it uses the outputs of the recurrent networks at each level
as respective inputs in the subsequent time-step. First of all, this alleviates the
fast error accumulation problem typical of pixel-autoregressive models, as well as
decreases the overall computational complexity, since the predicted images do not
need to be re-encoded. Moreover, it enables a hierarchical design where each level’s
output is independent of the generation process of lower levels. In particular, it
allows MSPred to efficiently make abstract high-level predictions long into the
future, with no need for referring to detailed frame predictions. Therefore, by
specifying the same number of RNN iterations, i.e. actual number of outcomes
for all hierarchy levels, we obtain predictions of distinct time-horizons, due to
increasingly coarser time resolutions upper along the hierarchy levels.

At inference time, the learned-prior models at each level are used to sample
the latent samples, that get concatenated to feature embeddings as additional
inputs for respective predictor RNNs. Moreover, we employ ancestral-sampling
method leveraged by Castrejon et al. [8], to sequentially sample the latent input
of each level conditioned on not only the given feature maps, but also on all the
sampled vectors from levels above. We use bilinear interpolation to upsample the
latent tensors drawn from upper level modules, in order to apply channel-wise
concatenation with the input feature maps.

4.3 Model Training

We trained and evaluated the model on three different datasets, each dictating its
specifications reflected on the dimensionality of high-level representations, and the
respective loss function terms. In all cases we use three channels for the input and
output image frames and downsample the original input images if necessary. For all
three datasets, we generate multichannel heatmaps for the upper-level structured
predictions. The number of channels of the heatmaps vary across the datasets and
specific tasks. In all experiments, spatial dimensions of the heatmaps are specified
to correspond to the shape of predicted image frames, although a relatively smaller
heatmap size would also be acceptable.

34

4.3 Model Training

We evaluate our model’s ability to predict object keypoints and semantic seg-
mentation maps for different use cases. In case of predicting object keypoints,
we generate tensors of shape H × W × C, using a separate channel per keypoint,
and construct each heatmap (H × W) by adding a 2d Gaussian kernel with fixed
standard deviation (σ) around the ground-truth pixel location [110, 72]. Given
a predicted heatmap for a specific joint or keypoint location, we extract the fi-
nal pixel position by taking the one with maximum value on the heatmap. For
predicting semantic segmentation maps, we specify one output channel per object
category present in the dataset. At each location, we predict the probability that
a pixel belongs to the class presented by the respective channel. For each pixel
location, we then assign the class value corresponding to the highest predicted
probability across all channels.

The loss function used for training our MSPred model has the following general
form:

L = 1
N

N∑
i=1

[
Li

0 + α1 · Li
1 + α2 · Li

2 + β · Li
KL
]

, (4.1)

where the sum is taken over the N prediction time-steps. The first three terms
represent the objective function for each hierarchy-level, and are implemented as
mean-squared error (MSE) loss (unless specified otherwise) between corresponding
predicted and ground-truth frames or heatmaps:

Li
0 = ∥Ii – Îi∥

2, (4.2)

Li
1 = ∥H1

T1i – Ĥ1
T1i∥

2
, (4.3)

Li
2 = ∥H2

T2i – Ĥ2
T2i∥

2
. (4.4)

The last (regularization) term corresponds to the KL-divergence error between
the outputs of posterior qΦh and prior pΨh distributions, computed by averaging
the individual KL-divergence errors across the three hierarchy-levels:

Li
KL = 1

3

2∑
h=0

DKL
(
N (μThi

Φh
,σThi
Φh

) ∥ N (μThi
Ψh

,σThi
Ψh

)
)

. (4.5)

Notably, for prediction time-step i, the KL-loss for level h is computed on the
distributions produced by the latent models of the respective level, at time-step
Thi (with T0 = 1), similar to the corresponding reconstruction loss term.

35

4 Approach

The coefficients α1 and α2 of the second and third loss terms (4.1) are meant
to keep the balance between optimizing predictions of different hierarchy levels.
KL-divergence loss term is weighted by another hyper-parameter β, controlling the
trade-off between minimizing the overall reconstruction error of predictions and
fitting the prior.

Moreover, as discussed in Section 4.1.4, the posterior models are used at train-
ing time to learn the hierarchy of prior models to be applied at inference time.
The posterior models take as input the feature map embeddings of target frames,
whereas the prior models are conditioned on the predicted features.

4.4 Implementation Details

We implemented the proposed MSPred architecture in Python using the PyTorch
deep-learning library. We run our experiments on an NVIDIA RTX A6000 GPU
with 48 Gigabytes of memory.

The encoder and decoder are implemented following the SVG [15] baseline ar-
chitecture to achieve a more fair comparison. For Moving-MNIST dataset, we
follow the DCGAN [81] discriminator and generator architectures, whereas in case
of KTH-Actions [88] and SynPickVP [46] datasets we employ VGG16-based [93]
encoders and decoders. The DCGAN-based encoder is composed of four blocks,
each containing a 4 × 4 convolutional layer with stride of two, followed by batch
normalization and a Leaky ReLU activation with α = 0.2 (Section 2.1.1). Each
encoder block decreases the spatial resolution of its input by a factor of two. The
corresponding decoder reverses the encoder layers, replacing each convolution op-
eration by a 4× 4 transposed convolution [16], to upsample the input feature map
by a factor of two. The VGG-based encoder follows a similar architecture, however
each block contains two convolutional layers with kernel size of 3 × 3 and stride
of one, and downsamples the feature maps by a factor of two using max pool-
ing. Moreover, the respective decoder almost replicates the encoder’s structure,
applying nearest-neighbor upsampling [80] by a factor of two, after each of its four
blocks. Both DCGAN- and VGG-based encoders have a tanh activation at their
last layer, whereas the decoders have a sigmoid activation at their output layer.

In contrast to SVG [15] baseline, we implement all recurrent blocks, i.e. the
hierarchical predictor and latent variable modules, using ConvLSTM [91] cells.
The main predictor blocks stack four ConvLSTMs per hierarchy level, each with
128 kernels of size 3×3, whereas the latent variable models have two ConvLSTMs,
with 64 kernels of size 3 × 3.

36

4.4 Implementation Details

For Moving-MNIST [95] and KTH-Actions [88] datasets, we set the processing
periods upper-levels of our model to T1 = 4 and T2 = 8, whereas for the more
complex SynPickVP dataset, we choose periods of T1 = 2 and T2 = 4 to also
account for the lack of long sequences in the dataset. The number of context
frames is chosen as C = 17 for Moving-MNIST and C = 9 for SynPickVP dataset,
making sure that all predictor levels receive at least three context frames. However,
we experimentally prove that context size of C = 9 is enough for KTH-Actions
dataset, even though the upper-most level receives only two context frames.

We train our model using the Adam optimizer [48] with an initial learning rate of
10–4 (unless specified otherwise), which is decayed by a factor of 0.1 once during
training. The models are trained to predict for N = 5 RNN iterations at each
hierarchy level. Thus in case of inference with context size of C = 9, and periods
of T0 = 1, T1 = 4 and T2 = 8, we actually predict the image frames for time-steps
t = 10, 11, ..., 14, and high-level structured predictions for t = 13, 17, ..., 29 and
t = 17, 25, ..., 49 for the middle and upper levels respectively.

37

5 Evaluation and Results

In this chapter, we discuss the experimental details, as well as the results obtained
on three different datasets. Section 5.1 describes the datasets used for the eval-
uation, as well as the generation of high-level structured representations needed
for training. Section 5.2 summarizes the evaluation metrics employed for assessing
the predictions made by our model. Next, Section 5.3 illustrates some quantita-
tive and qualitative results achieved by our model, as well as shows a comparative
analysis against some existing methods. Finally, Section 5.4 concludes the chapter
with an ablation study and an in-depth analysis of the architectural design choices
of our model.

5.1 Datasets

5.1.1 Moving-MNIST

Moving-MNIST [95] (M-MNIST) is a popular synthetic dataset for video predic-
tion, typically used for proof of concept (PoC) purposes. It consists of sequences
depicting two moving handwritten digits from the MNIST [56] dataset, located at
some random positions in a 64×64 image, moving with constant speed, and bounc-
ing off the image boundaries in a deterministic manner, overlapping from time to
time. The training sequences are generated on the fly, by randomly sampling two
digit images from MNIST [56], as well as their initial locations and velocity vectors.
Thus we have potentially infinite number of sequences of any length. Moreover,
we evaluate the model on a pre-generated test set of 10, 000 sequences.

In our experiments, we treat M-MNIST frames as RGB images, i.e. repeating
the MNIST digits for the RGB channels. For the high-level representations, we
predict omnichannel heatmaps with Gaussian blobs centered at the digit locations.
Due to creating the dataset on the fly, it is straightforward to generate the ground-
truth heatmaps with available digit positions. We choose σ = 2 and σ = 5 for
the Gaussian blobs in the mid- and high-level ground-truth heatmaps respectively,
assuming that a more concentrated blob around a moving object changes faster.

39

5 Evaluation and Results

5.1.2 KTH-Actions

KTH-Actions [88] (KTH) is a popular video prediction and action recognition
benchmark dataset consisting of real videos of humans performing one of the six
basic actions, namely boxing, handclapping, handwaving, walking, running and
jogging. The dataset includes 600 videos containing over 290k frames split into
2400 sequences. There are 25 different actors performing the actions in a variety
of indoor and outdoor scenes. Video sequences with 16 out of 25 actors are chosen
for training and the other 9 for testing data.

We use a resolution of 64 × 64 for the input frames. We train our model on a
subset of the original training dataset, choosing 1466 sequences with length of at
least 29 (number of frames required by the mid-level), and for sequences shorter
than 49 (number of frames required by the high-level), we extend the target outputs
for upper-level to repeat the representations of the last available frame (only for
“moving” classes like walking).

In our experiments, we predict nine body-keypoints (joints 0, and 2-9 of Fig-
ure 5.1b) in the mid-level, and a single keypoint for the “center of mass” of the
moving person (joint 1 of Figure 5.1b) in the upper-level. We choose the body-
joints that are relatively more challenging in the context of video prediction. We
generate the ground-truth keypoints using a pre-trained OpenPose [7] model for
human pose estimation.

We perform the evaluation of predicted outputs of different levels using dif-
ferent subsets of the original KTH test-set, to account for the difference in the
required sequence lengths for each of the levels and to get as large test-sets of
class-balanced data as possible. Figure 5.1a shows the number of sequences of
each class, present in each subset of the original test set used for evaluating the
predictions of corresponding hierarchy level.

5.1.3 SynPickVP

We also evaluate our model on SynPickVP [46], a new synthetic video prediction
dataset, consisting of videos of various bin-picking scenarios in a simulated envi-
ronment, where a suction-cap gripper robot moves in arbitrary directions in a box
of cluttered objects (21 categories). The dataset is generated by selecting sequences
from the recently proposed SynPick [79] dataset, rendered with the Stillleben [89]
engine. We use 1260 training and 200 evaluation sequences. This is a challenging
video prediction benchmark, since the model needs to capture the motion of the
robotic gripper, as well as predict the future arrangement of displaced objects,
while still representing a cluttered complex background.

40

5.2 Metrics

(a) (b)

Figure 5.1: (a) Statistics for the number of per-class sequences in KTH dataset,
present in each subset of the test-set, used for evaluating the respective hierarchy
level’s predictions. We only use sequences with more than 14, 29 and 49 frames for
the low-, mid-, and high-levels respectively. (b) The nine body-joints (numbered)
predicted by the mid- and high-levels of MSPred on KTH dataset.

We evaluate MSPred on SynPickVP dataset, training the model to predict im-
age frames on the low-level, semantic segmentation maps on the mid-level and a
single-keypoint heatmap for the robotic gripper position on the upper-level. These
annotations are inherently available due to the synthetic nature of the dataset. We
downsample the resolution of the original frames to 64 × 112 before feeding them
into the model. Moreover, we sample every second frame from the original videos
for our experiments.

5.2 Metrics

We employ a number of metrics designed for different tasks in order to evaluate
the predictions of distinct abstraction levels individually. In particular we compute
several popular metrics for future frame prediction, such as SSIM [109] and LPIPS
[115], measuring visual similarity between the predicted and ground-truth frames.
Furthermore, we employ some metrics for evaluating the ability of our model
to make high-level structured predictions (object pose estimation and semantic
segmentation) into the future.

Since MSPred is a stochastic video prediction method, we perform the evaluation
following a famous protocol [15] used for probabilistic approaches. To evaluate the
performance for a given metric, we sample 20 random latent vectors (a latent
tensor per level, per time-step) for each context sequence, and consider the results

41

5 Evaluation and Results

for the best match with the ground-truth. For all metrics, we average the results
across all N = 5 predicted time-steps.

5.2.1 Image Similarity Metrics
We evaluate our model in terms of future frame prediction using four popular met-
rics. In particular we employ mean-squared error [28] (MSE), structural similarity
index measure [109] (SSIM), peak signal-to-noise ratio [23] (PSNR) and learned
perceptual image patch similarity [115] (LPIPS). MSE, PSNR and SSIM measure
pixel or statistical similarity between predicted and target images. Although these
metrics are widely used for assessing the performance of various tasks, they match
poorly with the human visual perception system. These metrics favor blurry pre-
dictions over more detailed, but imperfect, generations [115]. Moreover, these
metrics are prone to misleading good performance in case of perfectly matched
background pixels [77]. In contrast, the LPIPS metric makes use of deep visual
representations of a pre-trained CNN for comparison and has been proven to cor-
relate well with human perception [115].

MSE / MAE

As discussed in Section 2.1.5, mean-squared error (MSE) between the predicted Î
and target I 3d tensors, such as images or heatmaps, is computed as:

MSE = 1
M

M∑
i=1

(Îi – Ii)2, (5.1)

where M denotes the number of elements in each of the tensors, and i spans all
the dimensions.

Similarly, mean-absolute error (MAE) is calculated as:

MAE = 1
M

M∑
i=1

∥Îi – Ii∥, (5.2)

SSIM

Structural similarity index measure [109] (SSIM) estimates the visual resemblance
of two images, operating on extracted patches rather than pixels. It ranges from
–1 being very dissimilar, to 1 denoting identical images. We adjust the range
of computed SSIM values to [0, 1] in this work. SSIM performs the comparison

42

5.2 Metrics

between image patches by extracting three useful features, namely luminance,
contrast and structure, and combining the corresponding similarity scores.

The SSIM score between two image patches x and y is computed by the following
formula:

SSIM =
(2μxμy + C1)(2σxy + C2)
(μ2xμ2y + C1)(σ2xσ2y + C2))

, (5.3)

where μx (μy) and σ2
x (σ2

y) denote the mean and variance of x (y) respectively, and
σxy denotes the covariance of x and y. We set the parameter values as C1 = 10–4

and C2 = 9 · 10–4. Moreover, we choose a sliding window of size 11 × 11 and
compute the average score over all local statistics.

PSNR

Peak signal-to-noise ratio [23] (PSNR) originates from signal processing area, and
assesses the similarity between two signals, helping to detect distortions of the
received signal from the original one. PSNR is defined by the following formula:

PSNR = 10 · log10

(
MAX2

MSE

)
(5.4)

As shown by the formula, PSNR is based on the inverse of MSE between the
inputs, and is scaled by the maximum possible value (MAX) of the signal. For
instance, in case of gray-scale images with values between 0 and 255, PSNR is
scaled by MAX = 255 [23]. Thus, the larger values of PSNR metric indicate
higher similarity between images.

LPIPS

Learned perceptual image patch similarity [115] (LPIPS) metric measures the dis-
tance between two images by leveraging high-level feature map embeddings of
a pre-trained CNN, such as VGG [93] or AlexNet [52]. In particular, we choose
AlexNet [52] trained on ImageNet [14] classification dataset as the feature extractor
for computing LPIPS in our evaluation process. In contrast to SSIM and PSNR,
a smaller LPIPS value indicates higher similarity between the given images. As
mentioned by Oprea et al. [77], probabilistic models tend to achieve higher LPIPS
metric values due to sharper and more feasible predictions, in spite of deviating
from the given ground-truth.

43

5 Evaluation and Results

5.2.2 Pose Estimation Metrics

In order to assess our model’s performance for body-keypoint prediction on KTH
dataset (mid-level), we employ mean per joint position error (MPJPE), percent-
age of detected joints (PDJ), and percentage of correct keypoints (PCK) metrics,
widely used in the relevant literature [32, 4, 39, 7, 1, 114, 100]. All of these met-
rics oparate on multi-keypoint poses, assessing the similarity between two sets of
matching points. Therefore, given a predicted heatmap for a specific joint loca-
tion, we extract a single pixel position by taking the location with maximum value
on the heatmap, provided that the maximum value exceeds a certain threshold
minconf. We set the threshold value minconf = 0.03, through empirical validation.

In addition, for assessing the single keypoint prediction on both KTH and
SynpickVP datasets (upper-level), we measure a so called position error (PE) met-
ric, simply computing Euclidean distance between predicted and ground-truth 2d
points.

Mean Per Joint Position Error

Mean per joint position error (MPJPE) is estimated by calculating the mean Eu-
clidean distance between corresponding 2d keypoint locations from the extracted
predicted and ground-truth heatmaps. In action prediction literature, MPJPE is
computed on two poses after aligning them based on a root joint. However, we do
not align any keypoints since in case of future prediction, it is crucial to not only
estimate relative arrangement of the keypoints with respect to each other, but also
to accurately capture the overall translation of the pose keypoints.

Percentage of Detected Joints

Percentage of detected joints (PDJ) between predicted and ground-truth poses
measures the fraction of the joints in ground-truth pose that are correctly esti-
mated. A predicted joint is marked as a correct detection if its distance from the
respective target keypoint does not exceed a certain threshold. This threshold is
usually chosen as a specific fraction of the human torso diameter for the given
ground-truth pose [86]. However, since we only predict nine joints, we choose this
threshold as a certain fraction Θ of the ground-truth person’s height. In both cases,
choosing a threshold proportional to the person’s body size makes PDJ metric to
be invariant to varying scales of people throughout the dataset. We compute PDJ
for different Θ values, and denote by PDJH@Θ the corresponding metric, where
Θ takes values from 0.1, 0.2, ..., 0.5.

44

5.2 Metrics

Percentage of Correct Keypoints

PDJ is analogous to the Recall measure used for evaluating classification accuracy.
Therefore, we also employ the percentage of correct keypoints (PCK) metric, which
plays the role of Precision in the same analogy. PCK measures the fraction of
predicted joints that match the ground-truth. A keypoint is marked as correctly
detected if the distance between corresponding predicted and ground-truth joints
is within a certain threshold. Similar to PDJ, we choose a threshold equal to the
person’s height scaled with a certain factor Θ, and compute PCKH@Θ for different
factors Θ.

We also compute summary statistics for the PDJ and PCK metrics over a range
of Θ values. We evaluate so called Average Precision (APH@.1 : .5) and Average
Recall (ARH@.1 : .5) as the mean values of PCK and PDJ metrics, respectively,
computed for a set of Θ values (0.1, 0.2, ..., 0.5).

5.2.3 Semantic Segmentation Metrics
We predict semantic segmentation maps at the mid-level of our model for SynpickVP
dataset. We generate output tensors of shape H×W×C with a separate channel
for each object category, and compute the final segmentation map as follows. For
each pixel location, we assign the class label corresponding to the highest predicted
probability across all classes (channels).

For evaluation of our model, we measure semantic segmentation metrics such as
pixel accuracy, mean per-class accuracy and mean per-class IoU [62, 24, 90].

Pixel Accuracy

Pixel accuracy [62] measures the fraction of pixels in the image that are correctly
classified. This is a very intuitive, though a naive metric, since it yields to mis-
leading high values if there are prevalent classes that are easily segmented. To
account for the class imbalance problem, especially the prevalence of the back-
ground segments (SynPickVP dataset), we also evaluate pixel accuracy per-class
and the mean pixel accuracy over all classes (mClsAcc).

Pixel accuracy for the given predicted P and target T segmentation maps can
be defined by the following formula:

PixelAccuracy =
∣∣{p | P [p] = T [p]

}∣∣
H · W (5.5)

where H and W are the height and width of the maps, and M[p] denotes the value
of pixel p on segmentation map M.

45

5 Evaluation and Results

Similarly, pixel accuracy for class C is defined as:

PixelAccuracy(C) =
∣∣{p | P [p] = C

}
∩
{

p | T [p] = C
}∣∣∣∣{p | T [p] = C

}∣∣ (5.6)

Jaccard Index (IoU)

A more popular metric for semantic segmentation, addressing the class imbalance
problem, is the intersection-over-union [24, 90] (or Jaccard index). Intersection-
over-union (IoU) for a given class is the ratio of the corresponding number of
correctly estimated pixels, i.e. the area of overlap between the predicted and
ground-truth segments of the given class, over the area of union of the very seg-
ments.

Given predicted P and target T segmentation maps, IoU metric for class C can
be formally defined as:

IoU(C) =
∣∣{p | P [p] = C

}
∩
{

p | T [p] = C
}∣∣∣∣{p | P [p] = C

}
∪
{

p | T [p] = C
}∣∣ (5.7)

IoU takes values from 0 to 1, higher values indicating larger overlap between the
estimated and target pixels belonging to a certain class, thus better segmentation.
We compute the IoU metric for each class and report the average IoU across all
classes (mClsIoU).

5.3 Results

5.3.1 Evaluation on Moving-MNIST
First we evaluate our model on synthetic Moving-MNIST dataset [95]. We create
RGB images from the generated gray-scale frames (Section 5.1.1) to feed into the
model. We choose a context size of C = 17, and predict N = 5 time-steps into the
future in all three levels (each with its own processing frequency). In addition, we
set the LSTM time-periods to T0 = 1, T1 = 4 and T2 = 8 for the low-, mid- and
high-levels of MSPred predictor respectively.

We predict image frames at the low-level, and omnichannel heatmaps with Gaus-
sian blobs centered on the digit locations at the upper-levels of our model. We
implement all three reconstruction error terms of the loss function (Section 4.3)
using pixel-wise mean-squared-error (MSE). The optimized values of the individ-
ual loss term coefficients are as follows: α1 = α2 = 2.5 and β = 5 · 10–4. We train
the model for 175, 000 iterations with batch size of 16 and an initial learning rate

46

5.3 Results

Table 5.1: Resulting metrics of our model evaluation on Moving-MNIST test-
dataset. The image similarity metrics such as SSIM [109] and LPIPS [115] are
computed for the frame predictions (lowest-level), whereas MSE and MAE metrics
are reported for the upper-level heatmaps.

Low-level Mid-level High-level
MSE↓ SSIM↑ PSNR↑ LPIPS↓ MSE↓ MAE↓ MSE↓ MAE↓
41.52 0.970 25.99 0.030 0.672 5.60 10.40 63.03

of 2 · 10–4, which is decayed by a factor of 0.1 after 125, 000 iterations. It takes
around 1.8 days to train the model on a single GPU (NVIDIA RTX A6000).

We exploit this dataset for proof of concept (PoC), in order to assess our model’s
potential of making predictions in different levels of abstraction and distinct time-
scales simultaneously. We observe that our model generates feasible and quite
accurate prediction for both the image frames of immediate future and the digit
locations longer into the future. Sample predicted sequences of the three hierarchy
levels, along with respective ground-truth sequences, are illustrated in Figure 5.2.
Different metrics are computed for each level, and their averaged values across all
N = 5 predictions are listed in Table 5.1.

5.3.2 Evaluation on KTH-Actions

The next dataset that we evaluate our model on is KTH-Actions [88], an action
recognition dataset consisting of real videos. As in case of Moving-MNIST dataset,
we predict N = 5 time-steps into the future for all three levels (with corresponding
processing-periods of T0 = 1, T1 = 4 and T2 = 8), however for KTH dataset
we choose an even smaller context size of C = 9 which proves to be enough,
even though the uppermost-level receives only two context frames (C1 and C9).
Moreover, we apply random horizontal-flip augmentation to entire sequences in
order to generate more data.

On the intermediate-level of our model we predict heatmaps of nine body-joints
composing a sparse pose of the moving person, and at the high-level we estimate
a single keypoint heatmap for the location of the person at a future time-step.
When dealing with KTH dataset, we exploit the fact that there is only a single
person moving in each video, thus predict a single body joint per heatmap-channel.
However, the method can potentially be extended to multi-person pose prediction
in analogy to the existing top-down [72, 20] or bottom-up methods [59, 7] for
human pose estimation.

47

5 Evaluation and Results

Figure 5.2: An example of hierarchical prediction made by our MSPred model
on Moving-MNIST test-dataset. Only three of the context frames are plotted.
The three pairs of rows indicate three different levels of abstraction. The upper
row of each pair illustrates the predicted sequence and the lower one shows the
corresponding ground-truth. Note that each level makes predictions at a different
time-horizon with its own time-resolution.

48

5.3 Results

Table 5.2: Resulting metrics of MSPred model evaluation on KTH-Actions test-
set. We report image-similarity metrics for image frame predictions (Low-level),
body-keypoint metrics for predicted pose (Mid-level), and Position-Error metric
for the estimated person location (High-level). Note: PCK, PDJ, AP and AR
stand for PCKH@.2, PDJH@.2, APH@.1 : .5 and ARH@.1 : .5 respectively.

Low-level Mid-level High-level
MSE↓ SSIM↑ PSNR↑ LPIPS↓ MPJPE↓ PCK ↑ PDJ↑ AP↑ AR↑ PE↓
33.88 0.941 26.55 0.042 6.15 0.800 0.858 0.827 0.884 4.62

We use pixel-wise mean-squared Error (MSE) for all three reconstruction loss
terms in the loss function, i.e. for regression of both the predicted image frames
and the multichannel keypoint-heatmaps. Moreover, we exclude the loss compo-
nents on the channels with missing ground-truth keypoints when dealing with the
KTH dataset, in order to avoid misleading labels while training. Although we
get some missing keypoints when generating the ground-truth joint positions with
pre-trained OpenPose [7] model, our model is still able to generalize well when
learning from this noisy dataset.

We set the coefficients of the individual loss terms (Section 4.3) to α1 = 1.4, α2 =
0.2 and β = 10–6. The model is trained for 150, 000 iterations with batch size of
16 and an initial learning rate of 10–4, which is decayed by a factor of 0.1 after
130, 000 iterations. It takes around 1.3 days to train the model on a single GPU.

An example of hierarchical prediction, i.e. paired predicted and ground-truth
sequences per hierarchy-level, is illustrated in Figure 5.3. We perform evalua-
tion using different test-sets (subsets of the original test-dataset) for each level
(Figure 5.1a), to account for distinct sequence lengths required by each level, and
report some of the metric values in Table 5.2.

5.3.3 Evaluation on SynPickVP

Finally, we evaluate our model on a novel SynPickVP dataset [79, 46], depicting
videos of various bin-picking scenarios performed by a robotic gripper. We choose
a context size of C = 9 and predict N = 5 time-steps into the future in all three
levels. However, in contrast to the previous two datasets, in this case we set the
processing-periods of predictor modules to T0 = 1, T1 = 2 and T2 = 4, to account
for the lack of longer sequences, and the complexity of SynPickVP dataset.

We employ this dataset, in order to evaluate the model’s ability to predict more
complex structures, such as semantic maps. We train the model to predict a seman-
tic segmentation map of 23 channels (22 object categories and the “background”

49

5 Evaluation and Results

Figure 5.3: An example of hierarchical prediction made by MSPred model on
KTH-Actions test-set. Only three of the context frames are shown. The three
pairs of rows indicate three different levels of abstraction. The upper row of each
pair depicts the predicted sequence, and the lower one shows the corresponding
ground-truth. Note that each level makes predictions at a different time-horizon
with its own time-resolution.

50

5.3 Results

Table 5.3: Resulting metrics of MSPred model evaluation on SynPickVP test-
set. We report image-similarity metrics for low-level predictions, semantic seg-
mentation metrics for mid-level, and Position-Error of the estimated “gripper”
coordinate for the upper-level. Note: Acc, mClsAcc and mClsIoU stand for the
pixel accuracy, mean per-class accuracy and mean per-class IoU respectively.

Low-level Mid-level High-level
MSE↓ SSIM↑ PSNR↑ LPIPS↓ Acc↑ mClsAcc↑ mClsIoU↑ PE ↓
50.25 0.903 28.61 0.032 0.799 0.254 0.198 14.32

class), and a single keypoint for the gripper position, at its mid- and high-levels
respectively. We employ pixel-wise cross-entropy [11] and mean-squared error
(MSE) for the mid- and upper-level reconstruction loss terms respectively.

We set the coefficients of individual loss terms (Section 4.3) to α1 = 2.0, α2 = 0.3
and β = 5 ·10–5. Moreover, in the cross-entropy loss, we assign weights of 1.0 to all
the classes other than “gripper” and “background”, which get weights of 2.0 and
0.5 respectively. We slightly over-penalize the segmentation error for “gripper”
class in terms of the only “moving” object, and slightly downweight the impact
of “background” segmentation error on the overall loss considering the prevalence
of easily distinguishable background pixels in the dataset. We train the model for
100, 000 iterations with batch size of 12 and an initial learning rate of 5 · 10–5. It
takes around 5 days to train the model on a single GPU.

An example of hierarchical prediction (pairs of predicted and ground-truth se-
quences per level) is illustrated in Figure 5.4. Moreover, different metrics are
measured for different hierarchy levels, and their mean values across all N = 5
predictions are listed in Table 5.3. Similar to evaluation on KTH dataset, we
use different test-sets (subsets of original test-set) for evaluation of each level’s
predictions.

5.3.4 Comparison to Other Methods
Image-Level Predictions

We compare our model’s performance for the image frame predictions to several
existing video prediction methods based on recurrent neural networks, namely
ConvLSTM [91], TrajectoryGRU [92], PredRNN++ [105], PhyDNet [54], SVG-
Det (deterministic) and SVG-LP (learned-prior) variants of SVG [15]. In addi-
tion, we include a naive baseline CopyLast that simply repeats the last context
frame. For the sake of a fair and reproducible comparison, we train all meth-
ods with similar configurations using VP-Suite [46], an open-source framework

51

5 Evaluation and Results

Figure 5.4: An example of hierarchical predictions made by our MSPred model on
SynPickVP test-set. Only three of the context frames are visualized. The three
pairs of rows indicate three different levels of abstraction, with predicted (upper)
and ground-truth (lower) sequences in each. Note that each level makes predictions
at a different time-horizon with its own time-resolution. One can observe that the
future segmentation maps are predicted quite accurately, including the gripper (in
gold-yellow) movement. Moreover, the overall direction of gripper movement is
captured in the upper-level predictions, in spite of some deviation from the actual
ground-truth locations.

52

5.3 Results

Table 5.4: Quantitative comparison between different methods for future frame
prediction on Moving-MNIST dataset. The best score per metric is highlighted
in bold and the second best score is underlined. Our model (MSPred) outperforms
all mentioned methods on this dataset across all four metrics.

Future frame prediction
MSE↓ SSIM↑ PSNR↑ LPIPS↓

CopyLast 857.69 0.638 11.73 0.233
ConvLSTM [91] 271.95 0.833 17.22 0.144
TrajGRU [92] 164.75 0.895 20.02 0.075
SVG-Det [15] 134.22 0.900 20.31 0.114
SVG-LP [15] 133.68 0.907 20.36 0.115
PredRNN++ [105] 154.52 0.911 20.20 0.055
PhyDNet [54] 153.54 0.915 20.43 0.054
MSPred (ours) 41.52 0.970 25.99 0.030

for deep-learning-based video prediction. The results for Moving-MNIST, KTH-
Actions and SynPickVP datasets are listed in Table 5.4, Table 5.5 and Table 5.6
respectively. The best and the second best results for each metric (column) are
emphasized by bold and underlined numbers respectively. We observe that on all
three datasets, our model (MSPred) achieves either the best or very close to the
best results among the compared models across the computed metrics for future
frame prediction.

Moving-MNIST: As listed in Table 5.4, MSPred achieves quite accurate and
sharp reconstructions for all N = 5 predicted frames, outperforming all other
models by a considerable margin. Figure 5.5 illustrates a qualitative comparison
of different methods on two sample sequences from the Moving-MNIST dataset.
In general, due to the synthetic nature and simplicity of the dataset, all mod-
els achieve quite accurate frame predictions. Figure 5.5b depicts a challenging
sequence in which the ambiguity in digit identities rises when the digits over-
lap. Although the overall dynamics after the overlap are captured by most of
the methods, the baseline methods output blurry predictions and are unable to
recover the original digit shape, whereas MSPred successfully achieves accurate
frame predictions.

KTH-Actions: As shown in Table 5.5, MSPred is beaten by the compared
methods in MSE, PSNR and SSIM scores, which indicates higher pixel differences
with respect to the ground-truth frames. However, MSPred produces near the best
LPIPS result, exhibiting a high perceptual similarity to the target frames. For a
qualitative comparison on KTH-Actions dataset, Figure 5.6 displays predictions

53

5 Evaluation and Results

(a) (b)

Figure 5.5: Qualitative comparison between different models on Moving-
MNIST. The top row displays the ground-truth frames. We show three context
frames followed by the five predicted frames for both sequences. In general, all com-
pared methods predict feasible future frames. However, only MSPred accurately
resolves the ambiguity caused by digits overlaps. Figure reused from Karapetyan
et al. [46].

Table 5.5: Quantitative comparison between different future frame prediction
models on KTH-Actions dataset. The best score per metric is highlighted in
bold and the second best score is underlined. Our model (MSPred) achieves very
close to the best results in LPIPS and SSIM metrics on this dataset.

Future frame prediction
MSE↓ SSIM↑ PSNR↑ LPIPS↓

CopyLast 50.72 0.909 23.84 0.049
ConvLSTM [91] 12.49 0.957 31.54 0.048
TrajGRU [92] 12.24 0.958 31.71 0.039
SVG-Det [15] 35.74 0.927 26.64 0.068
SVG-LP [15] 26.60 0.932 27.60 0.063
PredRNN++ [105] 13.74 0.941 30.68 0.068
PhyDNet [54] 26.35 0.913 28.01 0.125
MSPred (ours) 33.88 0.941 26.55 0.042

on two sequences by different methods. On the one hand, baseline methods that
show the best results on almost all metrics, i.e. ConvLSTM [91] and TrajGRU [92],
obtain blurry predictions, such as the arm reconstructions shown in Figure 5.6.
On the other hand, our model (MSPred) achieves sharper predictions, especially
with respect to the human silhouette and performed action.

54

5.3 Results

(a) (b)

Figure 5.6: Qualitative results on the KTH-Actions dataset. The two plotted
sequences show actions of handwaving and boxing. The top row corresponds to
ground-truth frames. We display three context frames followed by the five pre-
dicted frames for both sequences. MSPred achieves the sharpest and most accurate
reconstructions among the compared methods. Figure reused from Karapetyan et
al. [46].

Table 5.6: Quantitative comparison between different future frame prediction
models on SynPickVP dataset. The best score per metric is highlighted in bold
and the second best score is underlined. Our model (MSPred) achieves the best
PSNR result and very close to the best results for the other three metrics on this
dataset.

Future frame prediction
MSE↓ SSIM↑ PSNR↑ LPIPS↓

CopyLast 87.24 0.889 25.97 0.028
ConvLSTM [91] 49.90 0.907 27.98 0.059
TrajGRU [92] 51.12 0.908 28.10 0.041
SVG-Det [15] 60.60 0.879 26.92 0.068
SVG-LP [15] 51.82 0.886 27.38 0.066
PredRNN++ [105] 51.73 0.894 27.50 0.053
PhyDNet [54] 57.31 0.877 26.84 0.053
MSPred (ours) 50.25 0.903 28.61 0.032

SynPickVP: Table 5.6 implies that ConvLSTM and TrajGRU achieve the best
MSE and SSIM results on SynPickVP dataset, as in case of KTH-Actions dataset.
However, MSPred outperforms compared methods on PSNR metric and achieves
near the best result on LPIPS, SSIM and MSE metrics. Notably, due to the
high complexity of the SynPickVP dataset, all models tend to produce blurry
predicted frames, thus the naive CopyLast baseline achieves the best LPIPS result.

55

5 Evaluation and Results

(a)

(b)

Figure 5.7: Qualitative results on SynPickVP dataset. The top row of each
subfigure displays the respective target frame sequence. We display three context
frames followed by the five predicted frames for two test-set sequences. MSPred
achieves sharper reconstructions, whereas the baseline methods tend to blur the
predictions. Figure reused from Karapetyan et al. [46].

A qualitative comparison on SynPickVP dataset between different video prediction
models is illustrated in Figure 5.7. The baseline methods mostly tend to blur the
suction-cap gripper as well as the objects moved by it, whereas MSPred achieves
relatively more accurate predictions.

56

5.3 Results

Table 5.7: Quantitative comparison between our model (MSPred) and two base-
lines for body-pose prediction on KTH-Actions dataset. The best score per
metric is highlighted in bold and the second best score is underlined. Note: PCK,
PDJ, AP and AR stand for PCKH@.2, PDJH@.2, APH@.1 : .5 and ARH@.1 : .5
respectively.

Body-pose prediction
MPJPE↓ PCK↑ PDJ↑ AP↑ AR↑

CopyLast 10.50 0.550 0.558 0.620 0.628
SVG-Frame2Kpoints 6.63 0.810 0.888 0.825 0.905
MSPred (ours) 6.15 0.800 0.858 0.827 0.884

High-Level Structured Predictions

We further evaluate the performance of our model for the higher-level predic-
tions by comparing it to some simple baselines on KTH-Actions and SynPickVP
datasets.

KTH-Actions: First, for comparison on KTH dataset, we create and train
a baseline model (SVG-Frame2Kpoints) based on a modified SVG-LP [15] archi-
tecture, which predicts body-keypoints conditioned on input frames. The key
modifications reside in the number of output channels, since the model outputs
multichannel heatmaps instead of RGB images, as well as in the recurrent blocks
that are replaced by ConvLSTMs for a more fair comparison to MSPred. The
SVG-Frame2Kpoints baseline takes C = 9 context frames as input and is trained
to estimate human poses (the same nine joints as MSPred) for the next N = 20
time-steps. Since there are no predicted image frames to be fed back into the model
at the next time-step, we design it to be autoregressive in feature space, similar
to MSPred. Moreover, for comparing it to MSPred model, we pick a subsequence
(at time-steps 13, 17, 21, 25 and 29) of the predicted sequence for computing the
evaluation metrics. In addition, we employ CopyLast as a simple baseline for com-
parison. The calculated values of some metrics for MSPred and the two baseline
methods are reported in Table 5.7. We observe that MSPred achieves either the
best or the second best score over all computed metrics.

Considering the distinct levels of complexity across different classes, as well as
class-imbalance present in the dataset, we distinguish two categories and evaluate
some metrics for samples of each category separately. “Moving” category cov-
ers sequences of running, walking and jogging actions, and “Standing” category
comprises samples of handwaving and handclapping and boxing classes. Table 5.8
depicts values for different metrics per-category computed with regard to the pre-

57

5 Evaluation and Results

Table 5.8: Comparison of per-category metrics between MSPred and two baseline
models (for predicting body-joints and position of the person) on KTH-Actions
dataset. The best score per metric is highlighted in bold and the second best
score is underlined. Note: AP and AR stand for APH@.1 : .5 and ARH@.1 : .5
respectively.

Body-pose Body-location
Moving Standing Moving Standing

AP↑ AR↑ AP↑ AR↑ PE↓ PE↓

CopyLast 0.306 0.322 0.907 0.906 22.90 1.30
SVG-Frame2Kpoints 0.723 0.878 0.912 0.929 - -
MSPred (ours) 0.743 0.847 0.892 0.914 9.89 1.72

dicting body-joints and person-coordinates. On the one hand, in case of “Stand-
ing” category samples, it is relatively easier to achieve good quantitative metric
values, however it is much harder to get qualitatively acceptable predictions by
capturing the small hand movements performed on those videos. Notably, even
the naive CopyLast method is able to outperform MSPred model for the body-
location prediction on “Standing” category sequences. On the other hand, MSPred
outperforms CopyLast by a large margin, as well as achieves comparable results to
SVG-Frame2Kpoints baseline for videos of “Moving” category. Although MSPred
does not outperform SVG-Frame2Kpoints baseline across all metrics, it owns the
advantage of making predictions of different abstraction levels and temporal scales
in parallel, without sacrificing the performance of individual levels.

SynPickVP: Furthermore, similar to KTH dataset, we also evaluate and com-
pare MSPred model to two baseline methods on SynPickVP dataset, namely
SVG-Frame2Seg trained to predict segmentation-maps from input frames, and
the naive CopyLast baseline. In analogy to SVG-Frame2Kpoints model, the
SVG-Frame2Seg baseline is also based on a modified SVG-LP [15] architecture,
which uses ConvLSTMs recurrent blocks, produces multichannel segmentation
map in the output, and operates in a feature-space autoregressive flow. It takes
C = 9 context frames as input and is trained to estimate future semantic maps for
the next N = 10 time-steps. Moreover, we evaluate the baseline on a subsequence
(at time-steps 11, 13, 15, 17 and 19) of the predicted sequence, for comparing the
performance to MSPred model.

We compute the segmentation metrics per object-class (23) and average the re-
sults across different groups of classes as follows. We distinguish three categories,
namely “Moving” (gripper object class), “Static” (all the other objects) and “Back-
ground”. The computed metric values are listed in Table 5.9. On the one hand,

58

5.4 Ablation Study

Table 5.9: Comparison of per-category metrics between MSPred model and two
baselines, for predicting semantic segmentation maps and the position of moving
robotic gripper on SynPickVP dataset. The best score per metric is highlighted
in bold and the second best score is underlined. MSPred outperforms the other
two models for “Moving” class sequences, i.e. for the gripper segmentation and
coordinate prediction. However, for segmentation of the static objects and the
background (potentially changed by the gripper-movement), the last context frame
repeated by CopyLast better matches with the ground-truth, because no drastic
overall changes are present in the scenes across frames. Note: Acc and IoU stand
for the mean per-class accuracy and the mean per-class IoU respectively.

Segmentation-map Gripper-position
Moving Static Background

Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ PE↓

CopyLast 0.397 0.324 0.557 0.455 0.957 0.919 16.49
SVG-Frame2Seg 0.606 0.443 0.255 0.197 0.956 0.899 -
MSPred (ours) 0.651 0.471 0.202 0.151 0.952 0.901 14.32

we observe that CopyLast shows better segmentation results on static objects
and the background, since the last context frame repeated by the baseline bet-
ter matches with the ground-truth due to no salient overall changes present in the
scenes across video frames. On the other hand, MSPred outperforms CopyLast and
SVG-Frame2Seg by a considerable margin for the gripper-segmentation (“Moving”
class) and coordinate prediction.

5.4 Ablation Study
To conclude our evaluation process, we perform an ablation study, investigating
the importance of separate components and design choices of our proposed model.

5.4.1 Effect of Hierarchy
First of all, we investigate the relevance of the key design choices in our model,
namely the spatial and temporal hierarchy, as well as the recurrent block type
of the predictor component. We perform the related experiments on Moving-
MNIST dataset, and report the evaluation metrics for the image frame predictions
in Table 5.10.

The experiments switch between two types of RNN cells, namely the standard
fully-connected LSTM and ConvLSTM cells. In the experiments where we remove
temporal hierarchy (Table 5.10, rows 3, 4 and 6), we set the processing-periods

59

5 Evaluation and Results

Table 5.10: Ablation study for different design choices of MSPred on Moving-
MNIST dataset. We investigate the impact of different recurrent cells (LSTM
and ConvLSTM), as well as the importance of spatio-temporal hierarchy on the
image-level predictions. We highlight the best and second best results by bold and
underlined numbers respectively.

Design choices Results
RNN Cell Spatial Temporal MSE↓ SSIM↑ PSNR↑ LPIPS↓

1 ConvLSTM ✓ ✓ 41.52 0.970 25.99 0.030
2 ConvLSTM - ✓ 73.47 0.950 22.81 0.057
3 ConvLSTM ✓ - 92.45 0.921 20.81 0.093
4 ConvLSTM - - 112.18 0.912 20.97 0.097
5 LSTM ✓ ✓ 208.71 0.827 17.95 0.202
6 LSTM - - 134.22 0.900 20.31 0.114

of all levels to one, i.e. all recurrent blocks operate at every time-step. Whereas
eliminating spatial hierarchy (Table 5.10, rows 2, 4 and 6) creates separate de-
coder branches that do not share any of their blocks. We explore how different
combinations of these design choices affect the resulting metric values.

The results show that the base MSPred model (Table 5.10, row 1) with both
spatio-temporal hierarchy and ConvLSTM recurrent cells outperforms the other
versions by a significant margin. Moreover, elimination of either the spatial- (Ta-
ble 5.10, row 2) or temporal-hierarchy (Table 5.10, row 3), or both structures
(Table 5.10, row 4) from the model results in a performance loss, indicating that
features of different granularity levels (temporal and spatial) are essential for mak-
ing accurate and feasible predictions. Finally, we observe a significant drop in the
performance when replacing the ConvLSTM cells with linear LSTMs in all re-
current blocks (Table 5.10, row 5). This leads to the worst quantitative results
compared to all the other model variants. However, the resulting performance
loss is relatively smaller, when using standard LSTM cells in a simpler baseline
with no spatial hierarchy (Table 5.10, row 6). This is expected, since the linear
LSTMs, operating on flat vector embeddings, require reshaped feature maps from
the lower-levels as input, which leads to the loss of useful positional information
and hence to a large drop in performance.

Next, we investigate the impact of hierarchical-supervision on the success of
image frame predictions. In this case we perform the experiments on the KTH
dataset. We compare the base MSPred model to another baseline trained only for
future frame prediction. We create this baseline by removing the two upper-level
decoder heads. Table 5.11 implies that the MSPred model trained to simulta-
neously make predictions of different granularity levels, shows quite comparable

60

5.4 Ablation Study

Table 5.11: Ablation study for the impact of hierarchical-supervision on image
frame predictions for KTH-Actions dataset. The first row corresponds to the
model trained without hierarchical-supervision, and the second row corresponds
to the base MSPred model. The best of the two scores per metric is highlighted
in bold.

Hierarchical-supervision Results
MSE↓ SSIM↑ PSNR↑ LPIPS↓

- 25.88 0.941 27.69 0.044
✓ 33.88 0.941 26.55 0.042

Table 5.12: Ablation study for the effect of each RNN-level on MSPred model
trained on KTH-Actions dataset. Inference is run for two variants of the base
model, namely MSPredH[0,1] with eliminated high-level RNN, and MSPredH[0,2]
with eliminated mid-level RNN. The best score per metric is highlighted in bold
and the second best score is underlined. Note: AP and AR stand for APH@.1 : .5
and ARH@.1 : .5 respectively.

Hierarchy-level Results
Frames Body-pose Body-location

Low Mid High PSNR↑ LPIPS↓ AP↑ AR↑ PE↓

MSPredH[0,1] ✓ ✓ - 26.54 0.043 0.610 0.649 16.59
MSPredH[0,2] ✓ - ✓ 26.45 0.042 0.796 0.853 4.46
MSPred ✓ ✓ ✓ 26.55 0.042 0.827 0.884 4.46

results to the model trained only for image-level predictions. This indicates that
hierarchical-supervision (or multi-tasking) is not a key factor for the success of our
model. Moreover, MSPred sacrifices only a little of performance in favor of making
long-term predictions of structured representations on its upper-levels, along with
predicting image frames into immediate future.

5.4.2 Effect of Each RNN-Level
We analyze the effect of individual levels of recurrent networks in the MSPred
predictor. We run the inference using a model trained on KTH dataset. In each
experiment, one of the RNN networks of the trained model is disabled, by making
it to simply copy forward its input. We evaluate the trained MSPred model once
with eliminated mid- then high-level RNN.

The results are listed in Table 5.12. First, we observe that the high-level RNN
of the trained model is greatly responsible for the accurate predictions of both

61

5 Evaluation and Results

Figure 5.8: Qualitative comparison between predictions made by MSPred model
and its two variants (with either disabled mid-, or high-level RNN) on KTH-
Actions. The upper and lower parts of the figure show the predicted body-
locations and body-pose respectively (in different time-resolutions). The lower,
middle and upper rows of each part correspond to predictions made by the base
MSPred model, and its MSPredH[0,2] and MSPredH[0,1] versions respectively.

its own level and the level below (MSPredH[0,1]). However, we also notice that
the performance loss is more moderate when eliminating the mid-level from the
trained model (MSPredH[0,2]). As expected, the image-level predictions mostly
stay unaffected in both cases, since the MSPred model is trained to predict only
the next N = 5 frames into immediate future. Furthermore, Figure 5.8 illustrates
an example of predicted sequences generated by the base MSPred model, as well
as the MSPredH[0,1] and MSPredH[0,2] variants. This once again shows the fact
that in the trained model on this particular dataset, the upper-level RNN learns
to predict the body-location of the moving person in a coarse time-resolution, and
the mid-level RNN learns to correct the body-pose information on a finer time-
scale, in terms of more specific body-location and detailed joint coordinates. As
demonstrated in the Figure 5.8, MSPredH[0,2] model with eliminated mid-level,

62

5.4 Ablation Study

Table 5.13: Quantitative comparison between MSPred and MSPred-Det models
on Moving-MNIST dataset. The best of the two scores per metric is highlighted
in bold. While the image-level metric values are almost the same for both models,
the metrics for mid- and upper-level predictions are much worse in case of the
deterministic baseline.

Moving-MNIST
Frames Digit-locations Digit-locations

SSIM↑ LPIPS↓ MSE↓ MAE↓ MSE↓ MAE↓

MSPred-Det 0.972 0.032 0.971 7.36 12.79 72.86
MSPred 0.970 0.030 0.672 5.60 10.40 63.03

Table 5.14: Quantitative comparison between MSPred and MSPred-Det models
on KTH-Actions dataset. The best of the two scores per metric is highlighted in
bold. While the metric values for low- and high-level predictions are comparable
between the two models, there is a noticeable drop in performance for the mid-level
estimations in case of the deterministic baseline. The best scores for each metric
are highlighted in bold. Note: AP and AR stand for APH@.1 : .5 and ARH@.1 : .5
respectively.

KTH-Actions
Frames Body-pose Body-location

SSIM↑ LPIPS↓ MPJPE↓ AP↑ AR↑ PE↓

MSPred-Det 0.940 0.042 6.76 0.788 0.831 4.38
MSPred 0.941 0.042 6.15 0.823 0.884 4.46

keeps repeating the person silhouette with imperfect joint predictions until the
next ticking time-step of the upper-level RNN. Moreover, the predictions made by
MSPredH[0,1] variant are much worse, proving that the upper-level RNN has an
undeniable role in the overall success of long-term abstract predictions, for this
particular use-case.

5.4.3 Effect of Stochastic Prediction
The next key part of our ablation study explores the role of stochastic video pre-
diction in the overall success of MSPred model. For this purpose, we train the
deterministic version of MSPred model (MSPred-Det) on both Moving-MNIST
and KTH-Actions datasets, by removing the hierarchy of latent variable networks
from the model. We report the comparative evaluation results in Table 5.13 and
Table 5.14 for Moving-MNIST and KTH-Actions datasets respectively. We observe

63

5 Evaluation and Results

Figure 5.9: Qualitative comparison between MSPred and MSPred-Det models
on Moving-MNIST. Three of the context frames are shows, followed by the
predictions of different levels made by both models. The lower and upper rows
of each pair of sequences correspond to the predictions made by MSPred and
MSPred-Det model respectively.

that the base MSPred model enhanced with a hierarchy of learned-prior networks,
outperforms the deterministic variant on both datasets. In case of Moving-MNIST
dataset, there is a noticeable drop in performance for the upper-level predictions.
As one can observe from Figure 5.9, MSPred-Det baseline is prone to producing
ambiguous predictions for the digit locations, combining multiple possible outputs
on a single heatmap (first heatmap of mid-level predictions). Similarly, the met-
rics on KTH dataset also indicate a significant performance loss for the mid-level
predictions. Figure 5.10 shows an example demonstrating this fact. Although
the MSPred-Det baseline is able to make some feasible predictions for the body-
locations, it produces extremely poor estimations for the body-pose, as well as
quite blurry generations for the future frames. Furthermore, we observe that the
effect of added ancestral-sampling [8] is not noticeable enough, probably due to
the characteristics of the chosen datasets.

64

5.4 Ablation Study

Figure 5.10: Qualitative comparison between MSPred and MSPred-Det models
on KTH-Actions dataset. Three of the context frames are shows, followed by
the predictions of different levels made by both models. The lower and upper
rows of each pair of sequences correspond to the predictions made by MSPred and
MSPred-Det model respectively.

Finally, we explore the diversity of predictions on KTH-Actions dataset. Fig-
ure 5.11 illustrates two distinct sequences conditioned on the same context frames,
made by MSPred model using different random latent samples, generated by the
learned latent distribution models and fed into the predictor module. Only the
predictions for body-pose and body-locations are shown in the figure, since the
immediate future frame predictions undergo inessential modifications across the
latent space. We add red squares to highlight the parts of the visualizations, where
there are some differences in exact coordinates of the predicted keypoint-locations
(between the two depicted samples) noticeable for the eye. However, we observe
that the overall diversity of the model predictions is not high enough for the specific
datasets that we use for evaluation.

65

5 Evaluation and Results

Figure 5.11: Two distinct predictions for the same input sequence (KTH-
Actions), made by MSPred model using different random latent samples as input
to the predictor. We draw the reader’s attention to the parts with such differences
(between the two given samples) using red squares.

66

6 Conclusion
In this thesis, we proposed and investigated MSPred, a novel video prediction
model for multi-scale hierarchical prediction. Our proposed model is able to si-
multaneously forecast future possible outcomes of different granularity levels at
distinct time resolutions, conditioned on the given video frames. More precisely,
MSPred makes predictions at three different abstraction levels, i.e. it forecasts
subsequent video frames into immediate future, as well as predicts more abstract
representations longer into the future using coarser temporal resolutions.

The key module of MSPred, i.e. the hierarchical predictor, leverages a hierarchy
of recurrent neural networks along with recurrent latent variable models, operating
at distinct spatial and temporal granularity levels. This module allows the model
to achieve an extended prediction time-horizon for high-level structures by using
large temporal resolutions and only a handful of RNN iterations, thus mitigating
the error accumulation problem inherent to long-term prediction scenarios. More-
over, the employed feature-space autoregressive flow not only decreases the overall
computational complexity but also enables a hierarchical design where each level’s
output is independent of the generations of lower levels.

The proposed model was evaluated on three different datasets, depicting various
use-cases. The model was compared to several existing video prediction methods
for future frame prediction. Our model achieves the best or near the best results
across all the measured metrics, especially for the perceptual similarity metric
(LPIPS). Moreover, we showed by qualitative comparison, that MSPred obtains
competitive results among the compared models in terms of sharper and more
accurate predictions, by leveraging temporal and spatial hierarchy of features.
In addition, we demonstrated our model’s ability to make high-level plausible
predictions, e.g. human poses and semantic segmentation maps, longer into the
future. However, in certain cases we observed that MSPred is outperformed even
by the naive CopyLast baseline, for instance when predicting future body-joints
in “handwaving” videos of KTH-Actions dataset, or future segmentation maps of
the bin objects moved by the robotic gripper in SynPickVP dataset. Nevertheless,
unlike baseline video prediction methods, MSPred allows to perform predictions
of different abstraction levels and temporal scales in parallel, without sacrificing
much of the performance of individual levels.

67

6 Conclusion

Finally, we presented a comprehensive ablation study and analysis of our model,
showing the importance of the spatial and temporal hierarchy employed by our
model, as well as investigating the effect of individual predictor-levels for spe-
cific datasets. Moreover, we empirically showed the importance of the stochastic
framework adopted by our model, for the quality and diversity of the predictions.

For the future work, an important step can be investigating methods for adap-
tively [12] determining optimal temporal frequencies for the different hierarchy
levels of the model, given a specific dataset. Moreover, although our model suc-
cessfully demonstrates the concept of predicting different representations at dif-
ferent time scales, we observe that the diversity of predictions is limited for the
given datasets. With better fine-tuning of parameters and adjusting the capac-
ity of the latent variable models, as well as data augmentation that inherently
inserts stochasticity in the dataset, one could enable more diverse outcomes. An-
other step is to scale the model for more complex and diverse datasets, such as
for autonomous driving scenarios. One possible direction would be extending the
model for multiperson-pose prediction, by employing a more powerful encoder-
decoder (e.g. ResNet-based [33]) and larger RNN networks. A further extension
might include adding supervision for guiding the prediction process, such as condi-
tioning the predictive model on some representations (e.g. pose, location, action,
trajectories) and predicting realistic frames that match the given representation.
This could have the side effect of encouraging the model to make more diverse
predictions [27].

68

List of Figures

1.1 Video prediction problem illustration 1

2.1 Example of a simple MLP with two hidden layers 6
2.2 Popular activation function plots 6
2.3 Stochastic gradient descent update step at iteration k 9
2.4 Illustration of a transposed convolution operation 12
2.5 Visualization of unrolling of an RNN 13
2.6 LSTM cell structure . 15
2.7 Illustration of a simple VAE and the reparametrization trick 17

3.1 Video Ladder Network (VLN) architecture 20
3.2 MCnet model architecture . 20
3.3 Spatiotemporal-LSTM (ST-LSTM) unit 22
3.4 SVG-LP model architecture . 23
3.5 Video prediction model by Villegas et al. [103] 25
3.6 Video prediction model by Fushishita et al. [27] 26
3.7 HRPAE model architecture . 27
3.8 Clockwork RNN architecture . 27

4.1 MSPred model architecture . 30
4.2 MSPred data-flow . 31

5.1 Statistics for number of per-class sequences in KTH test-sets, and
the nine body-joints predicted by MSPred on KTH 41

5.2 Example of hierarchical prediction on Moving-MNIST 48
5.3 Example of hierarchical prediction on KTH-Actions 50
5.4 Example of hierarchical prediction on SynPickVP 52
5.5 Qualitative comparison between different models on Moving-MNIST 54
5.6 Qualitative comparison between different models on KTH-Actions . 55
5.7 Qualitative comparison between different models on SynPickVP . . 56
5.8 Predictions made by MSPred model variants with different RNN-

levels eliminated at inference-time 62

69

List of Figures

5.9 Qualitative comparison between MSPred and MSPred-Det models
on Moving-MNIST . 64

5.10 Qualitative comparison between MSPred and MSPred-Det models
on KTH-Actions . 65

5.11 Diversity of MSPred predictions over the latent-space on KTH-
Actions . 66

70

List of Tables
5.1 MSPred model evaluation metrics on Moving-MNIST 47
5.2 MSPred model evaluation metrics on KTH-Actions 49
5.3 MSPred model evaluation metrics on SynPickVP 51
5.4 Quantitative comparison between future frame prediction methods

on Moving-MNIST . 53
5.5 Quantitative comparison between future frame prediction methods

on KTH-Actions . 54
5.6 Quantitative comparison between future frame prediction methods

on SynPickVP . 55
5.7 Quantitative comparison between MSPred and two baseline models

for body-pose prediction on KTH-Actions 57
5.8 Comparison of per-category metrics between MSPred and two base-

lines on KTH-Actions . 58
5.9 Comparison of per-category metrics between MSPred and two base-

lines on SynPickVP . 59
5.10 Ablation study for different design choices of MSPred 60
5.11 Ablation study for the impact of hierarchical-supervision on image-

level predictions . 61
5.12 Ablation study for the effect of each RNN-level on MSPred model

trained on KTH-Actions dataset . 61
5.13 Quantitative comparison between MSPred and MSPred-Det models

on Moving-MNIST . 63
5.14 Quantitative comparison between MSPred and MSPred-Det models

on KTH-Actions . 63

71

Bibliography
[1] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. “2D human pose

estimation: New benchmark and state of the art analysis”. In: Computer
Vision and Pattern Recognition (CVPR). 2014, pp. 3686–3693.

[2] M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and S. Levine. “Stochas-
tic variational video prediction”. In: International Conference on Learning
Representations (ICLR). 2018.

[3] H. Bay, T. Tuytelaars, and L. Van Gool. “Surf: Speeded up robust features”.
In: European Conference on Computer Vision (ECCV). 2006, pp. 404–417.

[4] A. Benzine, B. Luvison, Q. C. Pham, and C. Achard. Single-shot 3D multi-
person pose estimation in complex images. 2021. arXiv: 1911.03391 [cs.CV].

[5] C. M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, 2006.

[6] Y. Cao and J. Wu. Rethinking self-supervised Learning: Small is beautiful.
2021. arXiv: 2103.13559 [cs.CV].

[7] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. “Realtime multi-person 2d
pose estimation using part affinity fields”. In: Computer Vision and Pattern
Recognition (CVPR). 2017, pp. 7291–7299.

[8] L. Castrejon, N. Ballas, and A. Courville. “Improved conditional VRNNs
for video prediction”. In: International Conference on Computer Vision
(ICCV). 2019.

[9] A. Cauchy. “Méthode générale pour la résolution de systèmes d’équations
simultanées”. In: In Compte rendu des séances de l’académie des sciences
(1847), pp. 536–538.

[10] S. Chiappa, D. Racaniere Sébastienand Wierstra, and S. Mohamed. “Re-
current environment simulators”. In: International Conference on Learning
Representations (ICLR). 2017.

[11] H.-k. Chiu, E. Adeli, and J. C. Niebles. Segmenting the future. 2019. arXiv:
1904.10666 [cs.CV].

[12] J. Chung, S. Ahn, and Y. Bengio. “Hierarchical multiscale recurrent neu-
ral networks”. In: International Conference on Learning Representations
(ICLR). 2017.

73

https://arxiv.org/abs/1911.03391
https://arxiv.org/abs/2103.13559
https://arxiv.org/abs/1904.10666

Bibliography

[13] F. Cricri, X. Ni, M. Honkala, E. Aksu, and M. Gabbouj. “Video ladder
networks”. In: NIPS workshop on ML for Spatiotemporal Forecasting. 2016.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “Imagenet: A
large-scale hierarchical image database”. In: Computer Vision and Pattern
Recognition (CVPR). 2009, pp. 248–255.

[15] E. Denton and R. Fergus. “Stochastic video generation with a learned prior”.
In: International Conference on Machine Learning (ICML). 2018, pp. 1174–
1183.

[16] V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep
learning. 2016. arXiv: 1603.07285 [stat.ML].

[17] J. L. Elman. “Finding structure in time”. In: Cognitive science 14.2 (1990),
pp. 179–211.

[18] J. E. van Engelen and H. H. Hoos. “A survey on semi-supervised learning”.
In: Machine Learning 109.2 (2020), pp. 373–440.

[19] K. Fan, C. Joung, and S. Baek. “Sequence-to-sequence video prediction by
learning hierarchical representations”. In: Applied Sciences (2020).

[20] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu. “RMPE: Regional multiperson
pose estimation”. In: International Conference on Computer Vision (ICCV).
2017.

[21] H. Farazi and S. Behnke. “Motion segmentation using frequency domain
transformer networks”. In: European Symposium on Artificial Neural Net-
works, Computational Intelligence and Machine Learning (ESANN). 2020.

[22] H. Farazi, J. Nogga, and S. Behnke. “Local frequency domain transformer
networks for video prediction”. In: European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN).
2021.

[23] F. A. Fardo, V. H. Conforto, F. C. de Oliveira, and P. S. Rodrigues. A
formal evaluation of PSNR as quality measurement parameter for image
segmentation algorithms. 2016. arXiv: 1605.07116 [cs.CV].

[24] G. Feng, S. Wang, and T. Liu. “New benchmark for image segmentation
evaluation”. In: Journal of Electronic Imaging 16.3 (2007).

[25] C. Finn, I. Goodfellow, and S. Levine. “Unsupervised learning for physical
interaction through video prediction”. In: Advances in Neural Information
Processing Systems (NIPS). 2016.

[26] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P.
van der Smagt, D. Cremers, and T. Brox. “Flownet: Learning optical flow
with convolutional networks”. In: International Conference on Computer
Vision (ICCV). 2015.

74

https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1605.07116

Bibliography

[27] N. Fushishita, A. Tejero-de Pablos, Y. Mukuta, and T. Harada. “Long-
term human video generation of multiple futures using poses”. In: European
Conference on Computer Vision (ECCV). 2020, pp. 596–612.

[28] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[29] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio. “Generative adversarial nets”. In: Ad-
vances in Neural Information Processing Systems (NIPS). 2014, pp. 2672–
2680.

[30] A. Graves. Generating sequences with recurrent neural networks. 2014.
arXiv: 1308.0850 [cs.NE].

[31] N. Günnemann and J. Pfeffer. “Predicting defective engines using convo-
lutional neural networks on temporal vibration signals”. In: First Interna-
tional Workshop on Learning with Imbalanced Domains: Theory and Appli-
cations. 2017, pp. 92–102.

[32] I. Habibie, W. Xu, D. Mehta, G. Pons-Moll, and C. Theobalt. “In the
wild human pose estimation using explicit 2d features and intermediate 3d
representations”. In: Computer Vision and Pattern Recognition (CVPR).
2019.

[33] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image
Recognition”. In: Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 770–778.

[34] S. E. Hihi and Y. Bengio. “Hierarchical recurrent neural networks for long-
term dependencies”. In: Advances in Neural Information Processing Systems
(NIPS). Vol. 8. 1995, pp. 493–499.

[35] G. Hinton. Neural networks for machine learning. Coursera, video lectures.
2012.

[36] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural
Computation 9.8 (1997), pp. 1735–1780.

[37] A. Hu, F. Cotter, N. Mohan, C. Gurau, and A. Kendall. “Probabilistic
future prediction for video scene understanding”. In: European Conference
on Computer Vision (ECCV). 2020.

[38] S. Ioffe and C. Szegedy. “Batch normalization: accelerating deep network
training by reducing internal covariate shift”. In: International Conference
on Machine Learning (ICML). 2015, pp. 448–456.

[39] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. “Human3.6M: Large
scale datasets and predictive methods for 3d human sensing in natural
environments”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) 36.7 (2014), pp. 1325–1339.

75

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1308.0850

Bibliography

[40] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. “Spatial
transformer networks”. In: Advances in Neural Information Processing Sys-
tems (NIPS). 2015.

[41] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. “What is the best
multi-stage architecture for object recognition?” In: International Confer-
ence on Computer Vision (ICCV). 2009, pp. 2146–2153.

[42] X. Jin, H. Xiao, X. Shen, J. Yang, Z. Lin, Y. Chen, Z. Jie, J. Feng, and
S. Yan. “Predicting scene parsing and motion dynamics in the future”. In:
Advances in Neural Information Processing Systems (NIPS). 2017.

[43] X. Jin, X. Li, H. Xiao, X. Shen, Z. Lin, J. Yang, Y. Chen, J. Dong, L. Liu,
Z. Jie, J. Feng, and S. Yan. “Video scene parsing with predictive feature
learning”. In: International Conference on Computer Vision (ICCV). 2017,
pp. 5581–5589.

[44] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan. “Deep learning with S-
shaped rectified linear activation units”. In: AAAI Conference on Artificial
Intelligence. AAAI Press, 2016, pp. 1737–1743.

[45] N. Kalchbrenner, A. v. d. Oord, K. Simonyan, I. Danihelka, O. Vinyals,
A. Graves, and K. Kavukcuoglu. “Video pixel networks”. In: International
Conference on Machine Learning (ICML). 2017, pp. 1771–1779.

[46] A. Karapetyan, A. Villar-Corrales, A. Boltres, and S. Behnke. Video pre-
diction at multiple scales with hierarchical recurrent networks. 2022. arXiv:
2203.09303 [cs.CV].

[47] T. Kim, S. Ahn, and Y. Bengio. “Variational temporal abstraction”. In:
Advances in Neural Information Processing Systems (NIPS). 2019.

[48] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”.
In: International Conference on Learning Representations (ICLR). 2015.

[49] D. P. Kingma and M. Welling. “Auto-encoding variational bayes”. In: In-
ternational Conference on Learning Representations (ICLR). 2014.

[50] D. P. Kingma. “Fast gradient-based inference with continuous latent vari-
able models in auxiliary form”. In: CoRR abs/1306.0733 (2013).

[51] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber. “A clockwork RNN”.
In: International Conference on Machine Learning (ICML). 2014, pp. 1863–
1871.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in Neural Information
Processing Systems (NIPS). 2012.

[53] S. Kullback and R. A. Leibler. “On information and sufficiency”. In: The
Annals of Mathematical Statistics 22.1 (1951), pp. 79–86.

76

https://arxiv.org/abs/2203.09303

Bibliography

[54] V. Le Guen and N. Thome. “Disentangling physical dynamics from un-
known factors for unsupervised video prediction”. In: Computer Vision and
Pattern Recognition (CVPR). 2020, pp. 11471–11481.

[55] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521
(2015), pp. 436–444.

[56] Y. LeCun, C. Cortes, and C. J. Burges. “The mnist database of handwritten
digits”. In: IEEE Signal Processing Magazine 10 (1998), p. 34. url: http:
//yann.lecun.com/exdb/mnist.

[57] A. X. Lee, R. Zhang, F. Ebert, P. Abbeel, C. Finn, and S. Levine. Stochastic
adversarial video prediction. 2018. arXiv: 1804.01523 [cs.CV].

[58] W. Lee, W. Jung, H. Zhang, T. Chen, J. Y. Koh, T. Huang, H. Yoon, H. Lee,
and S. H. Lee. “Revisiting hierarchical approach for persistent long-term
video prediction”. In: International Conference on Learning Representations
(ICLR). 2021.

[59] M. Li, Z. Zhou, J. Li, and X. Liu. Bottom-up pose estimation of multiple
person with bounding box constraint. 2018. arXiv: 1807.09972 [cs.CV].

[60] Z. Lin, C. Yuan, and M. Li. “HAF-SVG: Hierarchical stochastic video gener-
ation with aligned features”. In: International Joint Conference on Artificial
Intelligence. 2020, pp. 991–997.

[61] W. Liu, W. Luo, D. Lian, and S. Gao. “Future frame prediction for anomaly
detection - A new baseline”. In: Computer Vision and Pattern Recognition
(CVPR). 2018, pp. 6536–6545.

[62] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for se-
mantic segmentation”. In: Computer Vision and Pattern Recognition (CVPR).
2015, pp. 3431–3440.

[63] W. Lotter, G. Kreiman, and D. Cox. “Deep predictive coding networks for
video prediction and unsupervised learning”. In: ICLR (Poster). 2017.

[64] D. G. Lowe. “Distinctive image features from scale-invariant keypoints”. In:
International Journal of Computer Vision 60.2 (2004), pp. 91–110.

[65] C. Lu, M. Hirsch, and B. Schölkopf. “Flexible spatio-temporal networks for
video prediction”. In: Computer Vision and Pattern Recognition (CVPR).
2017, pp. 2137–2145.

[66] W. Lu, J. Cui, Y. Chang, and L. Zhang. “A video prediction method based
on optical flow estimation and pixel generation”. In: IEEE Access 9 (2021),
pp. 100395–100406.

[67] P. Luc. “Self-supervised learning of predictive segmentation models from
video”. MA thesis. Universite Grenoble Alpes, 2019.

77

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://arxiv.org/abs/1804.01523
https://arxiv.org/abs/1807.09972

Bibliography

[68] P. Luc, N. Neverova, C. Couprie, J. Verbeek, and Y. LeCun. “Predicting
deeper into the future of semantic segmentation”. In: International Confer-
ence on Computer Vision (ICCV). 2017.

[69] P. Luo and H. F. Li. “Research on quantum neural network and its ap-
plications based on Tanh activation function”. In: Computer and Digital
Engineering (2012), pp. 33–39.

[70] Z. Luo, B. Peng, D.-A. Huang, A. Alahi, and L. Fei-Fei. “Unsupervised
learning of long-term motion dynamics for videos”. In: Computer Vision
and Pattern Recognition (CVPR). 2017.

[71] M. Minderer, C. Sun, R. Villegas, F. Cole, K. Murphy, and H. Lee. “Un-
supervised learning of object structure and dynamics from videos”. In: Ad-
vances in Neural Information Processing Systems (NIPS). 2019.

[72] A. Newell, K. Yang, and J. Deng. “Stacked hourglass networks for human
pose estimation”. In: European Conference on Computer Vision (ECCV).
Springer, 2016, pp. 483–499.

[73] D. Nilsson and C. Sminchisescu. Semantic video segmentation by gated re-
current flow propagation. 2018.

[74] J. Oh, X. Guo, H. Lee, R. Lewis, and S. Singh. “Action-conditional video
prediction using deep networks in Atari games”. In: Advances in Neural
Information Processing Systems (NIPS). 2015.

[75] C. Olah. Understanding LSTM networks. 2015. url: https : / / colah .
github.io/posts/2015-08-Understanding-LSTMs (visited on 05/30/2022).

[76] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu. “Pixel recurrent neu-
ral networks”. In: International Conference on Machine Learning (ICML).
2016.

[77] S. Oprea, P. Martinez-Gonzalez, A. Garcia-Garcia, J. A. Castro-Vargas, S.
Orts-Escolano, J. Garcia-Rodriguez, and A. Argyros. “A Review on deep
learning techniques for video prediction”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI) (2020).

[78] V. Patraucean, A. Handa, and R. Cipolla. “Spatio-temporal video autoen-
coder with differentiable memory”. In: ICLR (Workshop). 2015.

[79] A. S. Periyasamy, M. Schwarz, and S. Behnke. “Synpick: A dataset for
dynamic bin picking scene understanding”. In: International Conference on
Automation Science and Engineering (CASE). IEEE, 2021, pp. 488–493.

[80] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical recipes in C: the art of scientific computing (2nd ed.) New York,
USA: Cambridge University Press, 1992, pp. 123–128.

78

https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://colah.github.io/posts/2015-08-Understanding-LSTMs

Bibliography

[81] A. Radford, L. Metz, and S. Chintala. “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks”. In: Interna-
tional Conference on Learning Representations (ICLR). 2016.

[82] M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra.
Video (language) modeling: a baseline for generative models of natural
videos. 2014. arXiv: 1412.6604 [cs.LG].

[83] D. J. Rezende, S. Mohamed, and D. Wierstra. “Stochastic backpropagation
and approximate inference in deep generative models”. In: International
Conference on Machine Learning (ICML). Vol. 32. 2014.

[84] J. Rocca. Understanding variational autoencoders (VAEs). 2019. url: https:
//towardsdatascience.com/understanding-variational-autoencoders-
vaes-f70510919f73 (visited on 05/30/2022).

[85] D. Rumelhart, G. Hinton, and R. Williams. “Learning representations by
back-propagating errors”. In: Nature 323 (1986), pp. 533–536.

[86] B. Sapp and B. Taskar. “MODEC: Multimodal decomposable models for
human pose estimation”. In: Computer Vision and Pattern Recognition
(CVPR). 2013, pp. 3674–3681.

[87] V. Saxena, J. Ba, and D. Hafner. “Clockwork variational autoencoders”. In:
NIPS (Poster). 2021.

[88] C. Schuldt, I. Laptev, and B. Caputo. “Recognizing human actions: A lo-
cal SVM approach”. In: International Conference on Pattern Recognition
(ICPR). 2004.

[89] M. Schwarz and S. Behnke. “Stillleben: Realistic scene synthesis for deep
learning in robotics”. In: International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2020, pp. 10502–10508.

[90] R. Shi, K. N. Ngan, and S. Li. “Jaccard index compensation for object
segmentation evaluation”. In: International Conference on Image Processing
(ICIP). 2014, pp. 4457–4461.

[91] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo.
“Convolutional LSTM network: A machine learning approach for precipi-
tation nowcasting”. In: Advances in Neural Information Processing Systems
(NIPS). Vol. 28. 2015.

[92] X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c.
Woo. “Deep learning for precipitation nowcasting: A benchmark and a new
model”. In: Advances in Neural Information Processing Systems (NIPS).
Vol. 30. 2017.

[93] K. Simonyan and A. Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: International Conference on Learning
Representations (ICLR). 2015.

79

https://arxiv.org/abs/1412.6604
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Bibliography

[94] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. “Dropout: a simple way to prevent neural networks from overfitting”.
In: Journal of machine learning research 15.1 (2014), pp. 1929–1958.

[95] N. Srivastava, E. Mansimov, and R. Salakhutdinov. “Unsupervised learning
of video representations using LSTMs”. In: International Conference on
Machine Learning (ICML). 2015.

[96] J. Sun, J. Xie, J.-F. Hu, Z. Lin, J. Lai, W. Zeng, and W.-s. Zheng. “Predict-
ing future instance segmentation with contextual pyramid convLSTMs”. In:
Association for Computing Machinery, 2019, pp. 2043–2051.

[97] D. Sussillo and L. F. Abbott. Random walks: Training very deep nonlinear
feed-forward networks with smart initialization. 2015. arXiv: 1412.6558
[cs.NE].

[98] Z. Tang, L. Luo, H. Peng, and S. Li. “A joint residual network with paired
ReLUs activation for image super-resolution”. In: Neurocomputing (2018),
pp. 37–46.

[99] A. M. Terwilliger, G. Brazil, and X. Liu. “Recurrent flow-guided semantic
forecasting”. In: Workshop on Applications of Computer Vision. 2019.

[100] A. Toshev and C. Szegedy. “DeepPose: Human pose estimation via deep
neural networks”. In: Computer Vision and Pattern Recognition (CVPR).
2014, pp. 1653–1660.

[101] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee. “Decomposing motion and
content for natural video sequence prediction”. In: International Conference
on Learning Representations (ICLR). 2017.

[102] R. Villegas, A. Pathak, H. Kannan, D. Erhan, Q. V. Le, and H. Lee. “High
fidelity video prediction with large stochastic recurrent neural networks”. In:
Advances in Neural Information Processing Systems (NIPS). 2019, pp. 81–
91.

[103] R. Villegas, J. Yang, Y. Zou, S. Sohn, X. Lin, and H. Lee. “Learning to gen-
erate long-term future via hierarchical prediction”. In: International Con-
ference on Machine Learning (ICML). 2017, pp. 3560–3569.

[104] J. Walker, K. Marino, A. Gupta, and M. Hebert. “The pose knows: Video
forecasting by generating pose futures”. In: International Conference on
Computer Vision (ICCV). 2017.

[105] Y. Wang, Z. Gao, M. Long, J. Wang, and P. S. Yu. “PredRNN++: To-
wards a resolution of the deep-in-time dilemma in spatiotemporal predic-
tive learning”. In: International Conference on Machine Learning (ICML).
2018, pp. 5123–5132.

80

https://arxiv.org/abs/1412.6558
https://arxiv.org/abs/1412.6558

Bibliography

[106] Y. Wang, M. Mingsheng Long, J. Wang, Z. Gao, and P. S. Yu. “PredRNN:
Recurrent neural networks for predictive learning Using spatiotemporal
LSTMs”. In: Advances in Neural Information Processing Systems (NIPS).
2017, pp. 879–888.

[107] Y. Wang, H. Wu, J. Zhang, Z. Gao, J. Wang, P. S. Yu, and M. Long.
“PredRNN: A recurrent neural network for spatiotemporal predictive learn-
ing”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) (2022).

[108] Y. Wang, J. Wu, M. Long, and J. B. Tenenbaum. “Probabilistic video pre-
diction from noisy data with a posterior confidence”. In: Computer Vision
and Pattern Recognition (CVPR). 2020.

[109] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. “Image quality
assessment: from error visibility to structural similarity”. In: IEEE Trans-
actions on Image Processing. Vol. 13. 4. 2004, pp. 600–612.

[110] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. “Convolutional
pose machines”. In: Computer Vision and Pattern Recognition (CVPR).
2016, pp. 4724–4732.

[111] B. Wu, S. Nair, R. Martín-Martín, L. Fei-Fei, and C. Finn. “Greedy hierar-
chical variational autoencoders for large-scale video prediction”. In: Com-
puter Vision and Pattern Recognition (CVPR). 2021.

[112] T. Xue, J. Wu, K. L. Bouman, and W. T. Freeman. “Visual dynamics:
probabilistic future frame synthesis via cross convolutional networks”. In:
Advances in Neural Information Processing Systems (NIPS). 2016.

[113] J. Yang and G. Yang. “Modified convolutional neural network based on
dropout and the stochastic gradient descent optimizer”. In: Algorithms 11.3
(2018).

[114] Y. Yang and D. Ramanan. “Articulated human detection with flexible mix-
tures of parts”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) (2013).

[115] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. “The unrea-
sonable effectiveness of deep features as a perceptual metric”. In: Computer
Vision and Pattern Recognition (CVPR). 2018, pp. 586–595.

[116] Y. N. Zhang, L. Qu, J. Chen, J. Liu, and D. Guo. “Weights and structure
determination method of multiple-input Sigmoid activation function neural
network”. In: Application Research of Computers 29 (2012), pp. 4113–4116.

81

	Introduction
	Theoretical Background
	Deep Learning Essentials
	Popular Activation Functions
	Learning Paradigms
	Training of Neural Networks
	Regularization
	Popular Loss Functions

	Convolutional Neural Networks
	Recurrent Neural Networks
	LSTM
	Convolutional LSTM

	Autoencoders

	Related Work
	State of the Art
	Stochastic Video Prediction
	High-Level Structured Prediction
	Multiscale/Hierarchical RNNs

	Approach
	Architecture
	Encoder
	Multi-Scale Predictor
	Decoder
	Stochastic Components

	Model Inference
	Model Training
	Implementation Details

	Evaluation and Results
	Datasets
	Moving-MNIST
	KTH-Actions
	SynPickVP

	Metrics
	Image Similarity Metrics
	Pose Estimation Metrics
	Semantic Segmentation Metrics

	Results
	Evaluation on Moving-MNIST
	Evaluation on KTH-Actions
	Evaluation on SynPickVP
	Comparison to Other Methods

	Ablation Study
	Effect of Hierarchy
	Effect of Each RNN-Level
	Effect of Stochastic Prediction

	Conclusion

