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Abstract

Fast and robust registration of 3D scans is required in many approaches to perception in robotics such as pose tracking
or simultaneous localization and mapping. We propose a novel efficient method to register RGB-D images. We convert
the image content into a multi-resolution surfel representation and exploit the dense image neighborhood to construct
such views at high frame-rates on a single CPU. Our approach registers views using an efficient and robust variant of the
Iterative Closest Points algorithm. We evaluate our method on a recently published benchmark dataset and achieve results
beyond the state-of-the-art. We also report on the successful public demonstration of our method at RoboCup 2011.

1 Introduction
Scan registration is an important capability for solving var-
ious problems in robotics. Many approaches to simultane-
ous localization and mapping (SLAM) register 2D or 3D
scans to obtain pose measurements. Similarly, scan reg-
istration can be used to track the pose of an object. Ro-
bustness and efficiency of a registration method determine
the magnitude of the sensor motion relative to the object
or scene that the method can cope with. In this paper, we
propose a robust method that registers RGB-D images at
high frame-rates.
In recent years, affordable depth cameras have become
available such as time-of-flight or structured-light cam-
eras like the ASUS Xtion Pro. Conversely, in the com-
puter vision community, approaches have been recently
proposed that estimate dense depth in real-time from stereo
and monocular cameras [9, 4]. Exploiting dense depth for
robotic perception is since a viable option. However, effi-
cient means have to be developed to utilize the high frame-
rate and high resolution images provided by such sensing
modalities.
In this paper, we propose a fast method to extract multi-
resolution surfel views from RGB-D images. Our method
represents color and shape distributions at multiple resolu-
tions. We present an approach for high frame-rate incre-
mental registration of views that utilizes color and shape
as well as the multi-resolution structure of the views.

2 Related Work
Over the last decades, the robotics, computer vision, and
computer graphics communities developed several ap-
proaches for incremental registration of color and depth
data. Recently, Steinbruecker et al. [7] proposed a method
for real-time registration of RGB-D images. Given depth,
they model the perspective transformation of an image for
changes in view pose. They optimize an energy-function
to find the best pose to explain the difference between im-

ages. Our formulation determines the best transformation
between 3D representations of the images. Note that our
registration method is more general, since our represen-
tation can be easily extended to incorporate arbitrary 3D
data. Hence, it can be readily employed for the registration
of images to maps that aggregate multiple views.
In robotics and computer graphics, depth images are fre-
quently registered by derivatives of the Iterative Closest
Points (ICP [1]) algorithm. Generalized-ICP [6] unifies the
ICP formulation for various error metrics such as point-to-
point, point-to-plane, and plane-to-plane. Magnusson et
al. [3] propose the 3D normal distribution transform (3D-
NDT). They discretize the 3D space in a grid to support
efficient nearest neighbor look-ups. Each cell maintains
the 3D normal distibution of the points in the model scan.
Scans are registered by minimizing the matching likeli-
hood of scene points to the model. In Color-NDT [2], they
propose to enrich 3D-NDT with Gaussian mixture distri-
butions of color in each cell. To the best of our knowledge,
none of the above ICP methods is reported to support real-
time capable scan-matching of RGB-D images.
Our approach bears some similarities to 3D-NDT. How-
ever, we propose novel methods to increase robustness and
to enable high frame-rate operation on RGB-D images:
Our approach exploits measurement principles of RGB-
D sensors to extract multi-resolution surfel views at high
frame-rates. To register such views efficiently, we propose
a multi-resolution strategy to data association. This strat-
egy is supported by the use of shape-texture features to
judge the compatibility between surfels. Our highly ef-
ficient implementation registers 640×480 RGB-D images
at a frame rate of about 10 Hz on a CPU.

3 Efficient Image Aggregation

3.1 Multi-Resolution Surfel Representation
We represent joint color and shape distributions at multiple
resolutions using surfels (see Fig. 1).
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Figure 1: Top left: RGB image of the scene. Top right:
Maximum node resolution coding, color codes octant of
the leaf in its parent’s node (see text for details). Bottom:
Color and shape distribution at 0.025 m (left) and at 0.05 m
resolution (right).

We use octrees as a natural data structure to represent spa-
tial data at multiple resolutions. Each node in the octree
represents a cubic volume, i. e., a voxel. In each node we
store statistics on the joint spatial and color distribution of
the points P . We approximate this distribution with sam-
ple mean µ and covariance Σ of the data, i. e., we model
the data normal distributed in a node’s volume. Instead of
directly maintaining mean and covariance in the nodes, we
store the sufficient statistics S and S2 of the normal distri-
bution, i. e.,

S(P) :=
∑
p∈P

p, and

S2(P) :=
∑
p∈P

ppT ,
(1)

from which we obtain sample mean µ(P) = 1
|P|S(P) and

covariance Σ(P) = 1
|P|S

2(P)− µµT .
Additionally, we maintain an estimate of the local surface
normal within the voxel. We obtain surface normals by
eigen decomposition of the 3D spatial covariance.
We also represent color in our representation. By main-
taining the joint distribution of 3D coordinates and color
in a 6D normal distribution, we also model the spatial dis-
tribution of color. In order to separate chrominance from
luminance information, we choose a variant of the HSL
color space. We define the Lαβ color space as

L :=
1

2
(max{R,G,B}+ min{R,G,B}) ,

α := R− 1

2
G− 1

2
B, and β :=

√
3

2
(G−B),

(2)

where we obtain the chrominances α and β from the po-
lar hue and saturation representation. Despite the simple
and efficient conversion, this color space provides chromi-
nance cues that are approximately invariant to illumination
changes.

3.2 Shape-Texture Descriptor

We construct descriptors of shape and texture in the lo-
cal context of each surfel (at all resolutions). Similar to
FPFH features [5], we first build histograms of surfel-pair
relations between the query surfel and its 26 neighbors in
the octree resolution. Each surfel-pair relation is weighted
with the number of points in the corresponding voxel. Af-
terwards, we smooth the histograms to better cope with
discretization effects by adding the histogram of neighbor-
ing surfels with a factor γ = 0.1.
Similarly, we extract local histograms of luminance and
chrominance contrasts. We bin luminance and chromi-
nance differences between neighoring surfels into positive,
negative, or insignificant. Note, that pointers to neighbor-
ing voxels can be efficiently precalculated using look-up
tables [11].

3.3 Real-Time RGB-D Image Aggregation

The use of the sufficient statistics allows for an efficient in-
cremental update of the representation. In the simplest im-
plementation, the sufficient statistics of each point is added
individually to the tree. Starting at the root node, the suf-
ficient statistics is recursively added to the nodes that con-
tain the point in their volume.
However, adding each point individually is not the most
efficient way to generate the representation. Instead, we
exploit that by the projective nature of the camera, neigh-
boring pixels in the image project to nearby points on the
sampled 3D surface up to occlusion effects. This means,
that neighbors in the image are likely to belong to the same
octree nodes.
We further consider the typical property of RGB-D sen-
sors, that noise increases with the distance of the measure-
ment. We thus adapt the maximum octree resolution at a
pixel to the pixel’s squared distance from the sensor. In ef-
fect, the size of the octree is significantly reduced and the
leaf nodes subsume local patches in the image (see top-
right Fig. 1). We exploit these properties and scan the
image to aggregate the sufficient statistics of contiguous
image regions that belong to the same octree node. The
aggregation of the image allows to construct the view with
only several 1000 node insertions for a 640×480 image in
contrast to 307200 point insertions.
After the image content has been incorporated into the rep-
resentation, we precompute mean, covariance, surface nor-
mals, and shape-texture features for later registration pur-
poses.

3.4 Handling of Image and Virtual Borders

Special care must be taken at the borders of the image and
at virtual borders where background is occluded. Nodes
that receive such border points only partially observe the
underlying surface structure. When updated with these



points, the surfel distribution is distorted towards the par-
tial distribution. In order to avoid this, we determine such
nodes by sweeping through the image and neglect them.

4 Real-Time Registration of Multi-
Resolution Surfel Views

The registration of the images requires two main steps that
needs to be addressed efficiently: First, we associate sur-
fels between the views. For these associations, we then
determine a transformation that maximizes their matching
likelihood.

4.1 Multi-Resolution Surfel Association

Since we model multiple resolutions, we match surfels
only in a local neighborhood that scales with the resolu-
tion of the surfel. In this way, coarse misalignments are
corrected on coarser scales. In order to achieve an accu-
rate registration, our association strategy chooses the finest
resolution possible to match two views. This also saves
redundant calculations on coarser resolutions.
Starting at the finest resolution, we iterate through every
resolution and establish associations between the surfels
on each resolution. In order to choose the finest resolution
possible, we do not associate a node, if one of its children
already has been associated.
Since we have to iterate our registration method multiple
times, we can gain efficiency by bootstrapping the associ-
ation process from previous iterations. If a surfel has not
been associated in the previous iteration, we search for all
surfels in twice the resolution distance in the target view.
Note, that we use the current pose estimate x for this pur-
pose.

Figure 2: We match surfels at multiple resolutions. Coarse
alignments are performed on coarse resolutions, while we
choose the finest resolution possible for accuracy.

If an association from a previous iteration exists, we as-
sociate the surfel with the best surfel among the neigh-
bors of the last association. Since we precalculate the 26-
neighborhood of each octree node, this look-up amounts to
constant time.
We accept associations only, if the shape-texture descrip-
tors of the surfels match. We evaluate the compatibility
by thresholding on the Euclidean distance of the descrip-
tors. In this way, a surfel may not be associated with the
closest surfel in the target view, but with either none or a
compatible one.
Our association strategy not only saves redundant compar-
isons on coarse resolution. It also allows to match surface
elements at coarser scales, when fine-grained shape and
texture details cannot be matched on finer resolutions. Fi-
nally, since we iterate over all surfels in each resolution in
parallel, our association method can be easily parallelized.

4.2 Observation Model
Our goal is to register an RGB-D image z, from which we
construct the source view ms, towards a target view mm.
We formulate our problem as finding the most likely pose x
that optimizes the likelihood p(z|x,mm) of observing the
target view in the current image z. We express poses x =
(q, t) by a unit quaternion q for rotation and by the transla-
tion t ∈ R3.
We determine the observation likelihood by the matching
likelihood between source and target view,

p(ms|x,mm) =
∏

(i,j)∈A

p(ss,i|x, sm,j), (3)

whereA is the set of surfel associations between the views,
and ss,i = (µs,i,Σs,i) and sm,j = (µm,j ,Σm,j) are asso-
ciated surfels. The observation likelihood of a surfel match
is the difference of the surfels under their normal distribu-
tions,

p(ss,i|x, sm,j) = N (di,j(x); 0,Σi,j(x)) ,

di,j(x) := µm,j − T (x)µs,i,

Σi,j(x) := Σm,j +R(x)Σs,iR(x)T ,

(4)

where T (x) is the homogeneous transformation matrix for
the pose estimate x and R(x) is its rotation matrix. We
marginalize the surfel distributions for the spatial dimen-
sions.
Note that due to the difference in view poses between
the images, the scene content is differently discretized be-
tween the views. We compensate for inaccuracies due to
discretization effects by trilinear interpolation between tar-
get surfels.

4.3 Pose Optimization
We optimize the observation log likelihood

J(x) =
∑

(i,j)∈A

log(|Σi,j(x)|) + dTi,j(x)Σ−1i,j (x)di,j(x)



Figure 3: Median translational error of the pose estimate
for different frame skips k on the freiburg1_desk (left) and
freiburg2_desk (right) dataset.

for the pose x using the Newton-Raphson method. In each
step, we determine new surfel associations in the current
pose estimate. Our method typically converges within 5-
10 iterations to a precise estimate.

5 Experiments
We evaluate our approach on a public RGB-D dataset [10].
The dataset contains RGB-D image sequences with ground
truth information for the camera pose. The ground truth
has been captured with a motion capture system. We chose
the freiburg1_desk and freiburg2_desk datasets as exam-
ples of fast and moderate camera motion, respectively, in
an office-like setting. The choice also allows for compari-
son with the approach (abbreviated by warp) in [7].
Accuracy and Robustness: Our approach achieves a me-
dian translational drift of 4.62 mm and 2.27 mm per frame
on the freiburg1_desk and freiburg2_desk datasets, respec-
tively (see Table 1). We obtain comparable results to [7]
(5.3 mm and 1.5 mm), while our approach also performs
significantly better than GICP (10.3 mm and 6.3 mm [7]).
However, when skipping frames (see Fig. 3), our approach
achieves similar accuracy than [7] for small displacements,
but retains the robustness of ICP methods for larger dis-
placements when [7] fails.
Efficiency: The mean processing time on the
freiburg2_desk dataset is 100,11 msec (ca. 10 Hz) on an
Intel Xeon 5650 2,67 GHz CPU using 640x480 VGA im-
ages. Since our approach is robust for the skipping of more
than 5 frames, we consider our approach real-time capable.
Public Demonstration: We demonstrated our real-
time registration method publicly in the RoboCup 2011
@Home league finale. Our robot Cosero carried a table
with a human and baked omelet. For carrying the table, we
trained a model map of the table [8]. The robot registered
RGB-D images to the model in real-time to approach the
table and grasp it at predefined grasp points. It detected
the lifting and lowering of the table by estimating its pitch
rotation.

Dataset ours warp [7] GICP [7]
freiburg1_desk 4.62 mm 5.3 mm 10.3 mm

0.0092 deg 0.0065 deg 0.0154 deg
freiburg2_desk 2.27 mm 1.5 mm 6.3 mm

0.0041 deg 0.0027 deg 0.0060 deg

Table 1: Comparison of median pose drift between frames.

Similarly, the robot approached the pan on a cooking plate
by tracking the object with our registration method. The
demonstration has been well received by the jury. Paired
with the highest score from the previous stages, we could
win the RoboCup@Home competition 2011.

6 Conclusion
We proposed a novel robust method for real-time regis-
tration of RGB-D images. We present efficient means to
extract multi-resolution surfel views from RGB-D images.
These views are then registered with a robust and efficient
variant of the ICP algorithm. Our approach utilizes multi-
ple resolutions to align the views on coarse scales and to
register them accurately on fine resolutions.
In experiments, we demonstrate the registration of images
at frame-rates of ca. 10 Hz. Our approach yields compara-
ble accuracy to a state-of-the-art algorithm. It yields supe-
rior robustness for large differences in view pose.
In future work, we will apply our approach for object re-
construction and 6-DoF SLAM.
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