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Abstract

Self-localization on the field is one of the key perceptual tasks that a soccer robot, e. g. in the

RoboCup competitions, must solve. This problem becomes harder, as the rules in RoboCup more

and more discourage a solely color-based orientation on the field. While the field size increases, field

boundary markers and goals become smaller and less colorful. For robust game play, robots therefore

need to maintain a probabilistic pose estimate and rely on more subtle environmental clues. Field

lines are particularly interesting features, because they are hardly ever completely occluded and

observing them significantly reduces the number of possible poses on the field.

In this work, we present a method for line-based self-localization on a soccer field. Unlike previous

work, our method first recovers a line structure graph from the image. From the graph, we can then

easily derive features such as lines and corners. Finally, we describe optimizations for efficient use of

the derived features in a particle filter. The method described in this paper is used regularly on our

humanoid soccer robots, which won the RoboCup TeenSize competitions in the years 2009–2011.

keywords: robot, soccer, humanoid, vision, self-localization

1 Introduction

RoboCupSoccer is a popular benchmark for AI and robotics research [1]. On its way to realistic soccer

environments, RoboCup started out with small-sized, color-coded scenarios. Gradually, artificial markers,

colors and special lighting are removed and the soccer field size is increased to encourage teams to

build reliable vision systems which can compete under real-world conditions. While other leagues, like

the MidSize league, already went a long way, the Humanoid League is still at the beginning of this

transition. Especially the small available computational power and noisy observations due to mostly

unmodelled camera motion prevented large steps so far. From the experience in MidSize-league, however,

we can learn that the removal of colored landmarks emphasizes the importance of field lines. For precise
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positioning, for example during the setup phase of the game, the use of lines and crossings is already

mandatory since the uncertainties of other landmarks are prohibitively large. Finally, the restricted

field of view in humanoid robots—as opposed to omnidirectional vision systems commonly used in other

leagues—can be partially compensated for using field lines.

In this work, we present a system for detecting field lines and employ them for localization on the

field. This is by far not the first method presented for this purpose; however, our approach has several

advantages. The structure of the field lines is determined efficiently using algorithms inspired from work

on analysis of handwritten digits [2]. This method employs local and global cues to determine a graph

which captures the essential structure of lines in an image taken by the robot’s camera. The graph has a

particularly nice structure: nodes are candidates for corners where the field lines meet—the branching

factor determines the corner type. Edges in the graph correspond to field lines. Most importantly, the

estimates of line parameters are not influenced by spurious segments or noisy local orientation estimates.

Notably, the favorable properties of the algorithm come at little cost. We incorporated line and

corner features into a particle filter which runs online on our humanoid soccer robots. This is possible,

because the costly per-particle association decision of observed features to landmarks can be simplified.

The remainder of the paper is organized as follows. The next section reviews previous work on

line-based localization. Section 3 and 4 describe preprocessing and feature extraction, respectively.

Section 5 presents how line and corner features can be used in a particle filter. In Section 6 we evaluate

the proposed methods. We provide qualitative and quantitative experimental results using motion

capture as ground truth. For pose tracking, we show that our system can rely solely on line-based clues,

greatly reducing the dependence on a color-coded soccer environment. Finally, we report on experiences

made during RoboCup competitions.

2 Related Work

Work on field-lines for localization in RoboCup environments can be described on three axes. First, how

candidate line segments are found; second, how the line segments are merged to lines; and third, how

detected lines are used for localization. Naturally, the literature describes only combinations of all three

approaches and this work is no exception. Nevertheless, this work contributes to all three areas.

Finding candidate line segments is usually performed using green-white-green transition filters [3] or

scan-lines [4, 5] on the image. Convolving the image is an expensive operation, however, and scan-lines

ignore context. Our method simply makes use of all white pixels and rejects those which are not part of

the field lines.

Candidate line segments are then processed to find actual lines. Hough-space techniques are commonly

used for this purpose (e. g. [6], [7]). These methods need to calculate a large accumulator array and

require double book-keeping of line-pieces for post-processing the found lines. Also, estimated line

orientations of small segments tend to be quite noisy. The same is true for the approach followed by

the Nao team NUManoid [3], where lines are determined by adding and removing points to candidate
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lines, which requires tuning of numerous parameters. In the approach presented here, candidates for

lines emerge naturally from the determined line structure graph.

Finally, candidate line segments or lines can be used for localization. Lauer et al. [8] use all candidate

line segments for performing gradient descent from the currently estimated pose. This technique relies on

the favorable properties of omnidirectional cameras, which are not allowed in the humanoid league, and

on stable distance estimates, which are hard to determine for humanoid robots with unknown camera

pitch and roll angles. Röfer et al. [5] also make use of all candidate line segments using a pre-calculated

lookup table for the observation model. With this method, segments which are observed on a line can

be associated with different lines in the world, supporting improbable poses. In our experience, this

approach also requires a large floor and wide standard deviations in the observation model such that

spurious line segments do not completely destroy the belief. For precise localization, this approach

is not helpful. Furthermore, the computational load is high if it is used in combination with particle

filters, where each particle has to integrate information from all candidate line segments (see however

Whelan et al. [9] for an efficient integration of this approach with a Kalman filter). Consequently, in

humanoid and Aibo teams, field line extraction from candidate line segments prevails for localization

purposes. The resulting long lines can then either be used as pose constraints [10] or directly used in a

particle filter. Pose constraints rule out many possible poses and need to be relaxed iteratively in the

case where no allowed poses are left. Particle filters can represent more complex beliefs. To achieve

real-time performance, however, speed optimization is critical. In this work, we describe optimizations

used to acquire a high frame-rate even when many features are detected in an image.

3 Vectorization

The first step of our algorithm is the vectorization of the field lines. Our robots are equipped with three

color cameras (IDS uEye 1226 LE) which capture images with a WXGA (752×480) resolution in YUV

4:2:2 color space. The individual pixels are classified to color classes as follows. First, the Y-component

is compared to luminance thresholds for classification of black and white. For pixels with intermediate

luminance, the color class is defined by a lookup-table for the U and V values. The six color classes

(orange, green, blue, yellow, magenta, and cyan) are described by ellipses in the UV plane. In addition,

each color class is restricted to an interval in the Y dimension.

The pixels assigned to a color class are counted in a separate 94×60 grid (one eighth of the our camera

resolution in each dimension). Each pixel in this color class image represents the number of occurrences

of its color in a 8×8 window of the original image. While this subsampling reduces spatial resolution, it

allows for quick access to the density of the corresponding color in image regions. All algorithms below

are performed on these subsampled color class images, albeit we use subpixel precision when possible.

In the next processing step, simple pre-processing operations are performed on the color images. We

reduce unwanted effects such as Bayer-pattern induced orange and cyan colors next to sharp contrasts.

In unreliable corner regions of our wide-angle lens, we delete all classified colors. In Figure 1(a), we
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(a) (b) (c) (d)

Figure 1: Visualization of field line vectorization process. (a) subsampled image of pixels classified as

“white” and “green”, with cluttered background; (b) skeleton inside field boundary; (c) all nodes with

connections; (d) keynode structure graph.

exemplarily show the result of classification for green and white.

The vectorization of lines is now implemented in two major steps: We first extract the field boundary

and, second, determine the structure of lines within the field boundary. The following sections describe

the two steps in detail.

3.1 Field Boundary Extraction

In robot soccer games, everything of interest is located on a green carpet. While the area outside the

field is undefined and cluttered, objects on the field can be clearly distinguished by color and structure.

Consequently, as a first step we segment the field region, thereby further reducing the area of interest.

We use a four-step boundary scanning algorithm. This algorithm first merges subsampled color

images into a field-color image and binarizes them. Then, it retrieves a boundary estimate for all columns

independently. In a final step, we smooth the estimates and fill gaps in the boundary.

3.1.1 Merging Color Images

We want to determine the boundary of the green field in situations where objects on the field might

occlude some parts of the it. To this end, we create a new 94×60 field-color image which is composed

as a weighted sum of previously classified colors. The weights are chosen to roughly approximate the

probability of a color being part of the field or occluding it. For green and orange, we choose the weight

1.0, since these colors rarely appear outside the field, but for white and black 0.5, since besides field lines

and robots, bright lights in the background and spectators also appear in these colors. A pixel value at

position (i, j) in this summed image is denoted as gi,j .
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3.1.2 Binarization of Field Color

For a pixel to be part of the field, it must exceed a minimum threshold, be part of a largely field-colored

line or have enough field pixels below. We use three thresholds tpix, trow, and twin to determine whether

some pixel gi,j is likely to be inside the field. The threshold tests are arranged in order of complexity.

First, we check the value of the pixel itself. If gi,j ≥ tpix, the pixel undergoes further examination. If the

pre-calculated row-sum ri,j =
∑
i′
∑
j′∈{−1,0} gi′,(j+j′) is larger than some threshold trow, the pixel is

binarized to 1. The row-sum acts here as a prior which biases weak pixels in rows with many high-valued

pixels to be part of the field. Pixels which do not pass trow are examined by the most expensive test,

which compares the sum si,j =
∑i+4
i′=i−4

∑j−4
j′=j−8 gi′,j′ of their neighbors below to twin.

3.1.3 Retrieving Field Boundary

We assume that the robot is located somewhere on the field. The field boundary can therefore be

represented as a height value bi for every column i of the subsampled image, which we retrieve from the

binarized field color image of the previous section. We process columns independently, starting at the

bottom. When we encounter four consecutive zeros, we assume that the field boundary is reached.

3.1.4 Smoothing and Gap Filling

The field boundary so far is a rough field boundary estimate with gaps and peaks caused by uneven

illuminations and imprecise color classification. We can improve by smoothing the boundary using a 1D

Gaussian filter for slightly uneven bins and a median filter for small gaps and peaks.

Finally, we employ a local convex corner algorithm to fill-in the remaining gaps without including

larger unwanted regions like the opponent robot’s body or goal posts. If the local convexity

vi = 2 · (bi − bi−1)− (bi+1 − bi−1), (1)

is zero, bi is on the line between its left and right neighbors, if vi is positive, it is above this line and it is

below that line if vi is negative. The locally convex hull of the field is then determined by connecting all

bi with vi ≥ 0. Iterating this scheme will eventually lead to a globally convex hull, but for our purposes

one iteration suffices. The result of the field boundary extraction is exemplarily shown in Figure 2.

3.2 Preprocessing and Skeletonization

We only process the classified white pixels inside the estimated field boundary. Here, a low-pass

filter is applied to make sure that each line cross-section has only a single maximum-valued pixel.

Skeletonization [2] is used to reduce the line width to approximately one pixel. Unlike morphological

methods which start from the border of the line and iteratively erode it, we use a ranking operator, which

directly finds the skeleton in the middle of a line. The operator observes 3×3 pixel regions to decide if the

central pixel belongs to the skeleton. Pixels having a white-count of zero do not belong to the skeleton,

but to the background. For all other pixels, the number ci,j of neighboring pixels (8-neighborhood)
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having an equal or higher white-count is computed and if this number is less than three, the central

pixel is added to the skeleton. Figure 1(b) visualizes two resulting skeletons.

3.3 Placement and Connection of Nodes

Nodes are placed starting at peaks of the skeleton (ci,j = 0). This emphasizes crossings, which tend to

appear as peaks in the skeleton. Note, however, that crossing detection does not depend on correct node

placement at this stage. Next, nodes are placed at least two pixels apart at pixels belonging to ridges

(ci,j = 1 and ci,j = 2).

The nodes now need to be connected to represent field lines. First, the connection structure of

the skeleton is reconstructed by inserting connections where 3×3 regions of nodes overlap or touch on

the skeleton. In order to insert the few remaining connections necessary to recover the original field

lines, more global information of adjacent connections is used. Lines are stretched by moving end-nodes

to the last pixel of the skeleton and degree-0 nodes are split to fill-in the gaps. Finally, candidate

connections are created and evaluated according to continuity, closure, and simplicity. Specifically, the

distance between nodes should be small and the whiteness on the line between nodes should be similar to

whiteness of nodes. Furthermore, we place restrictions based on the degree of nodes, ruling out crossings

of degree greater than four and crossings which do not result in continuous lines. Examples are shown in

Figure 1(c); we refer the interested reader to [2] for details.

4 Feature Extraction

We can now easily extract features such as crossings or lines from the node structure and verify them in

the image. A typical image and its detected features is displayed at the top of Figure 2.

4.1 Line Crossing Detection

The node connections produced so far represent the original structure of the field lines in the image with

many details and discretization noise. To extract the key structure, the lines are smoothed and nodes

are removed at locations of low curvature. Short lines ending in junctions are eliminated and junctions

that are close together and connected are merged to form a crossing. When merging and moving nodes,

we make sure that the new nodes are placed on the skeleton to guarantee an undistorted world view.

The result is shown in Figure 1(d).

Crossing detection is now dramatically simplified due to the keynode-structure representation. A

degree-2 node with a sharp angle between edges is an L-crossing candidate, a degree-3 node is a T-crossing

candidate, and a degree-4 node is an X-crossing candidate. To verify whether one candidate represents a

real crossing, we first use a state machine to confirm the green-white and white-green color transitions

along a circle centered at the crossing. Then, we check whether there is a white path from the crossing

to the next neighbors in each direction. Both checks are performed in the sub-sampled color images.
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egocentrioc view allocentric localization

Figure 2: Localization using line and corner features. The top-figure shows an image taken from the

robot’s front camera. The purple line denotes the detected field boundary. Red lines show field lines

used for localization. Detected corners are marked as “X” or “T”. Bottom left: egocentric view with

landmarks used for localization. Bottom right: resulting localization using the particle filter.
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4.2 Field Line Extraction

Starting with the fine-grained, connected graph of observed line segments (Figure 1(c)), we can extract

field lines. Here, a field line is a connected set of nodes with degree two and the nodes connected directly

to the set that have different degree.

The nodes can be approximately connected by a straight line. Consequently, we first traverse the graph

to extract connected components of degree two nodes. Because we rely on wide-angle lenses, straight

lines in the world do not result in straight lines in the image. Before proceeding, we therefore calculate

undistorted coordinates of the nodes. Each component κi is then processed using the split-and-merge

algorithm: we fit a line li to κi using least squares regression [11] on the coordinates of the nodes. The

node n∗ = arg maxn∈κi
dist(n, li) with the largest distance to the fitted line defines a splitting point. We

split κi into two components κ
1/2
i if the node-line distance is sufficiently large and recursively process the

resulting components. Components containing less than three nodes are discarded. During the merging

phase, we merge components κi and κj , if the parameters of li and lj are sufficiently similar.

The final field line in image coordinates is determined by projecting the end points of the component

onto the fitted line. We do not use the end points directly, since these can represent part of another

line which barely did not pass the splitting threshold. If κi contains many nodes, its (possibly wrongly

matched) end points will have limited influence on li, resulting in a better approximation. Lastly, by

mapping both end points through the camera matrix, we can infer the line parameters (distance and

angle) in an egocentric coordinate frame.

4.3 Other Landmarks

The other main landmarks—goal posts and center-line poles—extend vertically into the third dimension.

Since our camera points downward, these objects do not appear upright in the image. The angle at

which they appear largely depends on the angle in egocentric coordinates and thus on the column in the

image. Anticipating this, we determine the sums of the blue and yellow subsampled color images along

the expected orientations. Every pixel in the subsampled image contributes to exactly one sum. We then

search the resulting vector for robust maxima. Only image regions corresponding to a maximum are then

analyzed for pixels of the respective color. We further check that the found pixels are really upright by

verifying the main orientation (goal posts) and that colors appear in the correct order (center-line poles).

4.4 Determining Egocentric Coordinates

Since the precision of available kinematic models for our robot is insufficient, we instead estimate the

inverted camera matrix mapping from undistorted pixel coordinates to world-coordinates on the soccer

field plane. Given four correspondences of points in the world plane (here, field corners relative to

a known position) and the respective manually selected image positions, we determine the (inverted)

plane-to-plane homography [12]. The transformation can be pre-calculated for every image pixel in the

subsampled image. This homography, however, is only correct as long as the head is level, which is
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Pitch correction Roll correction Pitch+Roll correlated

Figure 3: Learned mapping from IMU readings to image offsets. The arrows are learned correction

magnitudes and directions of image coordinates for a given pitch and roll. Red/blue represents correction

for positive/negative pitch and roll.

violated during walking, where the robot shifts its weight from left to right and slowly tilts back and

forth.

Our robots are equipped with an inertial measurement unit (IMU) that allows for estimating pitch

and roll of the robot with approximately the same lag as camera frames need for processing. This

correspondence enables us to learn a function which corrects the pixel positions w.r.t. pitch and roll. For

this purpose, we observed undistorted image coordinates c of four objects in front of the robot. The

initially observed image coordinates c∗ can be regarded as the true ones. We then let the robot walk

in place, additionally recording the IMU measurements φ = (φp, φr). Finally, we find a matrix C that

solves the least squares optimization problem

min
C

∥∥x∗ − c− Cf(c,φ)
∥∥2 based on monomials f(x,φ) =



(φp − φ̄p)c0
(φr − φ̄r)c1
(φp − φ̄p)c1
(φr − φ̄r)c0

1


, (2)

where φ̄ is the (sometimes drifting) IMU reading currently estimated for the upright pose. We plot the

learned pixel offsets for three pitch/roll combinations in Figure 3. The clear advantage of this approach

is that a robot model is not required and all sensor errors are taken into account during optimization. An

example of image features projected to egocentric coordinates is displayed on the bottom left of Figure 2.

5 Integration of Features

As described in [7], we use Monte-Carlo localization (MCL, [13]) to estimate the current 3D pose of our

soccer robots. The pose is a tuple (x, y, θ), where (x, y) denotes the position on the field and θ is the

orientation of the robot. The belief is updated recursively with:

p(xt|z1:t,u1:t−1) = η · p(zt|xt) ·
∫
p(xt|xt−1,ut−1) · p(xt−1|z1:t−1,u0:t−2)dxt−1, (3)

where η is a normalization constant resulting from Bayes’ rule, u0:t−1 is the sequence of all motion

commands executed by the robot up to time t − 1, and z1:t is the sequence of all observations. The
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term p(xt|xt−1,ut−1) is called motion model and denotes the probability that the robot ends up in

state xt, given it executes the motion command ut−1 in state xt−1. The observation model p(zt|xt) is

the likelihood of making the observation zt, given the robot’s current pose is xt. MCL uses a set of

random samples to represent the belief of the robot about its state at time t. Each sample consists of

the state vector x
(i)
t and a weight factor ω

(i)
t . The update of the belief is carried out according to the

sampling-importance resampling particle filter. First, the particle states are predicted according to the

motion model. For each particle, a new pose is drawn, given the motion command executed since the

previous update. In the second step, new importance weights are assigned according to the observation

likelihood p(zt|x(i)
t ). Finally, a new particle set is created by sampling from the old set according to the

particle weights. Each particle survives with a probability proportional to its importance weight. This

step is called resampling.

In order to not only track a pose, but also allow for global localization, e. g. in case of the “kidnapped

robot problem”, a small amount of the particles is replaced by particles with uniformly drawn poses.

Additional particles are used if pose certainty suddenly drops (Augmented MCL, [14]).

5.1 Crossing Observations

We treat crossing observations similar to other point features on the field (e. g., center of goal, goal posts,

marker poles). In contrast to the other point features, however, crossings are not unique. To calculate

the likelihood of an observation in the particle filter, we have to make an association decision: for a line

crossing observation o, each particle i and all crossings C of the same type (X/T/L), we must calculate

the most likely association

o′ := arg max
c∈C

p
(
c
∣∣∣x(i)
t

)
. (4)

While the result of the calculation can be re-used in the second step of sampling-importance resampling,

evaluating the observation model repeatedly is expensive and limits the number of particles. We can

considerably reduce the size of C, however, by considering the egocentric orientation of T and L-crossings.

Consider, for example, a particle at the centerline looking towards the yellow goal and observing an

L-crossing oriented towards the particle. This particle is quite unlikely to observe the L-crossings

next to the blue goal, which are oriented exactly opposite allocentrically. It is also unlikely to see the

L-crossings next to the yellow goal which point towards the yellow goal. Consequently, we split the set L

of L-crossings into four sets L45◦ , . . . ,L315◦ containing two L-crossings of equal global orientation each.

A pre-calculated, coarse lookup table R2 × {45◦, 135◦, 225◦, 315◦} 7→ L then associates an observation

position on the field and an allocentric, oriented L-crossing observation with the closest L-crossing. We

proceed similarly with the T-crossings, but since the distance between different T crossings is large, a

lookup table mapping positions to closest T-crossings is sufficient. For X-crossings, we calculate the

most likely crossing on a per-particle basis according to Equation (4) using the observation model. For

an egocentric observation (do, βo) with range do and bearing βo and an expected egocentric position
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only lines only pole

only corners pole, corners, and lines

Figure 4: Particle filter belief visualization based on observed landmarks. We used particles on a 3D-grid

and show sizes and orientations based on the likelihood. For the given camera frame, we integrate all

observations and select the most likely orientation θ∗ for each planar position (x, y). We then show a

particle sized in proportion to the likelihood x = (x, y, θ∗) at position (x, y). The features used are the

same as in Figure 2.

(d
(i)
e , β

(i)
e ) relative to the current particle i, we define the observation model to be

ppoint

(
o
∣∣∣x(i)
t

)
∝ exp

−
∥∥∥d(i)e − do∥∥∥2
2(σd + λdo)2

−

∥∥∥β(i)
e − βo

∥∥∥2
2σ2

β

 , (5)

where σd and σβ represent the uncertainty of a range and bearing measurement, respectively. Note that

the uncertainty of distance measures increases for far away objects to compensate for the unknown pitch

and roll angle of our camera. Figure 4 (top right) shows the belief resulting from the observation of a

point landmark.

5.2 Line Observations

In our current system, we ignore lines which are short and far away in terms of distance of the line to

the robot. For each remaining line o represented by the length of its dropped perpendicular lo, distance

to closest observed point do, and expected angle βe, we evaluate the observation model

pline

(
o
∣∣∣x(i)
t

)
∝ exp

− d2
(
l
(i)
e , lo

)
2(σl + λdo)2

−

∥∥∥β(i)
e − βo

∥∥∥2
2σ2

β

 . (6)

Here, d( · , · ) depends on the oriented distance: in contrast to point landmarks discussed above, the

orientation βo represents the angle of the observed line, not the angle of a polar coordinate. As a result,

a simple observation model, which does not take into account oriented distance, would assign equal

likelihood to the situation where the robot observes the line behind itself and in front of itself, although

the position of the line in front of or behind the robot can be directly inferred from the observation. We
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therefore set in Equation (6)

d(le, lo) =

‖le − lo‖2 if 〈le, lo〉 > 0

∞ else,

(7)

which eliminates high likelihood of the implausible situation. In contrast to corner observations, we

cannot make a distinction between the seven long lines in our world. We use Equation (4) to determine

the most likely match on a per-particle basis. Note, however, that due to monotonicity of the exponential

function, for the arg max computation in Equation (4) it is not necessary to evaluate the likelihood in

Equation (7) completely. Instead, we apply exp( · ) after the association has been made and rely on the

minimum argument of exp( · ) for the association decision itself. In Figure 4 (top left), we visualize the

belief resulting from the observation of the two lines in Figure 2.

5.3 Combined Observation Model

To limit the influence of false positive observations, we ensure that all observation likelihoods are larger

than some uniform threshold. We further incorporate observation confidence values ρj from our vision

system such that uncertain observations oj have less influence on the final distribution than confident

observations in the same frame:

p
(
oj

∣∣∣x(i)
t

)
= αunipuni

(
oj |x(i)

t

)
+ αnormalp

(
oj |x(i)

t

)
,

where αuni = αbase+(1−αbase) · (1−ρj) and αbase ∈ ]0, 1[ is a uniform floor. We further set αuni+αnormal =

1 and puni(oj |x(i)
t ) to be the Lebesgue measure of the observation range. Assuming independence of

observations, as typically done in MCL, the observation likelihood of a particle then amounts to the

product of all single observations

pcomb

(
zt

∣∣∣x(i)
t

)
∝
∏
l∈L

pline

(
l
∣∣∣x(i)
t

) ∏
o∈P

ppoint

(
o
∣∣∣x(i)
t

)
, (8)

where P includes corners and other point landmarks such as goal centers and poles marking the end of

the center line. The combined belief resulting from observations of point and line landmarks is shown in

Figure 4 (bottom right).

6 Results

On the 1.3 GHz onboard computer of our robots, our vision system runs at about 24 frames per second

using between 250 and 1000 particles (depending on the certainty of the current pose). Table 1 shows

the relative timing results. Soccer robots profit enormously from line-based localization. Consider the

pose certainty of the robot in our running example. We illustrate the beliefs in Figure 4 by equally

distributing particles in a regular 3D-grid. Besides lines and corners, the robot only observes a pole

at the side of the field. With color-based localization only, the position on the field is not at all clear

from the image. Using only corners, the belief is reduced to two positions. The only colored landmark

observed is then enough to further reduce the pose belief to an almost unimodal distribution.
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Table 1: Timing of line-detection code in relation to other visual processing tasks.

Algorithm Part Time (Standard Deviation) in µs

Color classification 1,578.5 (33.2)

Pre-processing 421.6 (3.7)

Object detection 661.2 (94.5)

Lines preprocessing 128.3 (6.9)

Connect nodes 107.0 (30.3)

Split/merge lines 101.5 (35.4)

Verify crossings 35.0 (20.5)

Particle filter 3,068.3 (1,601.4)

with lines w/o  lines0.0

0.5

1.0

1.5

2.0

2.5

3.0

di
st

an
ce

 fr
om

 g
ro

un
d 

tr
ut

h

Localization Error

0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 >0.7
distance from ground truth (m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

fr
ac

tio
n 

of
 m

ea
su

re
m

en
ts

Distribution of Localization Error

with lines
w/o  lines

Figure 5: Localization accuracy. Left: Localization error with lines (without lines). The median accuracy

is 17 cm (26 cm). Center: Distribution of distances between estimated and ground truth pose. Right:

TeenSize Robot “Dynaped” with attached infrared-reflective markers.

6.1 Effect of Lines on Localization Accuracy

To further quantify the performance of our algorithm, we let our TeenSize robot “Dynaped” walk for about

5 minutes across the field using remote control. Robot and field are configured to be rule-conformant to

the rules of 2010, namely, the robot only uses a single camera, only the posts of the goal are colored and

center-line pole sizes are reduced. We fix the movable head of the robot to look straight at all times

to eliminate possible effects of active vision. In addition to estimated poses, we record ground truth

positions using a twelve-camera Optitrack motion capture system that tracks infrared-reflective markers

attached to the robot’s torso and head. The experiment was performed twice, once using line and crossing

detection and once without, with similar trajectories. Both trajectories contain about 10,000 poses. The

average estimated speed was 20 cm/s (with lines) and 22 cm/s (without lines); we removed 10 % (7 %) of

the recorded frames where the motion capturing tracking failed. We then determined the percentage of

recorded frames for which the distance between the robot’s estimated pose to ground truth was in some

13



all observations
no lines/corners
only lines/corners
target area

Figure 6: Pose tracking without line observations, with line observations, and using all available

features—based on data recorded online while walking from target area to target area autonomously.

interval. The result is depicted in Figure 5. Note that without lines only 66 % of the recorded poses are

within 40 cm of the ground truth while with line and crossing detection 89 % are in this range. With

lines, the median localization error was 17 cm, which is less than the average step length. This error

is also within the range of the robot’s trunk movements which are due to walking-based weight shifts,

which can be seen as an error of the motion capturing process.

6.2 Lines-Only Pose Tracking

In a second experiment, we set up four target areas on the playing field. Our robot autonomously

walks from target area to target area, while we record observed camera frames, IMU data, and motion

commands. Due to limited onboard memory, we only record one complete circle. We then process the

video in three configurations: Using all available observations, using no line and corner observations, and

using only line and corner observations. Since without colored markers global localization is ambiguous,

we initialize the pose for all runs manually and then use the methods described in Section 5 to track the

pose without global localization. Figure 6 shows the resulting tracks. All conditions yield qualitatively

similar results. Unsurprisingly, the trajectory estimated from all features is in between the other two

trajectories, which is supported by the quantitative measures presented in Table 2. Most notably, however,

is the result that we can track our pose without the use of colored landmarks with an average deviation
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Table 2: Differences between corresponding pose tracking estimates depending on the features used.

Condition Reference Error

Euclidean (m) Angle (rad)

all observations no lines 0.17 0.09

all observations only lines 0.14 0.07

no lines only lines 0.26 0.15

of 0.14 m, which is less than the error of the complete system compared to ground truth.

6.3 Integrated Evaluation in Soccer Games

Until 2009, the TeenSize robots competed in 1 vs. 1 Dribble-and-Kick—a contest with relatively controlled

conditions. Since RoboCup 2010, the TeenSize robots are playing 2 vs. 2 soccer games. This poses new

challenges to the visual perception of the game situation, as robots come close to each other, which calls

for reliable obstacle detection and occlusion handling, and the robot poses in games include unfavorable

poses on the side lines or at corners, where few landmarks are visible. Furthermore, the robots must

re-localize themselves when re-entering the field after a fall.

To make the setting more realistic, the size of side poles was reduced, and the coloring of goals

was restricted to the goal posts. In addition, in 2011, the TeenSize field was enlarged to 9×6 m, which

increased the average distance to landmarks.

Although all these changes made localization harder, we could adapt our probabilistic localization to

the new conditions and still localize the robot reliably. Figure 7 shows the localization on the enlarged

TeenSize field during RoboCup 2011.

Robust localization was one of the key features for the reliable performance of our TeenSize robots,

which allowed them e. g. the precise autonomous positioning for kick-off. Consequently, our robots won

the international RoboCup Championships in 2009–2011 and were elected in 2010 for the Louis Vuitton

Best Humanoid Award.

7 Conclusion

In this work, we introduced a line-detection algorithm that efficiently recovers the structure of the

lines on a soccer field. We first described how to find the boundary of the field. White points within

this region are then skeletonized and a simplified graph structure is retrieved from the skeleton. The

graph structure has advantageous properties: field-line corner candidates are represented by nodes and

field-lines are represented by edges. This graph structure is then used to verify linear components and

crossings and to determine their parameters. Due to the graph representation, clustering or averaging

of noisy locally estimated line parameters can be avoided. Finally, we showed how lines and crossings
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Figure 7: NimbRo 2011 perception and localization. Left: Enlarged TeenSize field with detected goal, ball,

obstacle, X-crossing, and center line. Center: Egocentric world view of the robot. Right: Localization

given the perceived landmarks.

can be used in Monte-Carlo localization. We proposed robust observation models and optimizations to

speed-up association decisions.

The developed system runs with a frame rate of 25 Hz on a small onboard computer. A systematic

evaluation of the localization accuracy on the real robot showed smaller differences to ground truth when

lines and corners were used. Indeed, pose tracking was possible with a high accuracy even when only

line observations were used, which greatly reduces our dependence on a color-coded soccer environment.

To the best of our knowledge, this is the first line-only pose tracking system for humanoid soccer robots.

The algorithms described were used on our KidSize robots in 2009 and on the TeenSize robots that

won RoboCup for the last three years in a row.
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