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Trajectory Generation with Fast Lidar-based
3D Collision Avoidance for Agile MAVs

Marius Beul, and Sven Behnke

Abstract Micro aerial vehicles (MAVS), are frequently used
for exploration, examination, and surveillance during search
and rescue missions. Manually piloting these robots under
stressful conditions provokes pilot errors and can result in
crashes with disastrous consequences. Also, during fully au-
tonomous ight, planned high-level trajectories can be erro-
neous and steer the robot into obstacles.

In this work, we propose an approach to ef ciently compute
smooth, time-optimal trajectories MAVs that avoid obstacles.
Our method rst computes a trajectory from the start to
an arbitrary target state, including position, velocity, and
acceleration. It respects input- and state-constraints and is
thus dynamically feasible. Afterward, we ef ciently check the
trajectory for collisions in the 3D-point cloud, recorded with the
onboard lidar. We exploit the piecewise polynomial formulation
of our trajectories to analytically compute axis-aligned bound-
ing boxes (AABB) to speed up the collision checking process. ) ) )
If collisions occur, we generate a set of alternative trajectories Fig: 1. Operation of our trajectory generation method onboard an MAV
in real-time. Alternative trajectories bring the MAV in a safe  during areal re ghting exercise.
state, while still pursuing the original goal. Subsequently, we

choose and execute the best collision-free alternative trajectory hand, our method can be used as an obstacle avoidance and

based on a distance metric. control layer in a hierarchy of planners for fully autonomous
The evaluation in simulation and during a real re ghting ight. On the other hand, since it accepts intuitive setpoints,
exercise shows the capability of our method. it can be employed to execute the pilot's commands during

manual ight, providing an additional safety layer. This

article extends our previous work on trajectory generation
Micro aerial vehicles (MAVs) are becoming a key elemenfor MAVs [2] with an obstacle avoidance feature,

in reducing the required risks, time, and costs for search Our main contributions are

and rescue missions, aerial reconnaissance, and disaster computation of dynamically feasible collision-free al-

examination. In most cases, a human pilot operates the MAV  ternative trajectories,

remotely to fulll a mission, or the MAV is following a fast analytical bounding box computation for cropping

prede ned path of GPS waypoints at an altitude assumed to of large point clouds,

be obstacle-free. However, permanent line-of-sight from the analytical modeling and integration of sensor coverage

pilot to the MAV may not be maintainable at all times due to during planning, and

large obstacles. Also, thin obstacles like antennas or power evaluation in simulation and a real-world re ghting

lines may only be perceivable inaccurately by the pilot. Other  exercise.

(probably moving) participants in the airspace like drones, Fig. 1 shows our MAV supporting re ghters by surveying

rescue helicopters, birds, or debris proposes a risk for thle area with its multimodal sensor setup.

MAV. Furthermore, during a real rescue scenario, the opera-

tor’s cognitive load is signi cant [1], which provokes human Il. RELATED WORK

errors. The IOSS.Of an MAY (_jue to a crash is expensive, Low-level obstacle avoidance is an active eld of research.
but even worse, it can have disastrous consequences for th(fzor example, Zhang et al. [3] present a method to instan-

executed mission. : . .
. . . taneously avoid static obstacles by following precomputed
To tackle these challenges, in this article, we present an . ; . .
) : . : paths in cluttered environments. The paths are hierarchically
ef cient method to compute smooth, time-optimal trajecto-

. : . organized, such that branches from alternative paths can be
ries for MAVs that automatically avoid obstacles. On the ongs ciently stored and executed. The method is fastg0 ms,

This work has been supported by the German Federal Ministry of Eobth -ge.nerated trajectories are not Opt'mé‘l' )
ucation and Research (BMBF) in the project Kompetenzzentrum: Aufbau Similarly, also Barry et al. [4] show impressive results

des Deutschen Rettungsrobotik-Zentrums (A-DRZ) with fast ights of up to 14 mes. Like the above-noted ap-

Institute for Computer Science VI, Autonomous Intelligent Systems h. th h . ies f hich th
University of Bonn, Endenicher Allee 19a, 53115 Bonn, Germanyproac , the authors precompute trajectories from which they

mbeul@ais.uni-bonn.de select a collision-free instance during runtime. In contrast,
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6" — Fig. 3. Structure of our method. Green boxes represent external inputs like
- o sensors, blue boxes represent software modules, and the red box indicates
~ - the MAV ight control. All software components use ROS as middleware.
Position, velocity, acceleration, and yaw are allocentric. Commands for our
Fig. 2. Design of our MAV equipped with an Ouster OS1-64 Gen 1{rajectory generator can either directly come from an operator or from a
a FLIR Lepton thermal camera, a re extinguisher, and a lightweight buhigh-level planner.

powerful onboard computer. . . .
obstacles (or during fast ight), the control inputs of the

our approach quickly generates trajectories during runtimégbot have to be maximized to achieve maximum dexterity.
incorporating the current continuous 3D state of the robot.Thus, similar to our approach, the method from Lopez and
Also, the idea to instantaneously react to sensor mehlOW [10] generates time-optimal state and input constrained
surements instead of planning a trajectory is not new, arffjectories by sampling terminal states. With a computation
many different approaches from vector eld histograms [5] tdime of 2-5 s, the method is real-time capable. The authors
potential eld-based obstacle avoidance have been presenté§€ an RGB-D camera to measure a point cloud in front of
For example, Falanga et al. [6] use an event camefi® MAV. Without omnidirectional perception (e.g., obtained
to quickly detect obstacles in the vicinity of the MAV. with a lidar), Safe_trajectorles are forced to lie in front Qf
While in contrast to normal RGB-cameras, event camerdd® MAV. An additional drawback of the method is that it
are advantageous in terms of latency and dynamic rangj’é‘?rks in (cpnstan_t) velocity space instead .of position space;
they still suffer from a narrow eld of view and low range thus, e.g., it restricts the MAV from hovering. The method
compared to lidars. To guarantee a low latency, insteg@FSUMes obstacles to be static. _
of sophisticated trajectory generation techniques, the MAy \Watterson and Kumar [11] report & hybrid approach for
performs potential eld-based obstacle avoidance. obstacle avou_jance. On the one har}d, the proposed method
Similarly, also Nieuwenhuisen et al. [7] perform potential'S€S @ receding horizon control policy (RHCP) to steer an
eld-based obstacle avoidance with an MAV. To account foMAY through a cluttered environment. On the other hand, the
the MAV’s non-neglectable dynamics, the authors extend tHf&PProach always guarantees that there exists a safe stopping
method with a motion model and predict the MAV state in th&°licy that brings the MAV to hover. Similarly, our approach
near future. The authors report that trajectories with activée@rches for multiple classes of trajectories.

motion model are smoother than with pure reactive potential To our _knowledge, no method ?X,'Sts that can cgmpute
eld obstacle avoidance. smooth, time-optimal obstacle-avoiding 3D trajectories for

The idea to generate a set of alternative dynamicaIIMAvs within typical control-loop frequencies. The method

feasible trajectories and subsequently selecting a suitable 0¥1r8 posed in this wo_rk replaces our reactive low-level obstacl_e
has been shown in, e.g., [8]. Instead of obstacle avoidan aev0|dance mechanism [12] that does not scale to aggressive

the authors use the motion primitives to catch a ying bal igh-speed trajectories.
with an MAV. Like our approach, the authors use closed- I1l. SYSTEM SETUP

form solutions to nd suitable trajectories, resulting in COM- 1, 1q following sections, we rst describe the hardware
putation times in the order of microseconds. The alternatives - MAV in Sec. IlI-A. We continue by presenting our

trajectories are not time-optimal and not guaranteed t0 By, 54ch to point cloud Itering with axis-aligned bounding
collision-free. boxes in Sec. IlI-B. Collision checking is described in

Lindqvist et al. [9] present an MPC that features collisionsec. |11-D and Sec. III-E. Lastly, we present our method
avoidance and can also deal with moving obstacles. Thg; generating alternative trajectories in Sec. IlI-F.

authors use a nonlinear solver to nd collision-free trajec-

tories within the50 ms replanning time. In contrast to our A. Hardware Design

technique, the pipeline only predictss of the trajectory, To support re ghters during their mission, we developed

making it unsuitable for fast ight or fast obstacles. Insteadhe MAV shown in Fig. 2. It is based on the DJI Matrice 210

of onboard sensors, the technique relies on a known obstaghatform and features a lidar to perform simultaneous local-

path, measured with a motion capture system. ization and mapping (SLAM), and a thermal camera to detect
Trajectories produced by all methods mentioned above aamd map, e.g., res or victims. Furthermore, it features small

dynamically feasible, butot time-optimal. To avoid nimble but fast Intel Bean Canyon NUC8i7BEH onboard PC with
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Fig. 5. Simpli ed schematic of our lidar model projected onto a 2D-plane.
By checking ifltest < | cone , We can determine if the poifkest IS inside
unobservable space. For simplicity, we only show one of two cones.

Fig. 4. Analytical computation of an axis-aligned bounding box (AABB) ; ; el
for a polynomial trajectory (gray, expanded by the MAV dimensions). Theare discarded. To do so, we analytically compute the axis

AABB is used to select a subset (green, yellow, red) of the point clou@ligned bounding box employing the polynomial formulation
(blue). Afterward, we sample the trajectory with a constant positign  of the trajectory.

and check for collisions with the MAV (red) and collisions with the MAV As described in [2] our traiectories consist of a con-
expanded by a warning distance (yellow). The points in the point cloud ! J

subset are safe (green), within warning distance of at least one trajectd¢aténation of n-dimensional polynomials with constant n-
sample (yellow), and in collision distance of at least one trajectory samplgimensional jerk. In each segment and each dimension, the

(red). position p follows Eq. 1 with the jerkj, the acceleration
an Intel® Core' i7-8559U processor an82 GB of RAM. &, and the velocityv at the beginning of the segment. We
To extinguish small res, the MAV is equipped with a re determine the global maxima and minima of each polynomial
extinguisher. We use the robot operating system (ROS) & deriving the position with respect to time. Withy
middleware on the MAV. being the segment’s extremal times from Eq. 2 and Eq. 3,

Fig. 3 shows an excerpt of our software pipeline, running/e subsequently check if the extremal time lies within the
onboard the MAV. In the shown example, an operator directijegment's interval. If so, the segment produces a global
de nes 4D setpoints (X, Y, Z, Yaw) for the trajectory extremum of the trajectory at poirfex With Eq. 4. We
generator. Instead, the commands can also be generatedeigcute this procedure for each dimension for each segment
a higher layer planning pipeline during a fully autonomoudo compute the axis-aligned bounding box. As a last step,
ight (see [12)). we expand the bounding box by the MAV size.

The depicted trajectory generatgrenerates smooth third-

- 1 2 1:+3

order time-optimal trajectories that respect asymmetrical Op(t)— Vit zattt gt @)
state and input constraints. It is described in detail in [2], Ptex) :=0)

[13], and [14]. We now extend the capabilities of our tra- O0=vVv+ atey + %jtﬁx (2)
jectory generator by real-time obstacle avoidance employing (a @ 2jv)

point clouds recorded by the onboard lidar. tex = - 3)

Since our lidar produces up b 536 measurements per _ Jl 2 L 1:.3
scan (L 310720per second), we rst demonstrate how we Pex = P+ Vlex + zale + gllex (4)

analyticglly compute bounding boxes _to crop the large poirpiig_ 4 displays an example AABB. In this typical example,
clouds in Sec. Ill-B. We then describe our measuremenfyly 13720f the 65 536total scan points are in the proximity

model and how we check if trajectories pass unknown spagg the trajectory and considered for the following computa-

polynomial formulation of our trajectories to analytically
sample the trajectories with a constant position offset (péf. Constant Distance Sampling

dimension). Subsequently, we present how we generate al4ye now sample the trajectory with a constant time dif-
ternative collision-free trajectories that bring the MAV in agerence, or with a constant position difference. We depict
safe state while still pursuing the original goal in Sec. ”"Fsampling with a constant time difference in Eq. 5, with
pn+1 being the position after t with the initial position

B. Analytical Bounding Box i i T
pn, velocity v, , acceleratiora,, and jerkj,.

To speed up computation, we rst Iter the point cloud. In-
stead of removing random points or other Itering methods, Prhst = Pn+ Vn t+ 2a, t2+ 1j, t (5)
we crop the point cloud such that points that are outside of

an axis-aligned bounding box (AABB) around the trajectory However, sampling the trajectory with a constant time dif-
ference gives inhomogeneous resolution over the trajectory.

Lhttps://github.com/AIS-Bonn/opt_control For collision checking, we thus prefer the (more complicated)
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Fig. 6. Analytical lidar coverage computation. We model the lidar sensdfig. 7. Alternative safe trajectories that end in concentric spheroids around
coverage by two cones (red) with 38:2 opening angle. The range of the MAV. All 67 trajectories are safe in terms of collisions with the point
the lidar is 120m. We detect and reject trajectories that pass througleloud and do not pass unobservable space.

unobservable space.

constant distance sampling. To do so, we analytically solve For each dimension, we calculate the times., andtz.,,

Eq. 6 fort in a preprocessing step. when the point cloud point with positiop,c;, and velocity
Vpen €nters resp., leaves the axis-aligned hyperrectangle
de ned by center poinestn and elongationest.n  With

This gives three analytical equations for 3. For brevity, Ed. 8 and Eq. 9. Subsequently, we sort all times according
we refrain from picturing the solutions here. Subsequently0 their size and check if there exists a period where all
during runtime, we evaluate the three solutions with théimensions of the line are inside the hyperrectangle, as
desired position offset p, and select the smallest positiveshown in Eq. 10 and Eq. 11. If this is the case, the point cloud
non-imaginanyt of all dimensions. We compute the positionP0int moves through the AABB. Thus, if the line de ned by
at this timestep with Eq. 5 as the next sample and continlec and vy crosses the hyperrectangle de ned fays: and

this procedure until the end of the trajectory is reachedtest . it is causing a collision withxjose = true.

Exemplarily, Fig. 4 shows a trajectory sampled witlp =

10 cmin each dimension. Since trajectories can have multiple

I:):Vnt'|'%antz"'%jnt3 (6)

jerk segments (e.g., the trajectory in Fig. 4 has 18 segments), ty, = Destn lestn __Pocin (8)
we also account for effects at the segment borders that we Vpein
can not cover here for brevity. The distance offset in each ton = Prestn + liestn  Ppein (9)
dimension does not have to be equal. Thus by assigning Vpcin
inhomogeneous p, individual dimensions can be sampled tsort = sort(ty) (10)
denser or sparser. bclose = max( tsort; 1) < min(tsort; 2) (11)

D. Collision Checking

With the trimmed point cloud from Sec. 1lI-B, and thelIn this paper, we mark each trajectory sample within a
trajectory positions equidistantly sampled from Sec. IlI-Cwarning distance of at least one point (and the corresponding
we check each dimensignof each trajectory positiopest:n points) yellow. Points that are causing a collision, and the
for two distancediest = lwarn _ lcon indicating if a point corresponding trajectory points, are marked red.

Poc:n IS Within warning distance or if a point is so close that
it causes a collision. Checking for two individual distances
allows for hysteresis at the border of obstacles and for a

more sophisticated validation (see Sec. IlI-F). E. Analytical Coverage Test
Belosen = o > . |tact ) ) o ] .
losein = Ppcin < Prestin . Itesm @) Besides checking for collisions with the (potentially mov-
Pren < Prestn ¥ Trestn ing) point cloud, we also check if the trajectory passes

Since the world is not static, we model moving observationgnobservable terrain. For this, we model the 3D lidar with
with a constant velocity model. Although our lidar doesan omnidirectional eld of view that has cone-shaped blind
not give 3D velocities for the measurements, future sensepots on top and bottom depicted in Fig. 5. We also model
modalities like radar possibly will do so, and thus we extenthe maximum range of the lidar. To test if a 3D point lies
the approach to collision checking to points moving with thevithin the blind cones, we rst obtain the normal vector of
3D velocity vectorvpe . the MAV prorm from the Inertial Measurement Unit (IMU)



Fig. 8. Alternative safe trajectories that end in a concentric tube around
the original trajectory. All 204 trajectories are safe in terms of collisiongFig. 9. Avoidance of a simulated obstacle moving wit25 m=s. Every

with the point cloudand do not pass unobservable space. point in the point cloud can have an associated velocity. Moving points
are predicted forward, so that collisions with the original trajectory as well
which points upward during hover. as potential rescue trajectories can be predicted. Here, the MAV avoids
the obstacle thrown into its original trajectory. Our method considers 44
Pis = ( Prorm  Ptest ) Prorm (12) potential rescue trajectories from which the black one is executed.
leone = jPisj tan(= lidar ) (13) optimal tra_ljeqtori_es _bring the MAV to stop as qut_ as possible
without pringing It signi cantly nearer 1o the original target.
_ 2 2 thout b t tl to th | target
liest = jPest  Pis] (14) Alternatively, trajectories targeting a concentric tube

ltest <lcone ™ Pisz > 0) In upper cone (15) around the original trajectory can be safe, while still pursuing
lest <! cone ™ Pisz < 0) In lower cone (16) the intend of the original trajectory. Fig. 8 shows an example
of these trajectories.

After generating all alternative trajectories, we execute the
We then compute the point on the normal vegtar that steps from Sec. IlI-B Sec. IlI-E to check if each trajectory is
is closest to the tested trajectory poimts;, as shown in safe. As with the original trajectory, an alternative trajectory
Eg. 12. With the lidar opening angleqa , We obtain the is safe if it does not enter a warning (or even collision) zone
horizontal extend of the cone at the specic heightppf around any point and does not enter unperceivable space.
with Eq. 13. Subsequently, we decide if pops; is inside Leaving a warning zone, however, is permitted, since we
the unobservable area with Eq. 14 Eq. 17. want to be able to recover from states where the MAV

Since both cones touch at the origin, the model is verig already inside a warning zone. From the set of safe
susceptible for small z-values. Therefore, we assume thalternative trajectories, we select and execute the one with
all points that lie inside of the MAV are always collision- the closest Euclidean distance to the original waypoint.
free. The trajectory from Fig. 6 conforms to the highlighted The number of alternative trajectory candidates determines
constraints with opening anglgqsr = 33:2 and maximum the total computation time needed for the approach. Thus,
rangeligar = 120 m. we either x the number of trajectory candidates considered

. . . in each replanning step, or adaptively generate alternative
F. Alternative Trajectories trajectories until the replanning time (of in our c&B@msg

With a con rmed collision somewhere on the trajectory oris reached.

a warning that willnot clear itself on the current trajectory,
we generate alternative safe trajectories. If the trajectory is IV. EVALUATION
within warning distance at the beginning, but enters a safe We evaluate our approach in simulation as well as with
state on its own, we classify it as safe. Since our trajectoly real MAV. To evaluate our approach, we use point
generation method is very fast (1 ms), we can generate clouds recorded during a fully autonomous ight during
multiple alternative trajectories with the lidar frequency othe Mohamed Bin Zayed International Robotics Challenge
20Hz One can imagine many different metrics that wouldMBZIRC) 2020. Here, our MAV ew into a wall and
yield good target points for safe trajectories. We pursuerashed due to a bug in the coordinate system alignment.
two strategies. Our safe trajectories target a) waypoinf3uring the challenge, we employed the same trajectory
on concentric spheroids around the current MAV positiongenerator we present here, but unfortunately, without any
and b) waypoints on concentric tubes around the originalbstacle avoidance. We report results from the challenge in
trajectory. [15] and [16]. We previously showed the applicability of our

Fig. 7 shows a set of alternative trajectories targetingnethod to MAV ight in, e.g., [12]. The laser scans from the
waypoints that lie on concentric spheroids. These timescenarios in Fig. 4, 6, 7, and 8 are extracted from recordings

ltest > | iidar ) Out of range a7



Fig. 10. Approximate computation time of our approach for a scenario with three alternative trajectories. Most time is spent on computing the individual
trajectories (green). Due to the computation of the AABB (yellow), collision checking for each rollout (violet) is relatively fast. The 5-step process can be
repeated arbitrarily, with approximate804 s per iteration.

of the challenge. A video showcasing the evaluation can d GPS measurements as input to our method and assess if
found on our website the crash could be hindered by our new obstacle avoidance
feature. Fig. 11 shows a still from the world model during
the challenge. It can be seen that the MAV successfully

We evaluate the_ computation time with the C(.)mpgteévoids a collision by targeting an alternative instead of the
onboard the MAV. Fig. 10 shows the total computation time. ) manded waypoint

of our approach for a typical scenario.
It can be seen that most of the time is spent on computi
the time-optimal trajectories and that we are able to gener

A. Computation Time

The experiments with the dataset show that our method
a?glever plans trajectories that lie close to measured obstacles.
. . . Stead, it always generates feasible alternative waypoints
rollout, and check a total of approximatelp4 trajectories and corresponding trajectories. This experiment is, however,

within the 50 mstime framg. . . not suf cient to show that our method works reliably, since it
To evaluate the effectiveness of subsetting the powﬁ

. : oes not close the loop and thus does not execute the planned
cloud with the AABB, we conducted an ablation study. _. . P P
. . : trajectories.
We removed this speci c feature and directly checked for . o
- . . : To evaluate our method in a real-world scenario in a
collisions of each rolled out state with the entire point cloud.,

By comparing the computation times for the typical scenariglosed'mOp’ we brought our MAV to a real re ghting

: errcise. Here, we a) intentionally commanded the MAV to
from Fig. 10, we found that the process takes averagey into a tree, and b) approached the MAV during hoverin
1147 sinstead of the/7:16 s(7:12 s+50:84 s+19:20 9) ' PP g g

from Fig. 10. This corresponds to a speedupld87 %for to provoke an evasive maneuver. Fig. 12 shows one of the

the collision checking method amib2 %speedup in relation experiments and the f:orrespondlng World. queli The M.AV
X . detects the approaching person and avoids it with a trajec-
to the entire algorithm.

To further speed up our pipeline, we plan to adopt théory in the opposing direction. I_I)urmg the entire exercise,
L . . .~ 'no crash with static nor dynamic obstacles happened. The
approach from [17] for collision checking with moving

osed-loop avoidance maneuvers, however, were not always
obstacles. Furthermore, the structure of our method offe% P y

excellent possibilities for parallelization. Thus, we are cursMooth since the MAV often switched between alternative

rently working on parallelizing our technique with alternativ waypoints, causing a jittery behavior. We address this issue

e : : . . .
waypoints distributed to individual CPU cores. by favoring aItern_atlve Waypomts that lie close t_o preV|ous_Iy
selected alternative waypoints for the alternative waypoint

B. Moving Obstacles costsCawp = JACj+(1 ) jABj with JAC]j beeing

As described in Sec. lI-D, every point in the point cloudthe distance of the alternative waypoint to the commanded
can have an associated 3D velocity. To evaluate our approaggypoint andjAB j beeing the distance from the alternative
we simulate lidar measurements on an object that moves ini@ypoint to the previously selected alternative waypoint.
the trajectory. We show the scenario in Fig. 9. It can be seddy computing more alternative trajectories in parallel, we
that the obstacle crosses the trajectory. Instantaneously, thent to increase the waypoint density in the future and
MAV generates multiple valid rescue trajectories and avoidéius further reduce jumps between individual alternatives.
the obstacle. It decides that it is safe and dynamically feasibWe also found that the horizontal and vertical dynamics of
to y in front of the obstacle in the target direction (using theour MAV differ signi cantly. Therefore, we had to adjust
tube trajectories). If the obstacle moved faster, trajectorigdbe parameters of the spheroids during the experiments to be
behind the obstacle would be feasible. If the object wereblate (height diameter) since the MAV strongly preferred
more extensive or additional obstacles would be present,vartical movement.
hard braking maneuver that uses the full dynamic capabilities
of the MAV would be performed. V. CONCLUSION
C. Real-World Experiments We have provided detailed insight into our robust trajec-

. tory generation framework. The viability of our approach has
We evaluate our method with a dataset that was record%(gen demonstrated in simulation as well as in a real-world

during the MBZIRC 2020 challenge, where our MAV actu- . ; . .
. ._scenario during a real re ghting exercise.
ally ew into a wall and crashed. We use the recorded lidar : . ; .
In particular, the ability to analytically crop large point

2www.ais.uni-bonn.de/videos/ssrr_2020_beul clouds, makes our method scale to larger and denser point
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Fig. 11. Evaluation with the MBZIRC 2020 dataset. Top: The waypoint (red
arrow) can be reached by the MAV (axis) with the green trajectory without
colliding with the measured point cloud (blue). Bottom: If the waypointFig. 12. Avoidance of an approaching person. Our MAV (axis) senses the
lies close to the perceived wall, an alternative waypoint (transparent red) tisreat (yellow points) and plans an avoidance trajectory (green).

computed that can be reached without interfering.

clouds in the future. Due to the fast runtime, our method

can run in real-time as MPC onboard the MAV, and it can

react to obstacles, perceived with the lidar rate26fHz

We showed that the ability to reject unskilled control inputs

could help prevent crashes and thus increase the reliabilit
of ying robots.

We believe that our contribution will make the operation
of MAVs during rescue missions safer and more reliable. [11]
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