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Abstract— Visually guided control of micro aerial vehicles
(MAV) demands for robust real-time perception, fast trajectory
generation, and a capable flight platform. We present a fully
autonomous MAV that is able to pop balloons, relying only
on onboard sensing and computing. The system is evaluated
with real robot experiments during the Mohamed Bin Zayed
International Robotics Challenge (MBZIRC) 2020 where it
showed its resilience and speed. In all three competition runs
we were able to pop all five balloons in less than two minutes
flight time with a single MAV.

I. INTRODUCTION

In order to advance the state of the art in autonomous mo-
bile robots, the Mohamed Bin Zayed International Robotics
Challenge (MBZIRC) 2020 [1], which took place in February
2020 in Abu Dhabi posed multiple challenges. One of the
tasks was to pop balloons in an outdoor arena of size
90 m× 40 m. Five green balloons with approximately 60 cm
diameter were randomly placed inside on top of 2.5 m long
poles. Although the total challenge time was set to 15 min,
the task had to be completed much faster and autonomously
to receive a high score. Up to three micro aerial vehicles
(MAV) could be used to complete the challenge, but we
found it sufficient to use only one MAV. While global
navigation satellite system (GNSS) positioning was available,
the use of differential GNSS was penalized. In this paper,
we present our integrated MAV system “Jelly”, specifically
designed to pop balloons including
• a custom-tailored hardware design,
• fast perception accelerated by a Tensor Processing Unit,
• robust filtering of sensor data, and
• fast trajectory generation and control.
We evaluate our approach with real robot experiments and

report results from the MBZIRC 2020 competition. Fig. 1
shows Jelly popping one balloon with its tentacles.

II. RELATED WORK

At present time, no other group has presented complete
systems to this specific task. However, much related research
deals with subtasks posed in this MBZIRC 2020 challenge
like visual object detection, lightweight computer vision
models for deployment on MAVs, or precise MAV control.
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Fig. 1: Our MAV “Jelly” just before it pops the balloon with
its spiked tentacles.

Rodriguez et al. [2] use a convolutional neural network
to not only detect circular objects, but also other pretrained
objects in real time. Circular objects can be easily detected
and differentiated from non-circular ones based on the shape
of their contour. Yang et al. [3] propose an encoder-decoder
structure for contour detection of generic foreground objects
from the PascalVOC dataset [4]. Maninis et al. [5] use a
CNN architecture to detect object contours at multiple scales
together with their orientations, based on a generic backbone
CNN, like ResNet [6]. We follow a similar approach, but
train our contour detection network to detect only contours
of one class of objects—the balloons (see Sec. III-C).

Lightweight computer vision models that can be executed
efficiently also on mobile or embedded systems with very
restricted computational power have been of increasing re-
search interest during recent years. The MobileNet archi-
tectures [7], [8], for example, greatly reduce the number
of parameters in a convolutional neural network (CNN)
by replacing standard convolutions with depthwise-separable
convolutions. For our vision system, we employ a standard
ResNet architecture but with very few layers (cf. Sec. III-
C), keeping the number of parameters and the necessary
computational power low. Furthermore, specialized inference
accelerators like the Google Edge TPU [9] can be used for
efficient processing with limited size and energy budget. To
make a trained CNN model compatible with the Edge TPU,
weights and activations need to be quantized to 8-bit integer
values, e.g. using the quantization scheme described in [10].

Also, fast real-time trajectory generation and control is
an active area of research. Specifically, as a result of
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Fig. 2: Design of our MAV “Jelly” equipped with four spiked
tentacles, an Intel RealSense D415 camera, a Google Edge
TPU, a laser height sensor and a lightweight but powerful
onboard computer. Bottom right: closeup of a 3D-printed
detachable tentacle clamp with release force set to medium.

MBZIRC 2017, various groups presented advanced control
approaches for MAVs. The team from Czech Technical
University Prague reports their approaches to landing on a
moving platform during the MBZIRC 2017 in [11]. Also,
Cantelli et al. and Battiato et al. from the University of
Catania report their systems [12], [13] including their control
approach. Falanga et al. [14] of University of Zurich plan
jerk-minimizing trajectories using a fast analytic polynomial
generation method similar to ours. Also, outside of MBZIRC,
many groups employ polynomial trajectories for MAV con-
trol. For a comparison of polynomial trajectory generation
algorithms, see the works of Ezair et al. [15].

III. SYSTEM SETUP

In the following sections, we first describe the hardware
of our MAV in Sec. III-A. We continue by presenting the
mission control state machine in Sec. III-B. Our balloon
perception pipeline including an allocentric filter is detailed
in Sec. III-C and Sec. III-D. GNSS-based state estimation
is supported by a laser height filter which we describe
in Sec. III-E. Lastly, our trajectory generation and control
method is presented in Sec. III-F.

A. Hardware

Our MAV, shown in Fig. 2, is based on the DJI Matrice 100
platform. It is equipped with a small but fast Gigabyte
GB-BSi7T-6500 onboard PC with an Intel R© Core

TM
i7-

6500U CPU running at 2.5/3.1 GHz and 16 GB of RAM.
Balloons are perceived by an Intel RealSense D415 depth
camera [16] with the assistance of a Google Edge TPU USB
accelerator [9]. For precise height estimation, the MAV uses
a downwards facing LIDAR-Lite v3 [17].

Balloons are punctured with four detachable spiked 1.4 m
long tentacles, mounted on a horizontal bar with a distance
of 30 cm. When an adjustable force (set to ≈2 N during
the challenge) is applied to a tentacle, e.g., by entangling
with the poles, it is removed, preventing the MAV from
crashing. On each tentacle, four needle-spiked hemispheres
are mounted with 15 cm distance. By using flexible popping
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Fig. 3: Structure of our method. Green boxes represent
external inputs like sensors, blue boxes represent software
modules, and the red box indicates the MAV flight control.
All software components use ROS as middleware. Position,
velocity, acceleration, and yaw are allocentric.

hardware, our MAV complied to the size restrictions of
1.2 m× 1.2 m× 0.5 m, still offering a forgiving popping
system that does not require centimeter-level precision.

For allocentric localization and state estimation, we em-
ploy the filter onboard the DJI flight control that incorporates
GNSS and IMU data.

To make all components easily transferable between the
test area at our lab and also different arenas on site, we
defined all coordinates (x, y, z, yaw) in a field-centric coor-
dinate system. The center and orientation of the current field
were broadcasted by a base station PC to the MAV. Since we
do not make any assumption about the allocentric movement
of the target, navigation is purely relative to the detected
target and not affected by global inaccuracies. In contrast
to other teams, we did not use advanced satellite-based
localization methods like Real Time Kinematic positioning
(RTK-GPS) that need multiple GPS antennas on the MAV.

Fig. 3 gives an overview of the information flow in
our system. We use the robot operating system (ROS) as
middleware on the MAV and the ground control station.
We communicate over WiFi with a robust UDP protocol,
developed for connections with low bandwidth and high
latency [18].

B. Mission Control State Machine

The behavior of the MAV is controlled by a state machine
that serves as a generator for waypoints and headings for the
subsequent control layers. It also ensures that the MAV does
not exceed arena limits and stays within a defined altitude
corridor, so that it stays always above the balloon mounting
poles and below the 5.0 m minimum altitude of the other
subchallenge’s MAVs. Fig. 4 shows a flowchart of our state
machine, which consists of two alternating parts—Search and
Pop. In search mode, the MAV flies a repeating creeping-line
pattern along the long axis of the field, thereby scanning the
entire arena. In Pop mode, the MAV flies a trajectory that
drags the tentacles through detected balloons.
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Fig. 4: The flowchart of our state machine.

The MAV velocity in search mode is tuned to 5.0 m/s and
the altitude is 4.0 m, so that balloons can be reliably searched
from a safe height. Our balloon detector produces reliable
position estimates at ranges over 30 m. During the Grand
Challenge, the search pattern comprised two search lanes,
spaced at 10 m from the arena limits, which proved sufficient.
As shown in Fig. 3, all balloon detections are filtered
(Sec. III-D) before being processed by the state machine. The
filter provides a list of verified balloon positions which are
within the arena limits, including those which are currently
out of view. Once the state machine receives at least one
detection, it proceeds to approach the closest target.

In Pop mode, a straight-line trajectory is computed, such
that the center of the tentacles passes through the balloon
center at a non-zero velocity. The tentacles’ upwards facing
needles are dragged into the balloon surface, effectively
puncturing it. As the forward-facing camera cannot perceive
the balloon all the way, it is assumed to be popped once the
MAV passes over the estimated center of the balloon instance
within 0.5 m radius. Should the balloon be still intact, due
to unsuccessful puncturing or missing the intercept point,
it will be tackled again later as the search pattern repeats
and the balloon will inevitably be re-detected. If the target
is lost during the approach, e.g. because the filter discarded
a false positive, the attempt is cancelled. As an addition in
the Grand Challenge, after each attempt to pop a balloon,
the MAV returns to the center of the field in order to
prevent flying into the scaffolding protruding into the arena.
This method of handling the non-convexity of the field is
simple but it introduces additional flying time as compared
to real obstacle avoidance. On the other hand, it is easy to
implement and reliable. After returning to the center, the
MAV targets the subsequent closest balloon provided by the
filter or resumes with the search pattern, if there are no viable
balloon hypotheses.

C. Balloon Perception

Our approach for detecting balloons in images is based
on deep learning methods and split into an inference and a
postprocessing step (cf. Fig. 5). During the inference step
a neural network for semantic segmentation is employed.
Since we aim to detect multiple balloons, we perform a
binary segmentation of the raw input image and extract the
balloon outlines as shown in Fig. 8. The balloon detection
itself is carried out in the postprocessing step, which provides
information like the number of balloons as well as their
confidence values and positions in camera coordinates.

a) Balloon Outline Segmentation Network: The struc-
ture of the neural network is simple and based on the first
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Fig. 5: Perception pipeline: Input is the raw image and output
is a number of balloon detections with 3D-positions in the
camera coordinate system.

three blocks of ResNet-18 [6]. See Fig. 6 for a visualization
of our network. Each block consists of two 3×3 convolutions
and calculates

xout,i = ReLu (xi + conv2 (ReLu (conv1 (xi)))) . (1)

The last convolutional layer performs a reduction from 64
to C = 2 feature maps fc, c ∈ {0, . . . , C − 1}. These
feature maps are used for a binary classification consisting
of background and balloon outlines classes. The network
is trained with weighted Negative Log-Likelihood Loss
(wNLL), after calculating the pixel-wise LogSoftmax from
the output feature maps fc:

qi,c = LogSoftmax (xi,c) = log

 exi,c

C−1∑
c′=0

exi,c′

 , (2)

wNLL(xi, yi) = −wyiqi,yi , (3)

for every pixel xi,c in the feature maps fc and ground truth
label yi. The weights wc are used to compensate the class
imbalance of the training set.

The weights of the first convolutional layer are initialized
from ImageNet-pretrained ResNet-18. The network uses a
receptive field of 5 and a stride of 2 to sample down the input
image, since ResNet uses time consuming convolutions and
inference has to run in real time. This initialization results
in faster training and better inference results than random
initialization. For training, a dataset consisting of 10,000
synthetic and 300 real images was used, mostly consisting
of single balloons and just a few of them containing mul-
tiple balloons. The synthetic images were generated by a
lightweight physically-based renderer [19]. A 3D mesh of
a 60 cm diameter sphere is randomly placed in different
HDR environments in order to capture realistic lighting as
shown in Fig. 7. To reduce the number of false positives,
the images also include spherical shapes that are not green
and do not correspond to a balloon. The real images were
recorded with the same Intel RealSense D415 camera which
was used during the competition. To enhance generalization
of the network even further, we added noise to the synthetic
data as described in [20].

The network was trained with image size 960×540. The
ground truth size is 480×270 and shows white balloon
outlines with a thickness of 1 pixel on a black background.
However, we decided to use a 3×3 dilation on the output
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Fig. 6: Architecture of the ball outline segmentation network.

image to enhance chances to detect a balloon as a fully
connected component and make the detections more invariant
to noise. Training was accomplished with a batch size of
B = 12 and a learning rate of lr = 0.001 using the
Adam optimizer on a Nvidia GeForce GTX 1080 Ti. In total,
pretraining took 130 epochs, followed by finetuning during
the competition for another 50 epochs. On site, we added
250 additional annotated images, which our MAV captured
during rehearsals, resulting in a total training time of 9.5 h.

b) Postprocessing: The purpose of the postprocessing
step is to detect balloons in the binary segmentation output
as shown in Fig. 8. In the best case, the binary segmentation
provides all outlines of the balloons with no noise in the
background. Since the circle Hough transform is very time
consuming and inefficient for oval shapes (like balloons often
are) we use a pipeline which processes the segmentation
output in several steps. In the first step, connected com-
ponents are extracted and valid components are filtered by
a minimum number of pixels. Furthermore, N points are
sampled equally distributed on each connected component,
starting with the largest one descending. To fit a circle into
the sampled points xi, i ∈ {1, . . . , N} we estimate a center
point c and the radius

Rmean(c) =
1

N

N∑
i=1

‖xi − c‖ . (4)

To estimate the optimum circle center ĉ we minimize the
residuals

r(c) =

N∑
i=1

(‖xi − c‖ −Rmean(c))
2
, (5)

ĉ = arg min
c∈R2

r(c) . (6)

An estimate of the quality of the fitted circle is given

by the normalized residuals rnorm(ĉ) =
√

r(ĉ)
N . Detections

can be filtered by a size threshold λradius and a residual
threshold parameter λres, which are empirically determined
by evaluating recorded test data. Fitted circles ĉ are accepted
as valid detections if Rmean(ĉ) < λradius and rnorm(ĉ) < λres.

The detector outputs 2D balloon centers and their radii in
pixel coordinates. A 3D position estimate can be calculated
based on the balloon radius in the detections Rmean and
in real Rreal = 30 cm which was fixed and known. The
additional information Rreal motivated us to estimate the
depth of balloons without using the given depth image of
our Intel RealSense Camera, since we observed noisy depth

Fig. 7: Synthetic images generated using EasyPBR [19].

(a) Input image (b) Balloon detections

Fig. 8: Balloon perception: The detected balloon outlines
are drawn with white lines and the centers are marked with
gray points. All visible balloons are detected, even at large
distances, without false positives in the background.

and a not negligible computation effort. At first, we project
the balloon center point r1 = (cu, cv, 1) and the point at the
right balloon outline r2 = (cu+Rmean, cv, 1) into 3D camera
coordinates at unit depth using the camera matrix

K =

fx 0 cx
0 fy cy
0 0 1

 .

The transformed points are p1/2 = K−1r1/2, with angle α =
arccos ( p1·p2

‖p1‖‖p2‖ ) between them. Further, the scalar s, which
transforms p1 from unit depth to the 3D balloon center point
Pm = sp1 in metric scaling is calculated as s = Rreal

tanα . The
resulting 3D balloon center points are then further processed
by an allocentric filter (cf. Sec. III-D).

The entire pipeline is very time efficient and runs with
an average processing time of 45 ms per frame on the used
Intel i7-6500U CPU with the Google Edge TPU connected
over USB 3.0. Since the balloons are static, this computation
time is more than sufficient as results during the contest
confirmed. The quantization of the network for processing
on the Edge TPU did not lead to any decrease in prediction
quality. The small receptive field allows to easily detect
multiple balloons in images as shown in Fig. 8.

Finetuning during the competition resulted in a significant
decrease of background noise and enhanced the balloon
outline detection of the network. Consequently, parameters
like residual threshold and minimum connected component
size in postprocessing were adapted, so that balloons were
detected even at large distances of up to 50 m.

D. Balloon Filter

For each image frame, the balloon perception (Sec. III-
C) outputs a list of current balloon detections, described as
egocentric 3D positions in camera coordinates. These are
processed by a filter to reject outliers and to aggregate them
into a list of hypotheses H of possible balloon positions.
Each hypothesis Hi ∈ H consists of
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Fig. 9: Evaluation of different distance metrics. Detections
are shown as blue dots. Hypotheses are shown as spheres,
which are colored green if at least eight detections are
assigned to them and red otherwise. Left: Euclidean distance
on ground plane. Right: Distance to detection ray.

• a history Di := (di1, . . . , d
i
8) of the last eight detections

that were assigned to it,
• an estimate of the balloon position Pi := 1

|Di|
∑
d∈Di

d,
calculated as the running average over the detection
history, and

• a counter for missed detections.
All hypotheses with at least eight detections are sorted
with increasing distance to the current MAV position and
forwarded to the state machine. In the following, we describe
the assignment of detections to the different hypotheses and
the removal of hypotheses which were created by false
detections based on the missed detection counter.

a) Detection Assignment: In a first step, the egocentric
detections of the balloon detector are transformed into al-
locentric field coordinates. Since the height of the balloons
was predefined to be at 2.5 m, all detections outside a height
corridor from 1.5 to 5.0 m are discarded.

For each remaining detection d, we determine the closest
hypothesis Hi∗ by minimizing the distance between the
detection and all position estimates i.e., choosing i∗ =
arg mini{dist(d, Pi)}. If the distance is smaller than a thresh-
old of 2.0 m, we assign d to Hi∗ , otherwise we create a
new hypothesis. Finally, hypotheses are merged when their
estimated balloon positions become closer than 2.0 m.

The choice of the distance measure dist(·) is important to
reduce the influence of detection noise and thus to achieve
accurate assignments. Since the center height of all balloons
is fixed to 2.5 m + 0.6m

2 = 2.8 m, dist(·) can be chosen
as the Euclidean distance on the ground plane to eliminate
noisy height measurements. However, due to the noisy depth
estimation of the egocentric detections, this may result in
multiple different hypotheses for the same balloon (Fig. 9
(left)). Instead, we cast a ray τ in the direction of the
detection and define dist(·) to be the distance between
the estimated balloon position and τ . This results in more
accurate hypotheses assignments as shown in Fig. 9 (right).

b) Hypotheses Removal: Once the MAV reaches a
position above an estimated balloon, we assume the balloon
to be popped and remove the corresponding hypothesis. If
popping was not successful, the balloon will be detected
again later and thus a new hypothesis for this balloon will
be added (cf. Sec. III-B).

To further remove hypotheses created by false detections,
we estimate the visibility of each hypothesis by projecting
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Fig. 10: Laser height correction. During takeoff, height esti-
mation (black) is based on barometer data (blue) since laser
measurements (red) are unreliable for too close distances.
Once the MAV reaches an estimated height of 1.0 m, height
estimation is based on filtered laser data. Above 5.0 m the
laser becomes unreliable in the bright outdoor conditions
and the height estimate is extrapolated using the change in
barometric height measurements. Excerpt of Run 2.

the estimated balloon coordinates onto the image plane of the
camera. Whenever a hypothesis is assumed to be visible but
is not detected in the current frame, the corresponding missed
detection counter is incremented. If the number of missed
detections exceeds a threshold of 30, the corresponding
hypothesis is removed.

E. Laser Height Filter

Precise height estimation can make the critical difference
between popping a balloon, missing a balloon, or hitting a
pole. We therefore use measurements of a downwards facing
LIDAR-Lite v3 as primary height source.

Detecting outliers and fusing the laser measurements with
barometer data using an EKF would require to manually
estimate sensor covariances. However, we aim to use simple
methods which allow fast debugging during the competition.
Thus, we choose an approach similar to the one that already
proofed successful in MBZIRC 2017 (see [21]).

A laser height filter determines whether the laser measure-
ments are valid and thus can be used as height estimation.
However, when the laser measurements are assumed invalid,
we extrapolate the latest height estimate using the change
in the fused GNSS and barometric height. As soon as the
laser measurement is assumed valid again, we immediately
correct our height estimate to the laser height or—if the
extrapolated height drifted too much—linearly interpolate,
allowing a maximum slope of 1.5 m/s.

To determine whether a given laser measurement is valid,
we check the following criteria:
• Laser measurements below 1 m are assumed to be

invalid as they might be caused by measuring the spiked
tentacles of our MAV.

• Laser measurements become unreliable for very low or
large distances. Thus, we only consider laser measure-
ments if the current height estimate is within 1.0 and



TABLE I: Parameters used at MBZIRC 2020.

Parameter Axis Value Parameter Axis Value

vmax X,Y 5.0m/s vmax Z 1.0m/s
amax X,Y 4.0m/s2 amax Z 10.0m/s2

jmax X,Y 5.0m/s3 jmax Z 50.0m/s3

5.0 m. Mind that this estimate might be extrapolated
using GNSS/ barometric data.

• To reject outliers, we discard all laser measurements
that differ more than 15 cm from the latest valid laser
measurement. The first valid laser measurement is boot-
strapped by collecting ten measurements which pass the
above criteria and selecting the one with the most inliers
within a 15 cm range. To be able to recover after a
longer sequence of invalid measurements, this initial-
ization process is repeated each time 100 subsequent
measurements (which corresponds to a time interval of
1 s) have been rejected.

Fig. 10 depicts height measurements and the filtered height
estimates during Run 2.

F. Trajectory Generation and Control

Since the total time needed for the challenge is crucial
and the MAV has to precisely hit the balloons, our method
for trajectory generation and control is based on the method
that already reliably worked during MBZIRC 2017 (see [22]
and [21]). The method is described in detail in [23] with the
extensions from [24]. For reasons of brevity, in this section,
we cover only the most important aspects of the algorithm.

Based on a simple triple integrator model, our method
analytically generates third-order time-optimal trajectories
that satisfy input (jmin ≤ j ≤ jmax) and state constraints
(amin ≤ a ≤ amax, vmin ≤ v ≤ vmax). Trajectories are
computed from the current state (p, v, a)ᵀMAV to the target
state (p, v, a)ᵀtarget. The X,Y, and Z axis are synchronized to
arrive at the target state at the same time. By doing so, the
MAV flies on a relatively straight path.

We directly use this trajectory generation method as a
model predictive controller (MPC), running in a closed loop
with 50 Hz. Our hardware does not support direct execution
of sent jerk commands. We therefore assume pitch and roll
to directly relate to θ = atan2(ax, g) and φ = atan2(ay, g).
Thus, we send smooth pitch θ and roll φ commands for
horizontal movement and smooth climb rates vz instead. We
use the parameters presented in Tab. I.

Although an arbitrary number of axes can be controlled by
the above-mentioned method, we do not consider the yaw-
axis Ψ to be synchronized with the x, y and z-axis. For
simplicity, we use proportional control for the yaw-axis. The
yaw rate setpoint Ψ̇setp = Kp · (Ψtarget − ΨMAV ) with
Kp := 2.5 for Run 1 and 2 and Kp := 1.0 for the Grand
Challenge is sent to the MAV flight controller. The gain was
reduced during the competition because of safety concerns
(cf. Sec. IV-B).

field

MAV

Fig. 11: World model 15 s after takeoff during Run 2:
Individual detections (blue squares) are accumulated into
balloon hypotheses. All five balloons are detected (green
circles). Outlier detections result in unconfirmed balloon
hypotheses (red circles). The MAV is about to approach the
first balloon. The goal pose (red arrow) is set right behind a
balloon hypothesis. The field area is shaded in red, its origin
is the field frame.

IV. EVALUATION

Our MAV system for balloon popping was operated in
three competition runs during MBZIRC 2020, which are
evaluated below. A video showcasing the evaluation of our
Grand Challenge Run can be found on our website1.

A. Time Until Completion

As our vision system detects the balloons at large distances
(cf. Sec. III-C), balloon hypotheses are added to the world
model shortly after takeoff during all runs. During the second
run, all five balloons were known to the filter only 15 s after
takeoff (see Fig. 11). In the other runs, only a fraction of the
balloons was inside the field of view directly after takeoff.
The known target hypotheses are approached right away, the
MAV then flies on a search pattern for a short time only
until it detects the remaining targets. The times at which the
respective balloons were punctured are given in Tab. II.
In the first run, two balloons were popped after 30 s. Then a
reset occurred for 8 min, as the MAV had gotten stuck in the
Net at the arena borders due to an error in the GNSS-based
geofencing. The challenge was completed after 9 min 28 s,
but only 1 min 28 s flight time.
In the second run, the first two balloons were punctured right
in sequence. Then, however, two balloons were missed—the
puncturing did not work due to a suboptimal flight pattern
(see Sec. IV-B). By repeating the search pattern and re-
approaching the missed targets, in this run, all balloons were
punctured after a total duration of 1 min 40 s.
In the final run during the Grand Challenge, all balloons
were punctured in the first attempt. The time between two
consecutive balloons were very similar, (12-15 s). Between
Balloon 2 and 3, the MAV flew a search pattern to discover
the remaining ones, which explains the longer time interval.
The challenge was completed after a total time of 1 min 21 s,
the shortest duration of all three competition runs.

1www.ais.uni-bonn.de/videos/ssrr_2020_mbzirc



TABLE II: Timings of the balloon popping.

Balloon 1 Balloon 2 Balloon 3 Balloon 4 Balloon 5

Run 1∗ 23 s 30 s 9min 4 s 9min 11 s 9min 28 s
Run 2 17 s 23 s 51 s 1min 15 s 1min 40 s
Run 3 11 s 27 s 56 s 1min 8 s 1min 21 s

(∗) 8min reset time between 2nd and 3rd balloon.

B. Flight Path

During the first and second run, the MAV always chose
the direct path between two consecutive balloons. In the
ideal case, this results in the shortest duration between two
consecutive balloons (e.g. 6 s between the first and second
balloon in Run 2). However, this can lead to the MAV flying
dangerously close to the arena borders and could even have
led to a crash during Run 2, had the controller chosen to
pierce Balloon 3 and 4 in direct sequence. Our simple GNSS-
based geofencing system which restricts the allowed flying
area to a single rectangle could not correctly model the non-
convex shape of the arena (see Fig. 12 (a)). Furthermore, the
above described behavior results in the MAV turning right
over the balloons as it rotates to approach the next target.
This is a suboptimal flight pattern as it prevents the dangling
tentacles from piercing the balloons successfully. During the
second run, two balloons were missed due to this suboptimal
maneuvering and needed to be approached a second and even
a third time.

Turning above the balloons also had an impact on the
safety of the flight maneuver. In Run 2, after popping Bal-
loon 4, the MAV quickly turned while accelerating towards
Balloon 5. Turning was so fast with Kp,yaw = 2.5, that the
MAV was not able to redirect the acceleration fast enough
due to the low jerk limit. Thus, the MAV first flew into
a wrong direction—even entering the safety margin of the
field—before correcting itself (see Fig. 12 (a) top-left). The
trajectory rollout showed that the MAV was completely
aware that it would leave the allowed area, but it simply could
not compensate the erroneous acceleration fast enough. We
prevented this possible safety hazard by setting Kp,yaw =
1.0, thus slowing down the yaw rate.

To overcome the remaining problems, an additional way-
point was added in the middle of the arena after each
balloon for the final run. This results in a star-shaped flight
pattern (see Fig. 12 (b)) and the balloons being passed in
a straight line, without turning above them. Consequently,
each balloon was pierced in the first attempt. The time
between two consecutive balloons is slightly higher than it
was before in the ideal case, but almost constant for each
target, as no misses occur (see Sec. IV-A). Therefore, the
challenge could be completed faster using the new behavior.
Moreover, the star-shaped flight pattern avoids trajectories
close to the arena borders and leads to safe flight paths
despite the non-convex arena outline without any additional
obstacle avoidance system (cf. Sec. III-B).

We show snapshots of the performance in Fig. 13. With
this performance, we placed 5th in Challenge 1 including an-
other subchallenge and 2nd in the Grand Challenge including
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(a) Run 2: The MAV chooses the direct path between consecutive
balloons. In some cases, it turns directly above the balloons which
prevents the piercing tentacles from working correctly. Balloons
4 and 5 need to be passed two resp. three times until successful
puncturing. Flight path leaves allowed area at top left.
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(b) Run 3: The MAV passes through the arena center after each
balloon. It moves straight through the balloons, which leads to
them being pierced reliably at the first attempt. Paths close to the
boundaries are avoided by this strategy.

Fig. 12: Comparison of flight paths between Runs 2 and
3 (colored by time). Solid line: Pop mode, dashed line:
Search mode. The allowed flying area is shaded in red, the
physical arena boundaries are marked with a dashed black
line. Balloon hypotheses are displayed as green circles.

five other subchallenges.

V. LESSONS LEARNED

As a retrospect towards our design choices, we deem the
choice of using flexible tentacles that are dangling below the
MAV to be a good decision. The flexible tentacles ensure
that Jelly cannot get accidentally caught in the pole and
additionally allow to have imperfect positioning with respect
to the balloon. Competing teams that have experimented with
rigid mechanism to pop the balloon struggled as the MAV
would collide with the pole if the position estimate is not
accurate enough.

We also observed that multiple teams have opted to use
a NVIDIA Jetson platform for running the MAV, including
balloon detection networks [25], [26]. This might be an
interesting direction to explore as the Edge TPUs, while
powerful, are also limited in the architectures that can be
executed on them.

VI. CONCLUSION

We have provided detailed insight into our robust MAV
setup for quickly and robustly popping balloons. The vi-
ability of our approach has been demonstrated in a real-



Fig. 13: Image sequence of popping the first balloon in the
Grand Challenge (from top-left to bottom-right). The MAV
(marked with the red circle) 1) takes off to 4.0 m. 2) After
detection of the first balloon, the MAV targets a position
2.0 m behind and 0.7 m above the center of the balloon.
3) It further accelerates to pass through the balloon with
significant velocity. 4) It successfully pops the balloon. The
entire shown process only takes 4.9 s.

world scenario during the MBZIRC 2020 at which our MAV
consistently performed as one of the fastest and most resilient
among all competitors.

In particular, the robust vision pipeline including the
meticulous filtering of outliers combined with a robust fault-
tolerant hardware and an overall simple system architecture
that allowed for quick adjustments in the field made our
approach to this challenge a huge success. The same counts
for the laboriously handcrafted laser height filter that rejected
a large number of outliers from the noisy sensor and a well-
tested state machine that could be easily adapted during the
individual runs. Also, our low-level control approach proofed
to be reliable, precise and fast. It guided Jelly under real-
world conditions, including noisy sensor information and
external disturbances.

We believe that our contribution, and in general all experi-
ence from the MBZIRC 2020, will inspire new ideas on how
to operate flying robots in dynamic, real-world environments.
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