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Reconstruction of Textured Meshes for Fire and Heat Source Detection

Radu Alexandru Rosu, Jan Quenzel, and Sven Behnke

Abstract Automated re and heat source detection is a  crashing MAV. Hence, the A-DRZ projﬂ:ﬁims to promote
helpful and important capability of a robotic system to assist the development of ready-to-use autonomous rescue robotics.
re ghters in various search and rescue (SAR) scenarios. In - The main contribution of this paper is a novel reconstruc-
this paper, we investigate thermal mapping using textured fi t for textured h E 1) with t ted
meshes from preregistered LIDAR scans and show how to detect lon _sys_em or textured meshes ( ' ) W'_ automate
and localize heat sources therein. Further, we propose a novel l0calization of heat sources. We mesh preregistered LIDAR
occupancy mapping approach based on a sparse permutohedral scans and fuse thermal as well as color images in textures.
lattice with a contradiction indicator deduced from ray-tracing ~ The textured mesh allows us to show high visual detail
the mesh. We evaluate our system on three datasets recorded ;ip simple geometric structure. Meshed dynamic obstacles

with a micro aerial vehicle (MAV) including heat sources in a .
hall and real ames at a re brigades training site. Dynamic tend to create tube-like structures that reduce the overall

objects are removed from the mesh, heat sources are located texture accuracy. We tackle these artifacts with ray-tracing
and their sizes are estimated. through the mesh and determine occupancy with a sparse
permutohedral lattice. The textures, fused from thermal as
I. INTRODUCTION . . . . o
well as color images, provide a meaningful visualization
Recent advances in robotic systems promise new solutioRsy gisaster response teams enriched with an automated
to support emergency forces in Search and Rescue (SARgtection and localization of heat sources. We demonstrate
scenarios [1]. When re ghters approach a disaster site, it iyr thermal mapping approach on two different datasets
mandatory to obtain an overview quickly and to continuouslyyc|yding multiple real res at a re ghting training site.
monitor the situation [2], especially if lives are at stakean accompanying video is availaPje
Robotic systems exhibit a large potential to aid in this under-
taking while reducing the risk for emergency personnel [3]. Il. RELATED WORK
The re ghters in the receniNotre-Dame de Parisathedral Thermal mapping [8] for building inspection typically
re had to withdraw from the cathedral nave after the spireelies on simultaneously captured color and thermal images
was in imminent danger of collapsing. Instead, a remotdrom different poses and employs standard photogrammetry
controlled unmanned ground vehicle (UGV) was deployegipelines. A Structure-from-Motion (SfM) system registers
for continued re extinguishing and monitoring [4]. color images in a common reference frame and generates a
While such UGVs are nowadays a rare occurrence isparse 3D point cloud. Multi-View-Stereo (MVS) then gen-
re brigades, micro aerial vehicles (MAVs) are increasinglyerates a denser point cloud which is meshed and converted
used in recent years. MAVs equipped with thermal anéto simple Building Information Models (BIM). Thermal
color cameras have proven themselves as versatile toaisages are co-registered to RGB images e.g. using ground
delivering unobstructed views for points of interest. The reakontrol points (GCP) and overlayed as a texture [9].
time footage enables mission specialists to see the extentin robotic applications, a sparser colorized point cloud
of the disaster. Close-up views, e.g. of collapsed [5] dirom few images € 100 is often suf cient since computa-
burning buildings, are readily available without endangeringonal resources and time-constraints are more restrictive. For
the disaster response teams [6]. Meanwhile, thermal senspigenotyping applications, Sha ekhani et al. [10] associate
allow to perceive people and to partially see through smokdermal values via projection to the SfM/MVS generated
and detect the seat of re. Thus, an MAV can help topoint cloud of calibrated stereo color cameras.
optimally position the re hose without direct line of sight Sentenac et al. [11] use as well an SfM approach to
to the re. triangulate matched points from stereo thermal cameras
Nowadays, most disaster response UGVs and UAVs arghich are placed on the end effector of a Cartesian robot
remote-controlled [7] and as such limited by the sensot® perform thermomechanical analysis.
eld-of-view, the latency for control input, radio range and Truong et al. [12] generate two separate point clouds from
distance to the operator. Insuf cient sensor coverage or logwlor and thermal images by SfM and MVS. Since each SfM
of communications, even if temporary, can cause the loss ofconstruction is only upto scale, the correct metric scaling is
the robot and potentially in ict further damage, e.g. from acomputed with the calibrated relative transformation. Finally,
iterative closest points (ICP) further improves the registration
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a) Light-weight mesh b) RGB texture and re detections ¢) Thermal texture

Fig. 1: Textured meshes: We reconstruct a light-weight mesh of the scene geometry using Poisson reconstruction (left). RGB
and thermal data is fused into high resolution textures. The globally fused thermal texture (right) is used to detect heat
sources and estimate their extent (middle).

Fig. 2: Pipeline: Individual range images are used to create local meshes for fast normal estimation and cloud simpli cation.
The resulting points, equipped with normals, are aggregated into a global point cloud. Poisson reconstruction is employed to
extract a mesh. In a second step, the range images are used anew to ray-trace through the created mesh and map the occupanc
using a permutohedral lattice. Points belonging to moving objects are discarded and the resulting cloud is remeshed. Finally,
the mesh is simpli ed and unwrapped to provide a light-weight scene representation. In the third step, individual RGB and
thermal images are fused onto the mesh. The thermal texture is binarized and used to detect heat sources on the 2D plane.
The detections are lifted to 3D where they are further merged to yield the nal heat source detections.

Yamaguchi et al. [13] superimpose thermal images on th@anning and landing site detection in rough terrain, as well
estimated 3D point cloud of a Visual Odometry (VO) algo-as an RGB-vertex-colored mesh with VoxBlox for inspection
rithm generated from color images. MVS is run separately ooy the ground personnel.
both modalities. A small triz_angulated mesh a!lows to oyerlay Schonauer et al. [17] aimed to provide re ghters with an
the current thermal image in the corresponding color 'magﬁwmentation based on an RGB-D and thermal cameras that

LIDAR and RGB-D sensors provide a vast amount OPyerIays the I?ve image on the ray-tra_ced trunc_ated signed
metric range measurements and allow for skipping trflst_ance funct_|0n (TSDF) image from Kinect-Fusion. For the
costly SfM and MVS steps. Instead, iterative closest poi psion of mult!ple thermgl Images, th-ey store two f“”.‘me.s per
ICP aligns different scans. Voxel-based maps are predo gconq, but did not provide more |ns_|ghts on the fusion tsef.

arching cubes meshes the TSDF in a post-processing step.

inantly used for reconstruction and meshed with marchin hei hi | itable f | : i
cubes [14]. For instance, Vidas et al. [15] perform online €Il approach 1S only sultable Tor room-scale environments
é}l_ue to high memory requirements of the TSDF.

mapping with an RGB-D and a thermal camera. Featur
based VO is fused with an ICP alignment. Keyframes are Borrmann et al. [18] combine a terrestrial LIDAR with
merged in a voxel grid and colored through ray-tracing along thermal and color camera on a UGV. A light-bulb grid
the view direction. Instead, Mittal et al. [16] aggregate depthelps to improve the calibration between LIDAR and thermal
images from an MAV in a voxel-based OctoMap, for patlcamera. Like us, they assume simultaneous image and scan



acquisition, as well as preregistered scans from a simulta-In the re detection step, we threshold on the thermal
neous localization and mapping (SLAM) system. Points arexture and nd the extents of the re.
projected to color and thermal images, then clustered perHence, the contribution presented in this article is fourfold:

pixel and heuristically associated per cluster. The result is
a colorized point cloud which is visualized with intensity,
color or thermal information and allows to detect walls and
windows in an automated fashion [19]. Their system captures
only 9 images per scanner revolution with little overlap
and only one revolution per pose, whereas we intentionally
use image streams with high overlap and fuse multiple
observations in order to obtain consistent textures. Similarly,
Kim et al. [20] rotate three 2D LIDARs, a DSLR, and a
thermal imager on a UGV to stitch panoramic images and
point clouds.

a scalable system for mesh creation from range mea-
surements with coupled geometry and fused thermal
data at independent resolution,

a mesh-based dynamic object removal by means of ray-
tracing,

a fusion method for thermal images into a texture,
thermal-based heat source detection on the texture.

IV. NOTATION

In the following, bold uppercase (lowercase) letters denote

A mapping based approach is taken by Zeise and Wagpratrices (column vectors). Thé 4 matrix Tg,r, is a
ner [21]. They project LIDAR measurements into thermafigid transformation which maps points in homogeneous
images and aggregate the resulting point cloud in an Ogoordinates from coordinate franfg to coordinate frame
toMap. The map is utilized to classify dielectric and metallid=2. A subscript representing the frame is added when nec-
materials according to their emissivity based on the itéssary, e.g. a point in world coordinatgs;. The poseT ¢

viewing angle dependency.

and the camera matriK - 2 R® 3 project the pointp,

Fritsche et al. [22] perform heat source detection directlinto frameF. We assume the camera matrix to be derived
on a fused 2D LIDAR and Mechanical Pivoting Radarfrom the standard pinhole model with focal lendth; f,
point cloud. They process the scan further to estimate tifd principal pointy;cy. The projection ofp,, into image

robots pose. An occupancy grid map aggregates the sca@ordinatesu = (UX1Uy)F

R? is given by the

and removes dynamic objects and spurious measuremeri@lowing mapping:

The detection clusters high-temperature points based on
their Euclidean distance and stores the location, mean and
temperature variance as well as the number of points in
the cluster. In contrast, we acquire a 3D position and the
approximate extent of the heat source while generating a 3D
viewable representation on a mesh.

1. OVERVIEW
We present a novel approach to thermal map generation

(u):

O (Pw) i Pw ! PF; (1)
(e = Te, (Pwil); )
F(PE) 1 Pr ! UE; 3)
(Xyi2)k = Ke Pe; @)
ug = (x=z;y=2)!: (5)

I R" denotes an image or a texture, where

maps from pixel coordinatas = (uy; uy)! to n-channel

coupling environment geometry with fused thermal informa Kalues

tion using textured meshes at independent resolutions. T
independent resolution between the geometry and the texture
allows to represent large scenes with a coarse mesh while the
texture can be highly detailed. Our method operates in threeOur system (Fig[]2) requires an input sequence of or-
steps: mesh generation, texturing and heat source detectiganized point cloug’ P!, thermal and RGB images!

In the mesh generationstep [23], we rst aggregate (t indicates the time step). We assume preregistered point
point clouds from range sensors assuming that an off-thelouds in a common reference frame, and given extrinsic
shelf SLAM system preregistered the scans into a commaalibration T ;4 from depth sensor to camera, as well as
reference frame. We utilize a fast normal estimation basethmera matrices. The depth sensor can be an RGB-D camera
on an edge-maintaining local mesh with local line simpli -or a laser scanner. The output of our system is fourfold:
cation. This heavily reduces the number of points aggregated
without loss of detail while reducing time and memory
requirements for global meshing. Poisson reconstruction [24]
creates a global mesh from the aggregated point cloud with
normals. QSlim [25] further simpli es the mesh. In a second
run, we remove measurements of dynamic objects via ray-
tracing through the mesh and Iter occupancy with a sparse
permutohedral lattice [26] before remeshing.

In thetexturingstep, we parameterize the mesh for textur-
ing by adding seams and cuts in order to deform the mesh
into the 2D plane. The thermal images, as well as RGB, arespp organized point cloud exhibits an image resembling structure, e.g.
fused into individual textures. from commodity RGB-D sensors.

V. METHODOLOGY

a triangular mesh of the scene geometry, de ned as a
tuple M = (V;F) of verticesV and facesF. Each
vertex 2 (R® R?) contains a 3D point and a UV
texture coordinate. A mesh face is represented by the
indices2 N of the three spanning vertices within

a thermal textures representing the heat radiated from
the surface,

a set of axis-aligned bounding boxes of heat sources,
an RGB textureC representing the surface appearance.



We rst describe our depth preprocessing in Sgc. |V-A.

Vi Vi
Afterwards, we detail the mesh generation and parametriza-
tion (Sec[ V-B), before elaborating on the thermal and color Vg4 Va
integration (Sed. V-C) and heat source detection (Sec] V-D). Vo — V3
V3 V3

A. Depth Preprocessing

We construct the global mesh out of a set of organized
point cloudsfP tg obtained from a depth sensor. Surfacdrig. 4: Edge ipping: Badly conditioned triangle pairs have
reconstruction typically requires precise per-point normalgheir edge ipped to promote more equilateral triangles. This
The naive way to estimate these is searching for the kllows the vertices to connect to closely neighboring ones
nearest-neighbors in the fully aggregated global point clou@nd improves the subsequent step of normal estimation.
However, this requires a spatial subdivision structure, like
a k-d tree, and easily grows to a considerable size for large
point clouds, thus limiting the scalability. Instead, we exploitoes not take the anisotropic sampling of the laser scanner
the inherent point cloud structure for fast normal estimainto account. Hence, we perform an iterative local mesh
tion. Depth images from RGB-D sensors allow to directlye nement via edge ipping that prefers equilateral over
query adjacent neighboring points. Rotating lidars generagsute-angled triangles (Fig. 4). This ensures that vertices will
organized scans. A complete revolution of e.g. a Velodynlee connected to spatially closer vertices. Afterwards, we use
VLP-16 produces a 2D array of sizt6 N containing two edges per face to calculate the face normal from the
the measured range for each recorded point, winerés  cross product. Per vertex normals are then estimated via a
determined by the speed of revolution of the laser scanneMean Weighted by Angl@MWA) scheme [29] from adjacent

Given this organized structure, we create a trianguld@ces.
local mesh with approximated normals as proposed by [27],
However, using all the points would introduce unnecessary
large sets of redundant points that share common planesWe employ Poisson reconstruction to recover a high
which would slow down the subsequent step of global mesigiuality mesh after aggregating the points and normals from
ing through Poisson reconstruction. Thus, we simplify eacte simplied scans. Since in geometrically simple areas
scan individually without sacri cing geometrical delity and like the ground meshes are often overly dense, we apply
reconstruct the mesh in a faster and more memory ef cier@ second global simpli cation step with QSlim [25]. So
manner (Fig[ ). For that, we employ a modi ed Ramerfar, dynamic objects are still represented in the mesh and
Douglas-Peucker [28] line simpli cation which is applied onintroduce artifacts where there should be free space. Hence,
each scan ring. We introduce additional offset points arouritie identify erroneous triangles by ray-tracing all points
simpli ed edges to constrain the normals of points and allowhrough the mesh. Per simpli ed scan this runs in real-time
the subsequent surface reconstruction to maintain hard edgsthe CPU with the Embree library [30]. We decided to
and sharp features (Fig} 3). use a mesh rather than a voxel grid for ef ciency reasons. In

general, fewer triangles need to be checked for intersection

N—¥ during ray-tracing than voxels while triangles better represent
j E JL the underlying geometry especially for at surfaces common
—3 %1l in man-made environments and are more adaptive in size to
(a) Original scanline (b) Simpli ed scanline (c) Simpli ed with offset the surface. L . -
points We use an indicator function to de ne contradiction

. . L . i . between the ray and the triangle:
Fig. 3: Line simpli cation: The original scan line (left) is

excessively dense in planar areas. The original simpli cation _ 0 ifwyiew (dx  di)

. Mesh Generation

greatly reduces the number of points but creating a global " 1 otherwise ; ©)
surface using a method like Poisson reconstruction overly

smoothes the edges (middle). We add further constraints Woiew =(Ow  Pwi) Nx: ™
which allow Poisson reconstruction to maintain Sharp fea:lere'di is the distance a|0ng the Viewing ray of the laser
tures (right). beam to the point of intersection. Obviously, the distadce

from sensor to laser beam end point is always larger or equal
We create the local mesh in 2D by unwrapping thdo di. The weighting factomiey additionally downweighs

scan using polar coordinates and perform a constrained Zbeep incident angles using the dot product between viewing
Delaunay triangulation. Simpli ed segments from the lineray from camera origim,, to the intersection poinp;
simpli cation are added as constrained edges in the triarend surface normaty. Hence, if the weighted distance is
gulation. This ensures that points that lie on the same sctop large ¢ ), the ray contradicts the triangle.
ring will be connected together by triangles. The resulting In order to remove the points that correspond to dynamic
triangulation is not optimal when lifted back to 3D as itobject we create an occupancy map in which we store the



a) Point cloud b) Local mesh ¢) Simpli ed mesh

Fig. 5: Depth preprocessing: During sudden movements of the laser scanner, the scan rings are compressed behind and
expanded in front of the sensor (left). This creates many small and steep triangles which degrades normal estimation. We
perform iterative edge- ipping in order to connect each vertex with their closest neighbor, hence, improving the likelihood

for estimating correct normals. Furthermore, we apply line simpli cation to each scan ring independently for data reduction
without sacri cing mesh delity.

dynamic points. The static point cloud is again meshed and
simpli ed.

We nally parameterize the global mesh for texturing to
obtain UV coordinates per vertex (Fig] 8). For that, we
make use of th&JV smart projectfunction provided within
Blender [32].

Fig. 6: Splatting and slicing on the Permutohedral Lattice:

Splatting distributes the values of each point onto the corners

of its corresponding simplex according to the barycentri€. Thermal and Color Integration

coordinates. Slicing is the inverse operation and computes

the output value of a point by sampling the corners of the In this section we detail our approach on how to update

simplex using barycentric interpolation. Figure adapted frorfie global16 bit thermal textureS using individual images.
Kiefel et al. [31]. In addition, we also fuse the raw color imagEs into a

global 3-channel color textu@. We rst perform a visibility

check, inspired byhadow mapping techniqué@s computer
o ) i . graphics, prior to updating the global textures. Hence, we
|n(j|catorfunct|on .Trad|t|on§I occupancy mapping emp"?yscalculate per texex with UV coordinatesuy its 3D point
grids to store the probability of a cell being occupiedy \ia barycentric interpolation from the face vertices. We
Instead, we use a sparse permutohedral lattice [26] comprisgfl, render for the current camera pose the depth map
of rfagularly orderedd-dmgnsmnal simplices V\(|thj + 1. D and project each texel poiriy into the view. If the
vertices each. In our caskis 3 since we work with data in gistance towards the texaly) is larger than the value within
three-dlmensmnall space. Thls'spgce represehtatlor) has_ 51(3 (g (py))) , the texel lies behind the visible part and will
advantage of scaling linearly with increasing dimensionalityq giscarded. We additionally use a smaettol 10 2 to
compared to grids w.r.t. memory consumption and numbejccqnt for possible numerical and discretization issues when

of vertices. To store the indicator function, we use a Splatti”%ndering the depth map. We thus use a per texel indicator
operation which consists of distributing the values of eact)ariablerx 2 0;1g to indicate occlusion:

point onto the corners of the corresponding simplex (Hig. 6).
This creates an occupancy map which is piece-wise linear

as opposed to the piece-wise constant of traditional grids. by = Loitde DCr(ge(P+ | ®)
Slicing is the inverse operation of splatting and it computes ' 0; otherwise

the value of a point in space by interpolating between the

values stored in the vertices of the simplex. All remaining texels(ry < 1) are fused with a weighted

For each intersected triangle, we check the enclosinginning average:
simplex of the intersecting point, allocate it if needed and

splat the indicator function in homogeneous coordinates. The o WU TCU)t T+ wyl T e (g (PX))
homogeneous part serves as a counter which results in aC(Ux)" = W)l T+ w :
weighted running average. Once all points are ray-traced and * ) Q)

all indicator functions are embedded in the lattice, we re-
aggregate the point cloud for meshing and determine which
points should be discarded. For this, we obtain for each
scan point a carving coef cient from the enclosing simplex For the case of thermal images we fuse into the global
through slicing. We threshold on the carving coef cientthermal textureS and ! then denotes the current thermal
and disregard points with a high coef cient thus removing image at time. The weightwy takes the distance, the radial

W (Uy)' = W(uy)t T+ wy: (10)



a) Initial mesh b) Contradiction ¢) Remeshed d) Areas removed

Fig. 7: Dynamic object removal: An initial mesh is created by using the point cloud from a laser scanner. The point cloud
is then ray-traced into the mesh and an occupancy map is stored in the vertices of a permutohedral lattice (middle). The
points falling in areas of high contradiction with the mesh (yellow) are discarded and the resulting point cloud is remeshed

(right).
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Fig. 8: UV parameterization: Roughly planar regions are

clustered together and greedly projected onto the 2D plafég. 9: Thermal weighting function w.r.t. viewing angle and

to obtain UV coordinates for each vertex of the mesh. tone mapping operator which assigns more range to low
values.

intensity fall-off, and the viewing angle into account:

Wy = Waist Wyign  Winermal | (11) 2Lir<;|ts;|rn%us|fhable. Hence, we use a simple tone mapping
Waist = (KGF (Pw:x )kg + ) l; (12) |
. 1
Wyign = COS( X)A; 0 (13) L= ] J 1 X S(U) . (16)
Wthermal = Wview 1 27) e 3(—) ;o (14) u2 '
= arccos (Wyiew ) : (15) L (uy) = . f (Su(x) )L - (17)
Ux

Here,wqist is the inverse distance from the texel to the cam-

era, which promotes frames that are spatially closer to thehis non-linear mapping squishes higher intensities while
mesh, improving the resolution and accuracy. A smallue  stretching lower intensities as visualized in 9b. Com-
prevents division by zero. The angle between reprojection puting the tone-mapped image is ef ciently computed on
of the texel and the principal axis of the camera is used e GPU by rst calculatingl as the value of thed 1
account for the radial decrease in intensity fO”OWing toe coarsest image in the pyram|d 8f followed by a pixe|Wise_
law [33]. operation.
The viewing angle w.r.t. the surface normal in uences
the measurement accuracy of a thermal camera, especially .
for surfaces with high re ectivity and low emissivity [34]. a[lJ Heat Source Detection
Hence, we model the reliability of the thermal camera by The detection of heat sources is performed by rst bina-
multiplying wyiew (cosine of the viewing angle) with one rizing the 16 bit thermal textureS on GPU. The binarized
minus a Gaussian. The Gaussian reduces the in uence iofiage passes through the contour detection of OpenCV [36]
direct re ection at close to right angles. Fig.]9a shows thevhich outputs a list of points along the contours of the heat
resulting weighting termwiermar W.I.t. the viewing angle. source together with the grouping of the points into continous
For color fusion we replace the third term withie,, from segments delimiting the borders of a heat source in texture
Eq.[1. The weight increases for texels imaged from a frontapace. The seams and cuts added by the UV parameterization
perspective with the camera origin @, . cause gaps in texture space even though texels may be close
Visualizing the full16 bit range of the thermal texture with in the actual mesh. In order to merge the segments in 3D
on-screen8 bit resolution requires an appropriate scalingve calculate axis-aligned bounding boxes (AABB) for each
such that details will be visible. This is especially importansegment from the 3D positiopk of the contour texels and
in scenes with strong variations e.g. regions of re ingreedily merge intersecting bounding boxes to obtain the
a normal tempered environment. A linear scaling wouldnal detections. For visualization purposes, we only draw
create a mostly uniform image where only the ery sectionshe edges of the remaining AABBs as shown in [Fig. 10.



a) Thermal map with detections b) Detections ¢) Merged detections

Fig. 10: Merging of detected heat sources: Detections of heat sources from the thermal texture (left) are lifted to 3D yielding
multiple overlapping regions (middle). The estimated bounding boxes are greedly merged to yield a nal detection (right).

TABLE I: The run-time for the different parts of our pipeline.
The timing for each step is the average run-time to proces
one laser scan. The steps withindicate batch processes
which run for a full aggregated point cloud or a full mesh.

Stage Step Time
Local mesh | 58.3ms %
. Aggregation | 1.2ms =
Meshing PoissoM 6.6s ;
QSlimY 5.7s s
Unwrapping 26s
Raytrace 67.5ms ~
Dynamics Splat 32.3ms o,
Slice 9.6ms =
Texture Texture fuse | 14.8ms E
Fire detect | 12.6ms
=
K]
N
o
x
S

Ours

Cloud #Points | #Verts | Time(s) | Mem(MB)
navely 6:5M 0:15M 10:2 162
simpli ed 0:8M 0:13M 6:6 151

Fig. 11: Comparison on dynamic point removal against
TABLE Il: Poisson reconstruction using themely aggre- method by Razlaw et al. [37].
gated cloud and our edge-aware simpli ed cloud. We report

the number of points of the input cloud, the number obf the run-time of each component is provided in Tgb. I.
vertices Of the reconstructed meSh, and the time and peﬁ&rthermore we include an ana'ysis of the run-time of

memory used by the reconstruction process. Poisson reconstruction for a point cloud in which every point
of the laser scan is meely aggregated and compare it with
VI. EVALUATION our method of 1D line simpli cation in Talj. |II.

We perform all experiments on a Laptop equipped with The second experiment took place on a snowy day at the
an Intel Core i7-8550U CPUL6 GB RAM and a dedicated re ghting training facility of the re brigade Dortmund.
Nvidia MX150 mobile GPU with2 GB VRAM. There are three res with increasing detection dif culty

For the rst two experiments, we ew with a DJI Matrice installed. The ame on the rst oor above a window is
600 MAV equipped with a stereo rig of Point Grey BlackFly-directly visible. The second re is at an angle behind a
S U3-51S5C-C color cameras, a FLIR Boson 640 thermatindow on the ground oor and the third is below the roof.
camera and a Velodyne Puck LITE LIDAR. The heat sourc&he last two res are only visible in RGB images from a
in the initial test was a brick on a stove in our hall. The pilocertain angle or may be inferred from the missing snow on
ew in from outside and followed the MAV through the door. the roof but not in summer. In contrast, our detection nds
Hence, the initial mesh (Fifj-J7a) contains a tube-like structut®em since all three are clearly visible on the thermal texture
which is in contradiction to many range measurements and Fig.[1.
vanishes after point removal and remeshing. Further con-Our third experiment evaluates the capabilities of the
tradictions stem from Poisson reconstruction artifacts angroposed dynamic object removal in a more challenging
windows. The heat source is clearly visible in the thermadetup. We compare our method against Razlaw et al. [37]
map (Fig.[ID) and successfully detected (red box). Then their LIDAR dataset recorded from the same MAV with
parts of the pipeline that are performed for each laser scéour people running around. Fi§. [11 shows the resulting
are capable of running in real time while batch processgmint clouds. While both methods remove the traces, ours
like Poisson reconstruction, mesh simpli cation with QSlimretains more details like pillars and a sign in the courtyard.
and UV unwrapping run for several seconds. An analysi8lthough, small regions of the ground plane are removed by



the lattice, the meshing is likely to Il these up.

[15]
VIl. CONCLUSION

In this paper, we proposed a novel thermal mappinbw]
system on textured meshes which couples thermal informa-
tion with geometric representation at independent resolution

while improving scalability and enforces spatial as wellt”

as temporal consistency over multiple observations. Ray-
tracing through the mesh allows dynamic object removal via
occupancy mapping with a sparse permutohedral lattice. ViAS!
further showed how to utilize the texture for detection and
localization of res and heat sources. Although our systertil
is currently a batch process, all individual steps except for
the meshing run in real-time. Hence, we want to furthepo)
investigate how to incorporate incremental meshing.
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