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Abstract� Automated �re and heat source detection is a
helpful and important capability of a robotic system to assist
�re�ghters in various search and rescue (SAR) scenarios. In
this paper, we investigate thermal mapping using textured
meshes from preregistered LIDAR scans and show how to detect
and localize heat sources therein. Further, we propose a novel
occupancy mapping approach based on a sparse permutohedral
lattice with a contradiction indicator deduced from ray-tracing
the mesh. We evaluate our system on three datasets recorded
with a micro aerial vehicle (MAV) including heat sources in a
hall and real �ames at a �re brigades training site. Dynamic
objects are removed from the mesh, heat sources are located
and their sizes are estimated.

I. I NTRODUCTION

Recent advances in robotic systems promise new solutions
to support emergency forces in Search and Rescue (SAR)
scenarios [1]. When �re�ghters approach a disaster site, it is
mandatory to obtain an overview quickly and to continuously
monitor the situation [2], especially if lives are at stake.
Robotic systems exhibit a large potential to aid in this under-
taking while reducing the risk for emergency personnel [3].
The �re�ghters in the recentNotre-Dame de Pariscathedral
�re had to withdraw from the cathedral nave after the spire
was in imminent danger of collapsing. Instead, a remote-
controlled unmanned ground vehicle (UGV) was deployed
for continued �re extinguishing and monitoring [4].

While such UGVs are nowadays a rare occurrence in
�re brigades, micro aerial vehicles (MAVs) are increasingly
used in recent years. MAVs equipped with thermal and
color cameras have proven themselves as versatile tools
delivering unobstructed views for points of interest. The real-
time footage enables mission specialists to see the extent
of the disaster. Close-up views, e.g. of collapsed [5] or
burning buildings, are readily available without endangering
the disaster response teams [6]. Meanwhile, thermal sensors
allow to perceive people and to partially see through smoke
and detect the seat of �re. Thus, an MAV can help to
optimally position the �re hose without direct line of sight
to the �re.

Nowadays, most disaster response UGVs and UAVs are
remote-controlled [7] and as such limited by the sensors
�eld-of-view, the latency for control input, radio range and
distance to the operator. Insuf�cient sensor coverage or loss
of communications, even if temporary, can cause the loss of
the robot and potentially in�ict further damage, e.g. from a
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crashing MAV. Hence, the A-DRZ project1 aims to promote
the development of ready-to-use autonomous rescue robotics.

The main contribution of this paper is a novel reconstruc-
tion system for textured meshes (Fig. 1) with automated
localization of heat sources. We mesh preregistered LIDAR
scans and fuse thermal as well as color images in textures.
The textured mesh allows us to show high visual detail
with simple geometric structure. Meshed dynamic obstacles
tend to create tube-like structures that reduce the overall
texture accuracy. We tackle these artifacts with ray-tracing
through the mesh and determine occupancy with a sparse
permutohedral lattice. The textures, fused from thermal as
well as color images, provide a meaningful visualization
for disaster response teams enriched with an automated
detection and localization of heat sources. We demonstrate
our thermal mapping approach on two different datasets
including multiple real �res at a �re�ghting training site.
An accompanying video is available2.

II. RELATED WORK

Thermal mapping [8] for building inspection typically
relies on simultaneously captured color and thermal images
from different poses and employs standard photogrammetry
pipelines. A Structure-from-Motion (SfM) system registers
color images in a common reference frame and generates a
sparse 3D point cloud. Multi-View-Stereo (MVS) then gen-
erates a denser point cloud which is meshed and converted
into simple Building Information Models (BIM). Thermal
images are co-registered to RGB images e.g. using ground
control points (GCP) and overlayed as a texture [9].

In robotic applications, a sparser colorized point cloud
from few images (< 100) is often suf�cient since computa-
tional resources and time-constraints are more restrictive. For
phenotyping applications, Sha�ekhani et al. [10] associate
thermal values via projection to the SfM/MVS generated
point cloud of calibrated stereo color cameras.

Sentenac et al. [11] use as well an SfM approach to
triangulate matched points from stereo thermal cameras
which are placed on the end effector of a Cartesian robot
to perform thermomechanical analysis.

Truong et al. [12] generate two separate point clouds from
color and thermal images by SfM and MVS. Since each SfM
reconstruction is only upto scale, the correct metric scaling is
computed with the calibrated relative transformation. Finally,
iterative closest points (ICP) further improves the registration
and allows to superimpose thermal and colored point clouds.

1https://rettungsrobotik.de
2https://www.ais.uni-bonn.de/videos/SSRR_

2019_mesh
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a) Light-weight mesh b) RGB texture and �re detections c) Thermal texture

Fig. 1: Textured meshes: We reconstruct a light-weight mesh of the scene geometry using Poisson reconstruction (left). RGB
and thermal data is fused into high resolution textures. The globally fused thermal texture (right) is used to detect heat
sources and estimate their extent (middle).

Fig. 2: Pipeline: Individual range images are used to create local meshes for fast normal estimation and cloud simpli�cation.
The resulting points, equipped with normals, are aggregated into a global point cloud. Poisson reconstruction is employed to
extract a mesh. In a second step, the range images are used anew to ray-trace through the created mesh and map the occupancy
using a permutohedral lattice. Points belonging to moving objects are discarded and the resulting cloud is remeshed. Finally,
the mesh is simpli�ed and unwrapped to provide a light-weight scene representation. In the third step, individual RGB and
thermal images are fused onto the mesh. The thermal texture is binarized and used to detect heat sources on the 2D plane.
The detections are lifted to 3D where they are further merged to yield the �nal heat source detections.

Yamaguchi et al. [13] superimpose thermal images on the
estimated 3D point cloud of a Visual Odometry (VO) algo-
rithm generated from color images. MVS is run separately on
both modalities. A small triangulated mesh allows to overlay
the current thermal image in the corresponding color image.

LIDAR and RGB-D sensors provide a vast amount of
metric range measurements and allow for skipping the
costly SfM and MVS steps. Instead, iterative closest point
ICP aligns different scans. Voxel-based maps are predom-
inantly used for reconstruction and meshed with marching
cubes [14]. For instance, Vidas et al. [15] perform online
mapping with an RGB-D and a thermal camera. Feature-
based VO is fused with an ICP alignment. Keyframes are
merged in a voxel grid and colored through ray-tracing along
the view direction. Instead, Mittal et al. [16] aggregate depth
images from an MAV in a voxel-based OctoMap, for path

planning and landing site detection in rough terrain, as well
as an RGB-vertex-colored mesh with VoxBlox for inspection
by the ground personnel.

Sch¤onauer et al. [17] aimed to provide �re�ghters with an
augmentation based on an RGB-D and thermal cameras that
overlays the live image on the ray-traced truncated signed
distance function (TSDF) image from Kinect-Fusion. For the
fusion of multiple thermal images, they store two frames per
second, but did not provide more insights on the fusion itself.
Marching cubes meshes the TSDF in a post-processing step.
Their approach is only suitable for room-scale environments
due to high memory requirements of the TSDF.

Borrmann et al. [18] combine a terrestrial LIDAR with
a thermal and color camera on a UGV. A light-bulb grid
helps to improve the calibration between LIDAR and thermal
camera. Like us, they assume simultaneous image and scan



acquisition, as well as preregistered scans from a simulta-
neous localization and mapping (SLAM) system. Points are
projected to color and thermal images, then clustered per
pixel and heuristically associated per cluster. The result is
a colorized point cloud which is visualized with intensity,
color or thermal information and allows to detect walls and
windows in an automated fashion [19]. Their system captures
only 9 images per scanner revolution with little overlap
and only one revolution per pose, whereas we intentionally
use image streams with high overlap and fuse multiple
observations in order to obtain consistent textures. Similarly,
Kim et al. [20] rotate three 2D LIDARs, a DSLR, and a
thermal imager on a UGV to stitch panoramic images and
point clouds.

A mapping based approach is taken by Zeise and Wag-
ner [21]. They project LIDAR measurements into thermal
images and aggregate the resulting point cloud in an Oc-
toMap. The map is utilized to classify dielectric and metallic
materials according to their emissivity based on the its
viewing angle dependency.

Fritsche et al. [22] perform heat source detection directly
on a fused 2D LIDAR and Mechanical Pivoting Radar
point cloud. They process the scan further to estimate the
robots pose. An occupancy grid map aggregates the scans
and removes dynamic objects and spurious measurements.
The detection clusters high-temperature points based on
their Euclidean distance and stores the location, mean and
temperature variance as well as the number of points in
the cluster. In contrast, we acquire a 3D position and the
approximate extent of the heat source while generating a 3D
viewable representation on a mesh.

III. OVERVIEW

We present a novel approach to thermal map generation by
coupling environment geometry with fused thermal informa-
tion using textured meshes at independent resolutions. The
independent resolution between the geometry and the texture
allows to represent large scenes with a coarse mesh while the
texture can be highly detailed. Our method operates in three
steps: mesh generation, texturing and heat source detection.

In the mesh generationstep [23], we �rst aggregate
point clouds from range sensors assuming that an off-the-
shelf SLAM system preregistered the scans into a common
reference frame. We utilize a fast normal estimation based
on an edge-maintaining local mesh with local line simpli�-
cation. This heavily reduces the number of points aggregated
without loss of detail while reducing time and memory
requirements for global meshing. Poisson reconstruction [24]
creates a global mesh from the aggregated point cloud with
normals. QSlim [25] further simpli�es the mesh. In a second
run, we remove measurements of dynamic objects via ray-
tracing through the mesh and �lter occupancy with a sparse
permutohedral lattice [26] before remeshing.

In the texturingstep, we parameterize the mesh for textur-
ing by adding seams and cuts in order to deform the mesh
into the 2D plane. The thermal images, as well as RGB, are
fused into individual textures.

In the �re detection step, we threshold on the thermal
texture and �nd the extents of the �re.

Hence, the contribution presented in this article is fourfold:
� a scalable system for mesh creation from range mea-

surements with coupled geometry and fused thermal
data at independent resolution,

� a mesh-based dynamic object removal by means of ray-
tracing,

� a fusion method for thermal images into a texture,
� thermal-based heat source detection on the texture.

IV. N OTATION

In the following, bold uppercase (lowercase) letters denote
matrices (column vectors). The4 � 4 matrix T F2 F1 is a
rigid transformation which maps points in homogeneous
coordinates from coordinate frameF1 to coordinate frame
F2. A subscript representing the frame is added when nec-
essary, e.g. a point in world coordinates:pw . The poseT F

and the camera matrixK F 2 R3� 3 project the pointpw

into frameF . We assume the camera matrix to be derived
from the standard pinhole model with focal lengthf x ; f y ,
and principal pointcx ; cy . The projection ofpw into image
coordinatesu = ( ux ; uy ) |

F 2 
 � R2 is given by the
following mapping:

gF (pw ) : pw ! pF ; (1)
(pF ; 1)| = T Fw � (pw ; 1)| ; (2)
� F (pF ) : pF ! uF ; (3)

(x; y; z) |
F = K F � pF ; (4)

uF = ( x=z; y=z) | : (5)

I (u) : 
 ! Rn denotes an image or a texture, where
 �
R2 maps from pixel coordinatesu = ( ux ; uy ) | to n-channel
values.

V. M ETHODOLOGY

Our system (Fig. 2) requires an input sequence of or-
ganized point clouds3 P t , thermal and RGB imagesI t

(t indicates the time step). We assume preregistered point
clouds in a common reference frame, and given extrinsic
calibration T cd from depth sensor to camera, as well as
camera matrices. The depth sensor can be an RGB-D camera
or a laser scanner. The output of our system is fourfold:

� a triangular mesh of the scene geometry, de�ned as a
tuple M = ( V; F ) of verticesV and facesF . Each
vertex 2 (R3 � R2) contains a 3D point and a UV
texture coordinate. A mesh face is represented by the
indices2 N3 of the three spanning vertices withinV.

� a thermal textureS representing the heat radiated from
the surface,

� a set of axis-aligned bounding boxes of heat sources,
� an RGB textureC representing the surface appearance.

3An organized point cloud exhibits an image resembling structure, e.g.
from commodity RGB-D sensors.



We �rst describe our depth preprocessing in Sec. V-A.
Afterwards, we detail the mesh generation and parametriza-
tion (Sec. V-B), before elaborating on the thermal and color
integration (Sec. V-C) and heat source detection (Sec. V-D).

A. Depth Preprocessing

We construct the global mesh out of a set of organized
point clouds fP t g obtained from a depth sensor. Surface
reconstruction typically requires precise per-point normals.
The naive way to estimate these is searching for the k-
nearest-neighbors in the fully aggregated global point cloud.
However, this requires a spatial subdivision structure, like
a k-d tree, and easily grows to a considerable size for large
point clouds, thus limiting the scalability. Instead, we exploit
the inherent point cloud structure for fast normal estima-
tion. Depth images from RGB-D sensors allow to directly
query adjacent neighboring points. Rotating lidars generate
organized scans. A complete revolution of e.g. a Velodyne
VLP-16 produces a 2D array of size16 � N containing
the measured range for each recorded point, whereN is
determined by the speed of revolution of the laser scanner.

Given this organized structure, we create a triangular
local mesh with approximated normals as proposed by [27].
However, using all the points would introduce unnecessary
large sets of redundant points that share common planes
which would slow down the subsequent step of global mesh-
ing through Poisson reconstruction. Thus, we simplify each
scan individually without sacri�cing geometrical �delity and
reconstruct the mesh in a faster and more memory ef�cient
manner (Fig. 5). For that, we employ a modi�ed Ramer-
Douglas-Peucker [28] line simpli�cation which is applied on
each scan ring. We introduce additional offset points around
simpli�ed edges to constrain the normals of points and allow
the subsequent surface reconstruction to maintain hard edges
and sharp features (Fig. 3).

(a) Original scanline (b) Simpli�ed scanline (c) Simpli�ed with offset
points

Fig. 3: Line simpli�cation: The original scan line (left) is
excessively dense in planar areas. The original simpli�cation
greatly reduces the number of points but creating a global
surface using a method like Poisson reconstruction overly
smoothes the edges (middle). We add further constraints
which allow Poisson reconstruction to maintain sharp fea-
tures (right).

We create the local mesh in 2D by unwrapping the
scan using polar coordinates and perform a constrained 2D
Delaunay triangulation. Simpli�ed segments from the line
simpli�cation are added as constrained edges in the trian-
gulation. This ensures that points that lie on the same scan
ring will be connected together by triangles. The resulting
triangulation is not optimal when lifted back to 3D as it
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Fig. 4: Edge �ipping: Badly conditioned triangle pairs have
their edge �ipped to promote more equilateral triangles. This
allows the vertices to connect to closely neighboring ones
and improves the subsequent step of normal estimation.

does not take the anisotropic sampling of the laser scanner
into account. Hence, we perform an iterative local mesh
re�nement via edge �ipping that prefers equilateral over
acute-angled triangles (Fig. 4). This ensures that vertices will
be connected to spatially closer vertices. Afterwards, we use
two edges per face to calculate the face normal from the
cross product. Per vertex normals are then estimated via a
Mean Weighted by Angle(MWA) scheme [29] from adjacent
faces.

B. Mesh Generation
We employ Poisson reconstruction to recover a high

quality mesh after aggregating the points and normals from
the simpli�ed scans. Since in geometrically simple areas
like the ground meshes are often overly dense, we apply
a second global simpli�cation step with QSlim [25]. So
far, dynamic objects are still represented in the mesh and
introduce artifacts where there should be free space. Hence,
we identify erroneous triangles by ray-tracing all points
through the mesh. Per simpli�ed scan this runs in real-time
on the CPU with the Embree library [30]. We decided to
use a mesh rather than a voxel grid for ef�ciency reasons. In
general, fewer triangles need to be checked for intersection
during ray-tracing than voxels while triangles better represent
the underlying geometry especially for �at surfaces common
in man-made environments and are more adaptive in size to
the surface.

We use an indicator function� to de�ne contradiction
between the ray and the triangle:

� =

(
0 if wview � (dx � di ) � 

1 otherwise

; (6)

wview = ( ow � pw;i ) � nx : (7)

Here, di is the distance along the viewing ray of the laser
beam to the point of intersection. Obviously, the distancedx

from sensor to laser beam end point is always larger or equal
to di . The weighting factorwview additionally downweighs
steep incident angles using the dot product between viewing
ray from camera originow to the intersection pointpw;i

and surface normalnx . Hence, if the weighted distance is
too large (> 
 ), the ray contradicts the triangle.

In order to remove the points that correspond to dynamic
object we create an occupancy map in which we store the



a) Point cloud b) Local mesh c) Simpli�ed mesh

Fig. 5: Depth preprocessing: During sudden movements of the laser scanner, the scan rings are compressed behind and
expanded in front of the sensor (left). This creates many small and steep triangles which degrades normal estimation. We
perform iterative edge-�ipping in order to connect each vertex with their closest neighbor, hence, improving the likelihood
for estimating correct normals. Furthermore, we apply line simpli�cation to each scan ring independently for data reduction
without sacri�cing mesh �delity.

Fig. 6: Splatting and slicing on the Permutohedral Lattice:
Splatting distributes the values of each point onto the corners
of its corresponding simplex according to the barycentric
coordinates. Slicing is the inverse operation and computes
the output value of a point by sampling the corners of the
simplex using barycentric interpolation. Figure adapted from
Kiefel et al. [31].

indicator function� . Traditional occupancy mapping employs
grids to store the probability of a cell being occupied.
Instead, we use a sparse permutohedral lattice [26] comprised
of regularly orderedd-dimensional simplices withd + 1
vertices each. In our cased is 3 since we work with data in
three-dimensional space. This space representation has the
advantage of scaling linearly with increasing dimensionality
compared to grids w.r.t. memory consumption and number
of vertices. To store the indicator function, we use a splatting
operation which consists of distributing the values of each
point onto the corners of the corresponding simplex (Fig. 6).
This creates an occupancy map which is piece-wise linear
as opposed to the piece-wise constant of traditional grids.
Slicing is the inverse operation of splatting and it computes
the value of a point in space by interpolating between the
values stored in the vertices of the simplex.

For each intersected triangle, we check the enclosing
simplex of the intersecting point, allocate it if needed and
splat the indicator function in homogeneous coordinates. The
homogeneous part serves as a counter which results in a
weighted running average. Once all points are ray-traced and
all indicator functions are embedded in the lattice, we re-
aggregate the point cloud for meshing and determine which
points should be discarded. For this, we obtain for each
scan point a carving coef�cient from the enclosing simplex
through slicing. We threshold on the carving coef�cient
and disregard points with a high coef�cient�thus removing

dynamic points. The static point cloud is again meshed and
simpli�ed.

We �nally parameterize the global mesh for texturing to
obtain UV coordinates per vertex (Fig. 8). For that, we
make use of theUV smart projectfunction provided within
Blender [32].

C. Thermal and Color Integration

In this section we detail our approach on how to update
the global16 bit thermal textureS using individual images.
In addition, we also fuse the raw color imagesI t into a
global 3-channel color textureC. We �rst perform a visibility
check, inspired byshadow mapping techniquesin computer
graphics, prior to updating the global textures. Hence, we
calculate per texelx with UV coordinatesux its 3D point
px via barycentric interpolation from the face vertices. We
then render for the current camera pose the depth map
D and project each texel pointpx into the view. If the
distance towards the texel (dx ) is larger than the value within
D (� (gF (px ))) , the texel lies behind the visible part and will
be discarded. We additionally use a small� set to1 � 10� 3 to
account for possible numerical and discretization issues when
rendering the depth map. We thus use a per texel indicator
variabler x 2 f 0; 1g to indicate occlusion:

r x i =

(
1; if dx � D (� F (gF (px ))) + �
0; otherwise

: (8)

All remaining texels(r x < 1) are fused with a weighted
running average:

C(ux )t =
W (ux )t � 1C(ux )t � 1 + wx I t (� F (gF (px )))

W (ux )t � 1 + wx
;

(9)
W (ux )t = W (ux )t � 1 + wx : (10)

For the case of thermal images we fuse into the global
thermal textureS and I t then denotes the current thermal
image at timet. The weightwx takes the distance, the radial



a) Initial mesh b) Contradiction c) Remeshed d) Areas removed

Fig. 7: Dynamic object removal: An initial mesh is created by using the point cloud from a laser scanner. The point cloud
is then ray-traced into the mesh and an occupancy map is stored in the vertices of a permutohedral lattice (middle). The
points falling in areas of high contradiction with the mesh (yellow) are discarded and the resulting point cloud is remeshed
(right).

a) UV parameterized b) UV unwrapped

Fig. 8: UV parameterization: Roughly planar regions are
clustered together and greedly projected onto the 2D plane
to obtain UV coordinates for each vertex of the mesh.

intensity fall-off, and the viewing angle into account:

wx = wdist � wvign � wthermal ; (11)

wdist = ( kgF (pw;x )k2
2 + � ) � 1; (12)

wvign = cos(� x )4; (13)

wthermal = wview �
�

1 � (�
p

2� ) � 1e� 1
2 ( � � �

� )2 �
; (14)

� = arccos (wview ) : (15)

Here,wdist is the inverse distance from the texel to the cam-
era, which promotes frames that are spatially closer to the
mesh, improving the resolution and accuracy. A small� value
prevents division by zero. The angle� x between reprojection
of the texel and the principal axis of the camera is used to
account for the radial decrease in intensity following thecos4
law [33].

The viewing angle w.r.t. the surface normal in�uences
the measurement accuracy of a thermal camera, especially
for surfaces with high re�ectivity and low emissivity [34].
Hence, we model the reliability of the thermal camera by
multiplying wview (cosine of the viewing angle) with one
minus a Gaussian. The Gaussian reduces the in�uence of
direct re�ection at close to right angles. Fig. 9a shows the
resulting weighting termwthermal w.r.t. the viewing angle.

For color fusion we replace the third term withwview from
Eq. 7. The weight increases for texels imaged from a frontal
perspective with the camera origin atow .

Visualizing the full16 bit range of the thermal texture with
on-screen8 bit resolution requires an appropriate scaling
such that details will be visible. This is especially important
in scenes with strong variations e.g. regions of �re in
a normal tempered environment. A linear scaling would
create a mostly uniform image where only the �ery sections
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Fig. 9: Thermal weighting function w.r.t. viewing angle and
tone mapping operator which assigns more range to low
values.

are distinguishable. Hence, we use a simple tone mapping
operator [35]:

L =

 

j
 j � 1
X

u 2 


S (u)

! � 1

; (16)

L (ux ) =
S (ux ) � L

1 + S (ux ) � L
: (17)

This non-linear mapping squishes higher intensities while
stretching lower intensities as visualized in Fig. 9b. Com-
puting the tone-mapped image is ef�ciently computed on
the GPU by �rst calculatingL as the value of the1 � 1
coarsest image in the pyramid ofS, followed by a pixelwise-
operation.

D. Heat Source Detection

The detection of heat sources is performed by �rst bina-
rizing the 16 bit thermal textureS on GPU. The binarized
image passes through the contour detection of OpenCV [36]
which outputs a list of points along the contours of the heat
source together with the grouping of the points into continous
segments delimiting the borders of a heat source in texture
space. The seams and cuts added by the UV parameterization
cause gaps in texture space even though texels may be close
in the actual mesh. In order to merge the segments in 3D
we calculate axis-aligned bounding boxes (AABB) for each
segment from the 3D positionpx of the contour texels and
greedily merge intersecting bounding boxes to obtain the
�nal detections. For visualization purposes, we only draw
the edges of the remaining AABBs as shown in Fig. 10.



a) Thermal map with detections b) Detections c) Merged detections

Fig. 10: Merging of detected heat sources: Detections of heat sources from the thermal texture (left) are lifted to 3D yielding
multiple overlapping regions (middle). The estimated bounding boxes are greedly merged to yield a �nal detection (right).

Stage Step Time

Meshing

Local mesh 58.3ms
Aggregation 1.2ms

Poissony 6.6s
QSlimy 5.7s

Unwrappingy 26s

Dynamics
Raytrace 67.5ms

Splat 32.3ms
Slice 9.6ms

Texture Texture fuse 14.8ms
Fire detect 12.6ms

TABLE I: The run-time for the different parts of our pipeline.
The timing for each step is the average run-time to process
one laser scan. The steps withy indicate batch processes
which run for a full aggregated point cloud or a full mesh.

Cloud #Points #Verts Time(s) Mem(MB )
na¤�vely 6:5M 0:15M 10:2 162

simpli�ed 0:8M 0:13M 6:6 151

TABLE II: Poisson reconstruction using the na¤�vely aggre-
gated cloud and our edge-aware simpli�ed cloud. We report
the number of points of the input cloud, the number of
vertices of the reconstructed mesh, and the time and peak
memory used by the reconstruction process.

VI. EVALUATION

We perform all experiments on a Laptop equipped with
an Intel Core i7-8550U CPU,16 GB RAM and a dedicated
Nvidia MX150 mobile GPU with2 GB VRAM.

For the �rst two experiments, we �ew with a DJI Matrice
600 MAV equipped with a stereo rig of Point Grey BlackFly-
S U3-51S5C-C color cameras, a FLIR Boson 640 thermal
camera and a Velodyne Puck LITE LIDAR. The heat source
in the initial test was a brick on a stove in our hall. The pilot
�ew in from outside and followed the MAV through the door.
Hence, the initial mesh (Fig. 7a) contains a tube-like structure
which is in contradiction to many range measurements and
vanishes after point removal and remeshing. Further con-
tradictions stem from Poisson reconstruction artifacts and
windows. The heat source is clearly visible in the thermal
map (Fig. 10) and successfully detected (red box). The
parts of the pipeline that are performed for each laser scan
are capable of running in real time while batch processes
like Poisson reconstruction, mesh simpli�cation with QSlim
and UV unwrapping run for several seconds. An analysis
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Fig. 11: Comparison on dynamic point removal against
method by Razlaw et al. [37].

of the run-time of each component is provided in Tab. I.
Furthermore we include an analysis of the run-time of
Poisson reconstruction for a point cloud in which every point
of the laser scan is na¤�vely aggregated and compare it with
our method of 1D line simpli�cation in Tab. II.

The second experiment took place on a snowy day at the
�re�ghting training facility of the �re brigade Dortmund.
There are three �res with increasing detection dif�culty
installed. The �ame on the �rst �oor above a window is
directly visible. The second �re is at an angle behind a
window on the ground �oor and the third is below the roof.
The last two �res are only visible in RGB images from a
certain angle or may be inferred from the missing snow on
the roof but not in summer. In contrast, our detection �nds
them since all three are clearly visible on the thermal texture
in Fig. 1.

Our third experiment evaluates the capabilities of the
proposed dynamic object removal in a more challenging
setup. We compare our method against Razlaw et al. [37]
on their LIDAR dataset recorded from the same MAV with
four people running around. Fig. 11 shows the resulting
point clouds. While both methods remove the traces, ours
retains more details like pillars and a sign in the courtyard.
Although, small regions of the ground plane are removed by



the lattice, the meshing is likely to �ll these up.

VII. C ONCLUSION

In this paper, we proposed a novel thermal mapping
system on textured meshes which couples thermal informa-
tion with geometric representation at independent resolution
while improving scalability and enforces spatial as well
as temporal consistency over multiple observations. Ray-
tracing through the mesh allows dynamic object removal via
occupancy mapping with a sparse permutohedral lattice. We
further showed how to utilize the texture for detection and
localization of �res and heat sources. Although our system
is currently a batch process, all individual steps except for
the meshing run in real-time. Hence, we want to further
investigate how to incorporate incremental meshing.
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