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Abstract. In recent years, humanoid soccer robots improved consider-
ably. Elementary soccer skills, such as bipedal walking, visual perception,
and collision avoidance have matured enough to provide for dynamic and
exciting soccer games. While the elementary skills still remain hot re-
search topics, it is time to move forward and address higher level skills,
such as motion planning and team play. In this work, we present a new
method to generate ball approach trajectories by planning footstep se-
quences offline and training an online policy to meet the real time require-
ments of embedded systems with low computational power, as typically
used for soccer robots. We compare the results with our current reactive
behavior that was used in the last RoboCup competitions and show the
improvements we achieved.
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1 Introduction

Looking back at nearly a decade of history since the introduction of the Hu-
manoid League to RoboCup in the year 2002, an impressive improvement of
humanoid robot soccer can be observed. In the beginning, robots were barely
able to walk and only penalty kick competitions were possible. Today, elementary
soccer skills, such as bipedal walking, visual perception, and collision avoidance
have matured enough to provide for dynamic and exciting soccer games played
throughout the KidSize, TeenSize and Standard Platform leagues. Guidance and
source code for the implementation of low level skills became freely available
through a large number of scientific publications and even open source software
released by some of the leading teams. While the elementary skills still remain
hot research topics, it is time to move forward and address higher-level skills,
such as motion planning and team play.

Typically, the control software of humanoid soccer robots is organized in
multi-tiered architectures. On top of the fastest sensorimotor control loop, usu-
ally a motion layer is used to generate walking, kicking and get-up motions.
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These skills are enforced by the qualification requirements for all participants
as they are essential for playing soccer. The motions are controlled by a higher
behavior layer that covers more complex actions, such as approaching the ball,
avoiding obstacles, dribbling the ball towards the goal and aligning for a kick.
In the implementation of all leading teams these behaviors are pure reactive [1–
3] in the sense that performed actions are direct results of the current sensory
input without contemplation on possible future states of the environment. It is
remarkable how well robots can already play without planning into the future.
We believe it is time to investigate how planning can be incorporated to produce
smoother and more intelligent motion trajectories during games to improve the
overall performance of soccer robots.

In this work, we demonstrate how ball approach trajectories can be generated
by footstep planning with the A* algorithm. As motion planning is a computa-
tionally expensive task, we use a set of precalculated footstep sequences to distill
an online policy for obstacle-free situations on the soccer field. The recall of the
policy is fast, just like a reactive behavior, but it produces trajectories that are
implicitly planned into the future.

The remainder of this paper is organized as follows. After reviewing related
work, we will outline our implementation of the A*-based footstep planning al-
gorithm. In Section 4, we explain how we used our footstep planning algorithm
to precalculate planned trajectories offline for a grid of situations and how we
used standard machine learning concepts to learn an online policy that repro-
duces the planned trajectories. Finally, we integrate the online policy as a ball
approach module into our soccer software and compare its performance with our
reactive behavior from the last competitions.

2 Related Work

Footstep planning is a fairly new research topic. The most prominent propos-
als in [4–6] and also [7] are based on the A* algorithm. By imposing a strong
discretization on the state space and using only a small, discrete set of actions,
these online solutions plan a few steps ahead and are able to deal with dynamic
environments. Uneven floor plans are also considered, so that the footstep plans
can include stepping over obstacles and climbing stairs. An intriguing alternative
solution has been recently shown in [8]. Here, a short sequence of future footsteps
is considered to be a virtual kinematic chain as an extension of the robot. Their
location is determined by inverse kinematics. The configuration space and the
action space are not discretized, but the algorithm is computationally expensive.
A computationally more promising method that can plan in a few milliseconds,
if the environment is not too cluttered, has been suggested in [9]. The idea is
to solve the footstep planning problem mostly with a path planning algorithm.
Actual footstep locations are only given in key points, where the walking speed
of the robot has to be zero, for example when stepping over an obstacle. The
majority of the footstep locations are laid out along the planned paths by the
motion generator developed for HRP-2 [10–12]. The closest related work is [6],



where an A*-based footstep planning algorithm was adapted for the humanoid
robot ASIMO. As the walking algorithm of ASIMO was not precisely known,
the authors were forced to reverse engineer a footstep prediction algorithm from
observations with a motion capture system.

Another approach to trajectory planning is the Dynamic Window algorithm
[13], but it only plans a small amount of time into the future and therefore it
cannot produce optimal trajectories, can get stuck in a local optimum and is
likely to produce oscillating behaviors, just like any reactive algorithm.

Since the trajectories described by human walkers appear to have a strong
resemblance with those of non-holonomic vehicles [14], global path planning
methods that determine a geometrical path that adheres to continuous curvature
and minimal turning radius restrictions, such that in principle it can be followed
by a vehicle with a steering wheel [15] [16] are also potential candidates to be used
for humanoid robot motion planning. But this setting is purely kinematic and
ignores important physical aspects of motion planning: velocity and acceleration.

In full-fledged kinodynamic planning [17], the state of a moving object in-
cludes not only the Cartesian coordinates and the orientation, but also the trans-
lational and angular velocities. Planning is mostly performed directly in control
space where velocity and acceleration bounds can inherently be taken into ac-
count. The increase in dimensionality makes discrete cell decomposition methods
impractical. Thus, randomized approaches [18] are often used that sample possi-
ble control inputs and project them into the state space by numerical integration.
This way, the open-loop controls to execute a calculated trajectory arise natu-
rally. The avoidance of moving obstacles is also possible, as demonstrated in [19],
by extending the state space by the time dimension. The computation times re-
ported by the works cited above do not yet allow the application of kinodynamic
planning on embedded systems.

The significant difference between our approach and the approaches discussed
above is that we do not attempt online execution of a planning algorithm. In-
stead, we plan near-optimal solutions for a large number of situations offline and
learn a fast-to-evaluate policy. This approach is similar to Plan-Then-Compile
architectures [20] in the aspect that the first action of a planned action sequence
is “compiled” to a stimulus response of a reactive behavior.

3 Footstep Planing

The foundation of our concept is an implementation of the A* algorithm taylored
to the task of planning footsteps for a humanoid robot to reach a goal state by
placing its foot on a given target footstep location. In the robot soccer domain
this target is in most cases a position behind the ball suitable for kicking. We
define the state s = (sl, sv) ∈ S = L × V in a six dimensional state space S
that contains the set of all Cartesian left foot poses L = R × R × [−π, π] and
velocity vectors V = [−1, 1]3, which satisfy the velocity constraints of the robot.
The gait velocity vector describes fractions of the maximum allowed velocities
in the sagittal, lateral and rotational directions, respectively. The velocity has



a strong influence on the step location of the next state, because the step size
of the robot grows with higher velocities. We are able to map the gait velocity
vector to a step location in Cartesian space with a motion capture-based trans-
formation that we published last year [21]. To limit the branching factor, we
defined only a small discrete set of five actions A ⊂ [−1, 1]3 as feasible acceler-
ations of the lateral velocity to the left or to the right, the rotational velocity
clockwise or counter clockwise, and the sagittal velocity only forward, each with
the maximum allowed value as configured for a specific robot. We did not need a
sagittal deceleration, because after every action the velocity limits of the robot
are enforced and accelerating the lateral or rotational components automatically
leads to a decrease of the sagittal velocity. An action is always executed twice,
such that after a right-left double step the robot is again in a valid state standing
on the left foot. The state transformation s = t(s, a) is given by

sl = m(m(sl, sv + a), sv + 2a) (1)

sv = sv + 2a, (2)

where sl is the Cartesian location of the left foot, sv is the current velocity of
the robot, a ∈ A is the action to perform, and m(l, v) is the gait control vector
to step location transformation as described in [21]. We chose the double step
as a unit action to cut the depth of the search tree in half and allow the A*
algorithm to find results in shorter time, but as we will show later on, this does
not necessarily mean that the robot has to reach the goal with the left foot.
Please note that since the state includes the current velocity of the robot and
the actions are accelerations, we are performing kinodynamic planning that takes
the dynamic properties of the robot into account.

Fig. 1. Visualization of a planned footstep sequence that leads the robot to the ball
aiming at the center of the yellow goal.



The goal is to reach the set of target states T ⊆ S that are contained by a
ball with a radius of 0.1 around the target state s∗

T = {s ∈ S, ‖s− s∗‖ ≤ 0.1}. (3)

The cost function for every state is simply the number of steps that had to be
taken so far. As a heuristic h(s) we used the Euclidean distance on the ground
plane between the state s and the target state s∗ divided by the largest possible
step size d.

h(s) =
‖(sx, sy)− (s∗x, s

∗
y)‖

d
. (4)

The A* algorithm defined above is able to find nearly optimal dynamic ball
approach sequences. An example is illustrated in Figure 1. The problem with this
approach is that in many cases its runtime exceeds several minutes of computa-
tion and can require gigabytes of memory to keep track of open states. Clearly,
it is not suitable to be run on embedded systems with low computational power
along with the real time requirements of a soccer game. Thus, we only use it to
compute a large set of trajectories offline that we use as training examples to
learn a policy.

4 Policy Learning

Using the A* algorithm described in the previous section, we calculate the foot-
step plans for a set of start states defined as follows. The ball is located in the
origin of the coordinate system and the y-axis points towards the target di-
rection (the goal), as illustrated in Figure 2. The target velocity at the ball is
set to the maximum forward speed of the robot. We distribute the start states
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Fig. 2. The domain of start positions. The coordinates of the start positions are dis-
tributed in a grid in the third quadrant, from which a circular area with a radius of
three meters is selected. Each of these positions has an orientation in the range ±π
centered around the direct line to the ball.
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Fig. 3. The last step of precalculated paths does not hit the target exactly. A trans-
formation can correct these inaccuracies. The size of the set of target states is strongly
exaggerated in this illustration.

in the third quadrant in a six-dimensional grid layout with ten intersections
in each dimension. From these we select only those with a distance no greater
than three meters to the ball. The orientations are taken from a range of ±π
centered around the direct line to the ball. Altogether we have somewhat less
than 106 start states due to the selection of the circular area. Any situation can
be mirrored between the third and the fourth quadrant, so the fourth quadrant
does not need to be calculated explicitly. The first and the second quadrant are
excluded from our considerations.

With 24 CPU cores, we managed to calculate approximately 17,000 paths
randomly sampled from the defined grid in two days time totaling approximately
400,000 single steps. In post processing we corrected the error A* makes by
applying a translation and a rotation to each of the entire footstep sequences
such that the final footstep precisely hits the target. This is depicted in Figure 3.
Applying a mirroring technique, we also produced example footstep plans that
finish with the right foot instead of the left foot and doubled the size of the
training set. The idea of designing the policy is that no more than the next
single step is needed to be known at any time. After the robot has executed the
step, it will evaluate the policy again and obtain a new step. By successive recall
of the policy, the same footstep sequence will be reproduced that was planned
with the A* algorithm requiring only very little computational power. The policy
π : a(s) ∈ A we aim to learn is a mapping from a six dimensional state space
to a three dimensional action space. Here the state s is expressed in a reference
frame centered on the target. Consequently, we do not need to deal with entire
footstep sequences, but every single step can be used as a training example.
A convenient property of the method we used to calculate the training data is
that since all A* paths lead to the target, the density of the steps increases
automatically in the vicinity of the ball. Since the training set contains both,
the robot is standing on the right foot and the robot is standing on the left
foot states, we can now discard the double step restriction that we introduced



to accelerate the A* algorithm. In fact we distinguish four different situations.
The robot is standing on the right foot and wants to hit the ball with the right
foot denoted as RR, the robot is standing on the left foot and wants to hit the
ball with the right foot denoted as LR, and respectively RL and LL situations.
For each of the four combinations we train a separate policy. Please note that
the A* precalculation produced only RL and LL results, but in post processing
we generated training examples for RR and LR situations as well. The choice
whether the robot wants to hit the ball with the left foot or the right foot can
be made once at the beginning of a ball approach either with a heuristic or by
calculating the expected number of steps for both cases using the learned policy
and deciding for the lesser.

To perform the actual learning task, we divided the training data into ap-
propriate sets for the RR, LR, RL, and LL policies, each of them containing
200,000 examples. We evaluated three different machine learning approaches: k-
nearest neighbor interpolation, piecewise linear approximation and multi-layer
perceptrons. First we tried k-nearest neighbor interpolation by retrieving the 200
nearest neighbors for a query point, fitting a six-dimensional hyperplane with a
least squares method into the point cloud of the neighbors for each of the three
output dimensions. The hyperplanes are evaluated at the location of the query.
We found that this method produced smooth step sequences that were able to
hit the ball reliably in simulation. However, the policy recall times were not
satisfactory due to the overhead of the nearest neighbor retrieval and the hyper-
plane fitting with each query. Therefore we transformed the data set to a regular
grid by evaluating each grid node with the aforementioned k-nearest neighbor
technique. In a regular grid the nearest neighbors can be found instantly and no
hyperplane fitting is needed, since we can just interpolate between the corners of
a grid cell (a six-dimensional grid cell has 64 corners). Using the regular grid we
achieved efficient policy recall times without sacrificing precision, but it still has
some undesirable memory requirements. We used a grid with 11 intersections
in each of the six dimensions resulting in 80 MB of data in double precision.
As a third alternative we trained-multi-layer perceptrons. We used a separate
network for each of the three output dimensions with one output neuron, 20 sig-
moid neurons in the hidden layer and six input neurons. The networks learned
the desired functions with a precision comparable to the other two approaches.
The evaluation of a network is even faster than the piecewise linear approxima-
tion and the memory requirements for storing the network weights are minimal.
We present two types of accuracy measures in Figures 4 and 5. The single step
accuracy in Figure 4 shows the mean error and standard deviation of the gait
velocities produced by the learned policies compared to the corrected output of
the A* algorithm. The errors were determined using a test set of approximately
10,000 examples that were not used for training. The single step errors do not
accumulate over an entire path, because the policy recall after each step has an
error correcting property. Most important is the accuracy at the target point at
the end of the entire footstep plan. This is shown in Figure 5. The policy recall
times are shown in Figure 6. In light of the low hardware requirements of the
neural network we decided to use it for all subsequent experiments.
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Fig. 4. Evaluation of the single step accuracy of the three machine learning methods.
The bar chart represents the mean error and standard deviation of the gait velocities
produced by the learned policies compared to the output of the A* algorithm.
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Fig. 5. Evaluation of the path accuracy. Mean errors and standard deviations are
measured after the last step of a successive policy recall for an entire footstep plan.
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Fig. 6. Policy recall times for a single step when using the regular grid (left) or the
multi-layer perceptron (right). The k-nearest neighbor method is omitted from this
comparison, because its recall times are much higher. The times were measured on an
Intel Core 2 Duo T8300 2.4GHz CPU with Windows 7.



5 Experimental Results

We integrated the trained policies into our soccer software and performed an
experiment with a real robot. We compared the performance of the new trained
footstep policies with our reactive dribbling behavior that played an important
role in our success of winning the TeenSize competitions last year. The same
robot “Dynaped” was used to evaluate both ball approach strategies. The ex-
perimental setup is illustrated in Figure 7.

Starting from the poses numbered from one through five, dribbling ball ap-
proaches were performed with both methods such that the robot would hit the
ball located in one of the positions a, b or c with maximum possible speed.
The target direction is the center of the goal to the left. Each start pose and
ball position combination was repeated seven or eight times, so that at least
100 ball approaches were performed with each, the footstep policy and the re-
active behavior. The robot and the ball were equipped with reflective markers
and we recorded every approach with a motion capture device. Using the mo-
tion capture data we were able to reconstruct the ball approach trajectories and
identified the footstep locations of single steps. For a qualitative comparison we
determined figures such as the number of steps taken, the ball velocity, and the
rolling direction of the ball. The footstep policy and the reactive ball approach
are compared in accuracy of meeting the target angle, the velocity of the ball
after contact and the number of steps taken by the robot to reach the ball. Num-
bers are presented in Figure 8. These figures are not easy to compare, because
they trade off properties of a ball approach. For example, ball velocity can be
gained by sacrificing precision. The angle precision of the footstep policy was in
average five degrees better, than the reactive behavior. The ball velocity could
not be improved. However, approximately the same ball velocity was reached
with a higher precision. The average number of steps taken was also improved
by the footstep policy and it is worth taking a closer look at Figure 9, where the
number of steps is depicted in detail for each start pose and ball position com-
bination. In easy situations, where the robot basically only has to walk straight
forward against the ball, the reactive behavior performs just as well. In hard
cases, however, the footstep policy outperforms the reactive behavior by five or
six steps. There are also cases, where the reactive behavior just walks straight
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Fig. 7. Arrangement of the robot start poses [1..5] and ball positions [a,b,c].
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Fig. 10. Reconstructed ball approach trajectories of the reactive behavior (green /
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into the ball without care for the target angle, as shown in Figure 10 part (a).
In these cases the footstep policy has difficulties to approach the ball with the
same number of steps while giving the target angle a higher priority.

In Figure 10 some of the reconstructed ball approach trajectories are shown.
In case (a) the reactive behavior takes only a small amount of steps and moves
the ball with a high velocity, but only at the cost of ignoring the target direction.
In cases (b), (c), and (d) it can be clearly seen how the reactive behavior heads
for the ball first and then tries to align to the goal while the footstep policy
produces smooth approach trajectories.

6 Conclusions

We have presented a ball approach trajectory generation method by footstep
planning. The plans were calculated offline using the A* algorithm for a set of
predefined start situations. The resulting steps were used to train a policy that
predicts only the next step. Successive evaluation of the policy reproduces the
planned trajectories implicitly. With this method, we were able to outperform
our reactive ball approach behavior while maintaining low computational and
memory requirements. The current footstep policy does not avoid obstacles. In
future work, we are planning to implement obstacle avoiding ball approaches
by injecting via points from a higher layer. Another possibility is to include an
obstacle in the training data and training the footstep policy to take obstacles
into account.
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