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Kurzfassung 

Die Verwendung von differentiellem GPS ist für das autonome Befahren vordefinierter GPS 

Routen nicht ausreichend. Autonome Fahrzeuge müssen ihre Fahrbahn für ein sicheres Be-

fahren zusätzlich wahrnehmen. In diesem Beitrag stellen wir eine Methode zur Schätzung 

des Positionierungsversatzes innerhalb der Fahrspur bezüglich eines abstrakten Straßen-

modells vor, in der Bordsteine mit einem 64-strahligen Laser-Entfernungssensors detektiert 

werden. Die Entfernungsmessungen werden in omnidirektionale Höhenbilder transformiert, 

welche in sensorintrinsischen Gier- und Nickwinkelkoordinaten repräsentiert werden. In die-

ser dichten bild-ähnlichen Repräsentation können Bordsteine durch Anwendung einfacher 

orientierter Kantenfilter detektiert werden. Bordsteinmessungen werden mit Erwartungen 

registriert, die am Straßenmodell abgeleitet werden. Die resultierenden instantanen Ver-

satzmessungen zwischen Straßenmodell und detektiertem Straßenverlauf werden schließ-

lich gefiltert, um eine Korrektur der Position innerhalb der Fahrspur zu erhalten. 

 

Abstract  

For autonomous driving on predefined GPS routes, the use of differential GPS alone is not 

sufficient. Autonomous cars must perceive the street in order to drive safely. In this paper, 

we propose to estimate in-lane positioning offsets with regard to a high-level road network 

model by sensing street curbs with a 64-beam laser-range-finder. The laser measurements 

are transformed into height images represented in sensor-intrinsic yaw and pitch coordi-

nates. In this dense image-like representation, curbs can be detected with simple oriented 

edge filters. The curb measurements are matched to expected curbs derived from the road 

network model. This scan-matching procedure yields measurements of offsets between road 

model and detected road, which are filtered to obtain a correction of the in-lane position. 

 

1. Introduction 

In many autonomous car applications, driving on predefined GPS routes is common practice. 

For this purpose, differential GPS in combination with inertial and odometry measurements is 

used to gain position measurements with a relatively high accuracy compared to regular 



 

GPS. To follow predefined routes, road network models are used which typically are based 

on sequences of GPS waypoints. The route trajectory is intended to keep the car in a safe 

position within the lane. However, errors in the GPS measurements and inaccuracies of the 

road network model cause deviations of the car’s estimate from its intended position on the 

lane. Thus, autonomous cars must perceive the road to improve localization within the lane. 

We propose to correct position measurements by matching a high-level road network de-

scription to the measurements of a rotating 64-beam LIDAR (light detection and ranging) 

sensor. These measurements are processed as height images, represented in the sensor-

intrinsic coordinate system of pitch and yaw angles. Preserving the neighborhood of adjacent 

measurements, removal of high objects, and filling-in of missing measurements yields a 

dense image-like representation of the road and the curbs, in which curbs can be detected 

by simple oriented edge filters. The filter responses are matched to expected curbs, which 

are derived from the road network model. This scan-matching yields an instantaneous esti-

mate of the position and orientation offsets of the measured curbs to the expected curbs. The 

offset observations are probabilistically filtered using a Kalman filter. The method estimates 

the position offset of the vehicle to its intended position within the lane. We evaluate the pro-

posed approach using a data set that was captured by one of the autonomous cars that re-

cently participated in the DARPA Urban Challenge 2007. 

This paper is structured as follows: In Sec. 2 we discuss related work on the detection of 

curbs with various sensory equipment. Sec. 3 outlines the LIDAR and position sensing de-

vices that have been used for our experiments. The processing of LIDAR measurements for 

the detection of curbs is detailed in Sec. 4. We describe the method for estimating the posi-

tioning offset within the lane with respect to the road network model in Sec. 5 and Sec. 6. 

The proposed approach is experimentally evaluated in Sec. 7 on a data set which has been 

acquired in an urban environment. 

 

2. Related Work 

In urban environments, curbs are dominant features for the course of roads. Also, driving 

onto curbs must be avoided to prevent from damage to the car and its inmates. Thus, the 

detection of curbs has gained interest from several researchers. Typical sensors applied for 

curb detection are cameras (e.g. [1, 2, 3]), radar (e.g. [4, 5]), and LIDAR (e.g. [6, 7]). 

An approach that employs LIDAR sensors has been proposed by Wijesoma et al. [6]. They 

detect curbs with a 2D laser-range-finder (LRF) that is mounted in front of the car and that is 

tilted downwards to sense the road in a distance between 10-15m. They segment and filter 

line segments in each 1D scan. A pair of curbs is extracted as line segments that are ap-



proximately parallel to the road and have a distance that corresponds to an assumed road 

width. Finally, these extracted curbs are tracked using a Kalman filter. While this method es-

tablishes correspondence of curbs along the road in subsequent time steps, the robustness 

of the method could be increased by considering measurements at adjacent scanning pitch 

angles during the extraction of curbs.  

Oniga et al. [3] detect curbs in dense 3D data obtained from stereo cameras. They generate 

2D elevation maps storing the maximum height of measurements at discrete positions in a 

metric grid. In this representation, they detect edges and extract line segments using the 

Hough transform. Among these line segments at most two are chosen as curbs, if the me-

dian heights on both sides of the curb in a local neighborhood constitute a small height varia-

tion. As data is sparse in this Cartesian representation, they dilate the height image to gen-

erate context for edge detection. In our approach, the sensor-intrinsic coordinate system is 

preserved yielding a dense image-like representation. Grid cells without height occur, if the 

measurements in the cell have failed, if they are much higher than the road, or if they have 

been reflected by the car itself. For such cells, height is estimated from local context. 

 

3. Sensor Description 

A Velodyne HD LIDAR provides 3D range scans by rotating a 64-beam LRF array around its 

vertical axis at high rates (10 Hz in our application). In the horizontal direction, the LRF pro-

vides 360° field-of-view with an angular resolution of approximately 0.09°. Vertically, the pitch 

angles range from -24.8° to +2° with an angular resolution of ca. 0.4°. Its range measure-

ment accuracy typically is within 5 cm. Highly reflective obstacles can be measured in dis-

tances of up to 120 m, whereas the measurable distance to objects with lower reflectance 

like the pavement approximately is 50 m. The sensor is mounted on top of the car providing 

range scans with full field-of-view in horizontal direction, while parts of the car and sensory 

equipment are constantly detected. Fig. 1 shows the LIDAR and its placement on the car.  

In addition, the car is equipped with an Applanix LV220 system that fuses differential GPS, 

inertial measurements, and odometry to a robust position estimate. 

                                          

Fig. 1. Left: Velodyne HD Lidar sensor. Right: Placement of the sensor. 



 

                                         

Fig. 2. Left: 3D Measurements of a complete LIDAR sweep. Right: Omnidirectional height image with-

out minimum and maximum range readings (black cells). 

 

4. Bottom-Up Curb Detection in Omnidirectional Height Images  

We transform the range and bearing measurements of a complete LIDAR sweep into sensor-

centric Cartesian coordinates. The height components of the measurements are incorporated 

into an angular grid I(θ,φ) that is discretized in yaw (θ) and pitch (φ) coordinates. We choose 

360 grid cells in yaw and 64 cells in pitch direction. For cells containing multiple measure-

ments, we average their heights and relative 2D position to the car. In this omnidirectional 

height image (s. Fig. 2) curbs are characterized by small, elongated height steps. Our aim is 

to detect curbs at those positions where small height differences occur in a local context. If 

each cell has such context, convolution operators for smoothing and derivation can be ap-

plied to obtain an edge image. 

Naturally, not every grid cell contains valid range measurements. When multiple measure-

ments fall into one cell, we determine the difference between minimum and maximum 

heights. A large difference indicates steep measurement changes, such that averaged height 

and relative position are presumably invalid. Also, height steps and heights above the aver-

age road height which are caused by objects higher than curbs must be removed. By this it is 

possible to detect curbs close to high objects. Finally, we remove measurements of the car. 

                                              

Fig. 3. Left: Omnidirectional height image after removal of invalid measurements filling-in with adjacent 

heights. Right: Edge response in valid cells (darker is stronger). 

 

 



To still provide context, cells without measurements are filled-in with linear interpolations                          

of adjacent heights. This yields a dense and image-like representation of the height meas-

urements (s. Fig. 3), in contrast to the sparse Cartesian 3D representation. 

To measure the height of objects with respect to the road, we estimate the average road 

height. In each yaw direction in the grid we track along the pitch direction starting at the low-

est angle (i.e. close to the car in the height image) with the attachment height of the sensor. 

For each cell, a linear recursive filter is applied to estimate the road height considering its 

measured height and the height of its preceding cells. If the measured height is not compati-

ble to the tracked height, it is not updated with the cell’s measurement and the procedure is 

resumed with the next cell. By this, the road height estimate incorporates gradual changes. 

In this representation we can use simple image processing operations to detect edge 

strength and orientation: We convolve the image with smoothing and first-order derivative 

convolution kernels cφ  and cθ  in pitch and yaw direction separately. We account for the dif-

fering angular grid resolution in pitch and yaw direction by applying kernels of differing width:  
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For the pitch direction kernel we use two binomial five-kernels for smoothing, i.e. : (2)c cφ = , 

whereas for the yaw direction : (6)c cθ α=  we apply six. To be able to estimate orientations 

from both edge responses, we normalize the edge responses such that the equivalent con-

volution kernels have equal two-norms, i.e. 2

2
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Using the convolved images :I c Iθ θ= ∗ and :I c Iφ φ= ∗ , we can easily determine edge 

strength 2 2
( , ) : ( , ) ( , )s I Iθ φθ φ θ φ θ φ= +  and orientation ( , ) : 2( ( , ), ( , ))atan I Iφ θψ θ φ θ φ θ φ θ= + . To 

obtain orientations in the car-centric coordinate frame, we must take the yaw direction θ of a 

cell into account. 

Of course, this edge image also contains responses at locations in the image that do not 

correspond to curbs but to other small height changes in the environment. In the next sec-

tion, we therefore combine the bottom-up edge detection with top-down information about the 

expected location of curbs which we derive from our road model. 

 

5. Top-Down Curb Detection in a High-Level Road Network Model 

Our abstract road model is given in the DARPA Road Network Description Format (RNDF). 

In this format, roads are modeled as segments. Each segment consists of multiple lanes, 



 

which are described by average lane width and a sequence of GPS waypoints ordered by 

the direction of traffic. Transitions between lanes (e.g. at road crossings) are represented by 

corresponding entry and exit waypoints. As the GPS waypoints are sparsely distributed, the 

lanes are interpolated by Akima splines [8] to provide the target trajectory for driving. 

The interpolated lanes are used to derive expected curb positions by sampling the spline in 

fixed intervals in forward and backward direction and by expecting curbs orthogonal to the 

spline on each side of the road. We ignore expectations at road crossings, as our assump-

tion that curbs are parallel to the course of roads is violated. The lane width given in the 

RNDF is only an estimate of the average width along the whole lane. We therefore improve 

the lane width estimate within a segment recursively by adapting it to the distance of com-

plementary curb measurements along the orthogonal direction to the spline. Given this esti-

mate, we can determine predictions for curb measurements as follows. We sample the lane 

spline at fixed positions in forward and backward direction. We choose a distance of 0.5m 

between sample points and 20m in each direction. At the sample points, we predict curbs 

orthogonally to the spline at the road boundary to each side. The road boundaries are simply 

determined by half the lane width to the right of the rightmost lane and the rest of the road 

width to the left. Curb measurements within a range of 5m around the car are not expected. 

For each expected curb 
/left rightq Q∈  a corresponding curb measurement 

/left rightp P∈  is deter-

mined: First, the curb strengths and orientations in the polar grid are transformed into a Car-

tesian 2D grid using the average relative position in each polar grid cell (a grid resolution of 

0.1m is used). Curbs are characterized by ridges in rising edge strength along the spline di-

rection. Thus, we correlate ridge-like patterns along the direction orthogonal to the spline, 

where we only account for the strength of an edge in a cell, if it is oriented appropriately. For 

each expected curb q  a measured curb p  is detected where the correlation measure attains 

its maximum in a specific search interval (e.g. [ ]1.2 ,2m m− ). See Fig. 4 for an example. 

 

6. Recursive Offset Estimation  

Scan-matching with a point-to-line metric is used to match curb measurements P  to curb 

expectations Q  on each road side in car-centric coordinates. We seek to obtain the instanta-

neous rotation R  and translation t  of the car that explains the displacement of the measured 

curbs to the expected curbs. We apply a variant of the Iterative-Closest-Points-Algorithm [9] 

(ICP) to determine rotation R  and translation t  that minimize the error function  
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Fig. 4. Top: For each expected curb (blue circles) a corresponding measurement (red diamonds) is 

detected on the ridges in edge strength in a Cartesian grid (grey squares). Bottom: Scan-matching of 

curb measurements (red points) with predictions (blue points) using a point-to-line metric yields the 

instantaneous displacement of the car (green cross with green dashed σ range) from its assumed 

position (red circle) within the lane. Transformed measurements are shown as green diamonds. 

 

between corresponding points, where ( , )p QΠ  maps p to its projection onto the line between 

its closest point q Q∈ and the predecessor or successor of q , 'q Q∈ . To improve efficiency, 

we use the expected curb position instead of searching for the closest position among the 

expected curbs to each measured curb. We therefore ignore correspondences, for which the 

projection π  of p  does not lie between q  and 'q . We regard correspondences as outliers, if 

the Euclidean distance between π  to p  is 2 times the average distance of points in P  to 

their projections. We define the set of indices C  as maximal subset of { }1, , K… , for which 

points in P  with valid correspondences exist. 

The offset can only be usefully measured, if correspondences exist on both sides of the road 

and to the front as well as to the back of the car. Let leftn , rightn , frontn , and 
back

n  be the num-

ber of correspondences to the left, the right, the front, and the back, respectively. We con-

sider the correspondences for further processing, if 10% lie on either side, i.e.  
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To determine the transformation between the matched points and their projections, we first 

subtract their mean:  
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Then, we determine rotation R and translation t by singular value decomposition  

of 
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In each time step, the translation obtained from scan-matching is interpreted as offset meas-

urement. On straight roads, curbs are aligned on two parallel lines. In this case, the position-

ing offset is only observable orthogonal to the spline. On curved roads, all directions can be 

observed. To obtain a measurement covariance that reflects the high uncertainty in unob-

servable dimensions, we apply the approximation method proposed in [10]. Let 

( ) : ( ( ), )E x E R tθ=  be the error function in terms of : ( , , )
T
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As we assume stochastic independence between point observations, the covariance 
z

Σ  of z  

is diagonal and calculation of 
x

Σ  is simplified. For the individual measurement covariances 

we model higher uncertainty the larger the distance of the measurement is to the car. The 

covariance 
t

Σ  of t  is obtained by marginalization, i.e. by extracting the Cartesian 2×2-

submatrix from 
x

Σ . Fig. 4 illustrates this scan-matching procedure. 

Finally, we recursively estimate the translational offset from the offset measurements with a 

linear Kalman Filter (KF) [11]. An innovation test is used to reject outlier measurements. The 

positioning error within the lane is obtained by projection of the offset on the normal to the 

car heading. Also, the offset is used to initialize the top-down search for curb measurements. 

7. Experimental results 

The proposed approach is evaluated on a data set acquired in an urban environment. It con-

tains moving and static vehicles on and near the road. Fig. 5 shows qualitative results of our  

approach. The left figure demonstrates that the approach captures positioning offsets within 

the lane. The right figure shows that gross insufficiencies of the road model (e.g. missing  



 

Fig. 5. In-lane localization results (colors/markers as in Fig. 4). Left: The method estimates in-lane 

positioning errors caused by inaccuracies of the road model. Right: Gross insufficiencies of the road 

model (e.g. missing lanes) cause the method to estimate a wrong offset. 

 

Fig. 6. Deviations (grey points) from the estimated positioning offset within the lane after inducing arti-

ficial errors of -1m (left), no error (middle), and 1m (right). Mean (blue solid line) and standard variance 

(red dashed line) show, that the positioning error is quickly captured by the algorithm within 4 seconds. 

 

lanes) cause the method to estimate a wrong offset. 

To assess the performance of our approach quantitatively despite missing ground truth, we 

compared the estimated offset to the offset obtained, when artificial errors are induced on the 

measured relative 2D position of curbs. Ideally, the difference between both offsets vanishes 

up to the artificial error and the standard deviation in this difference is low. Multiple runs on 

the data set are evaluated each lasting 6 seconds, where the spline is approximately linear, 

and where no crossings and insufficiencies occur in the road model. At the beginning of each 

run, the KF offset estimate is reset and an artificial offset orthogonal to the spline direction is 

induced. Fig. 6 depicts the results for artificial offsets of -1m (left), 1m (right), and no offset 

(middle) in approx. 1000 runs each. Mean and standard deviation are determined by group-

ing the data into time intervals of 0.3 sec. After 5 secs, the mean is close to 0m and the stan-

dard deviations are below 0.056m, 0.0567m, and 0.0594m for -1m offset, no offset, and 1m 

offset, respectively. In this time interval, outliers lie within 0.2429m, 0.2386m, and 0.2410m, 

respectively. The results show, that our approach captures offsets of 1m with a good accu-

racy. 



 

8. Conclusions 

In this paper, we propose an approach to estimate the errors present in differential GPS and 

road network models by the use of an omnidirectional 3D LIDAR device. The approach im-

proves in-lane localization for applications like autonomous car driving. In our real-time 

method, curbs are detected in a dense, image-like representation of the 3D range scans, 

which contributes an efficient method to process the large amount of LIDAR data. The posi-

tioning offset within the lane is determined by filtering instantaneous displacements of curb 

measurements to expected curbs which are derived from a high-level road network model. 

Our experiments indicate that our approach estimates the in-lane positioning offset with a 

good accuracy. Its limitations are the reliance on a sufficient road model and the necessity of 

detectable curbs. To further improve accuracy and reliability when our assumptions are vio-

lated the approach could be combined with other sensory cues. 
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