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Abstract. Pose estimation commonly refers to computer vision meth-
ods that recognize people’s body postures in images or videos. With
recent advancements in deep learning, we now have compelling models
to tackle the problem in real-time. Since these models are usually de-
signed for human images, one needs to adapt existing models to work on
other creatures, including robots. This paper examines different state-
of-the-art pose estimation models and proposes a lightweight model that
can work in real-time on humanoid robots in the RoboCup Humanoid
League environment. Additionally, we present a novel dataset called the
HumanoidRobotPose dataset. The results of this work have the potential
to enable many advanced behaviors for soccer-playing robots.

1 Introduction

Fig. 1: One sample image of the introduced dataset with the estimated poses is
shown on the left. Our model’s predicted heatmaps of all keypoints and limbs
are displayed in the middle and right, respectively.

The 2D humanoid pose estimation problem aims to detect and localize key-
points and parts and infer the limb connections to reconstruct the existing
human poses from images. The human pose estimation problem’s importance
arises from the fact that this task has many applications in various areas such as
human-computer interaction and action recognition. In this work, we address the
real-time pose estimation problem for humanoid robots (see Fig. 1). The shape
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similarity between humanoid robots and persons is a double-edged sword. On
the one hand, it enables us to start with existing methods designed for persons,
but on the other hand, it adds additional difficulty to our problem not to con-
fuse humans with humanoid-robots, especially in adult-size league. In general,
the attempts to address the pose estimation problem for multiple persons]can
be categorized as either top-down or bottom-up approaches.

In the top-down models, the procedure includes two distinct steps. The first
step is to detect individual people, while the particular pose is estimated in the
next step. One of these models’ disadvantages is that the performance of the
model is tightly correlated to the person detector performance. Although the
state-of-the-art (SOTA) results are derived from this type of models, including
Cascaded Pyramid Network [3] and High-Resolution Net (HRNet) [24], the run-
time of such approaches is negatively affected by the number of persons present,
as a single-person pose estimator is run for each detection. Hence, the computa-
tional cost linearly increases with more persons, so the performance is often not
real-time.

In contrast, bottom-up approaches detect body joints and group them into
individuals simultaneously; therefore, they are less dependant on the number
of persons in the image. One of the bottom-up method’s main challenges is
to group the detected keypoints in a real-time manner accurately. Recent ap-
proaches [2,11,19] utilize a greedy algorithm to group the detected keypoints into
individual instances. Moreover, the bottom-up method’s performance is more
vulnerable to the different scales of the persons in a given image compared to
the top-down approaches. To alleviate this issue, previous works exploit the scale
search method [2] or rely on high-resolution input size [19]. These solutions are
increasing the inference time though. A time-efficient method predicting key-
points at higher resolution was introduced by Cheng et al. [4], narrowing the
performance gap between bottom-up and top-down models.

This paper opts for a bottom-up approach designed for 2D pose estima-
tion of multiple humanoid robots. We made this choice because, in top-down
methods, the inference time is generally much higher than in bottom-up ap-
proaches, so they will not be suitable for RoboCup real-time applications. Fur-
thermore, we wanted to avoid the cost of annotating bounding boxes. We remedy
our bottom-up model scale variations problem by using feature pyramid struc-
ture [13] through utilizing high-resolution feature maps.

Despite the availability of several large-scale benchmark datasets such as
MPII Human Pose [1] and MS COCO [14] for the task of human pose estimation,
we cannot fully utilize them because of differences between robots and humans,
such as types and sizes. Thus, we present a new pose dataset of robots from the
RoboCup Humanoid League. The code and dataset of this paper are publicly
available.1 In summary, we make the following contributions:

– We propose a deep learning model specifically designed to address the 2D
pose estimation problem for multiple humanoid robots.

1 https://github.com/AIS-Bonn/HumanoidRobotPoseEstimation.

https://github.com/AIS-Bonn/HumanoidRobotPoseEstimation
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– We introduce a new dataset, namely the HumanoidRobotPose dataset, con-
sisting of robots from the RoboCup Humanoid League.

– We demonstrate that the proposed real-time light-weight model outperforms
the SOTA bottom-up methods in our application.

2 Related Work

Although there are some works on the detection and tracking of humanoid
robots [6, 7], to the best of our knowledge, there is no previous work that ad-
dresses humanoid robot’s pose estimation, which works on a variety of robots.
Giambattista et al. [5] propose a gesture-based communication between Nao
robot that utilizes OpenPose [2] for Nao robot pose estimation. Note that pose
estimation on a single standardized Nao robot type is significantly easier than
what we need in the Humanoid League. We have to address various unseen
robots with different colors, kinematic shapes, and sizes.

Top-down: Most of the existing top-down methods exploit human detector
models such as Feature Pyramid Networks [13], and Faster R-CNN [21]. Papan-
dreou et al. [20] propose one of the first top-down models which employ the
Faster R-CNN for the person detector step and present a new representation for
keypoints, which is a mixture of binary activation heatmap and the correspond-
ing offset. The most recent top-down approaches which obtain SOTA accuracy
are the Cascaded Pyramid Network (CPN) introduced by Chen et al. [3], where
multi-scale feature maps from different layers of the GlobalNet are integrated
with an online hard keypoint mining loss for difficult-to-detect joints, and the
model presented by Sun et al. [24] that improves the heatmap estimation using
high-resolution representations and multiple branches of different resolutions.

Bottom-up: The recent architectures [2,12,16,18,19] take advantage of the con-
fidence maps to detect the keypoints. Kreiss et al. [11] introduce a combination of
confidence maps and vectorial parts for keypoints detection. Moreover, there are
different approaches for encoding the part association used in the SOTA bottom-
up models. OpenPose [2] introduces the Part Affinity Fields (PAFs) method to
learn the body parts associations by encoding the location and direction, offset
regression that uses the displacements of the keypoints [18,19], and tag heatmap,
which produces a heatmap as a tag for each keypoint heatmap [12,16]. Pose Par-
tition Networks [18] present a dense regression approach over all the keypoints
to generate individuals’ partitions using the embedding spaces.

3 Pose Estimation Model

In this section, we present our real-time bottom-up approach to pose estimation
of multiple humanoid robots. The aim is to predict the part coordinates and
the part associations to build robot poses. In the following, we first describe the
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Fig. 2: The architecture of the proposed single-stage encoder-decoder model. The
model predicts heatmaps of both keypoints and limbs for scale 1/4 and only
heatmaps of keypoints for scale 1/2, where each scale is supervised with an
intermediate loss.

model, then explain the keypoint detection and the part association methods in
detail.

3.1 Network Architecture

Following the successful results of NimbRo-Net [8] and NimbRo-Net2 [22], we
decided to utilize a similar architecture. This decision ensures that later we can
combine this model with NimbRo-Net2 to have a unified network for multiple
tasks related to the humanoid league. The proposed network is depicted in Fig. 2.

Our model is an encoder-decoder network which takes an RGB image of
size w × h. We observe that it is required to use a deeper encoder than the
decoder to create a powerful feature extractor. The encoder is a pre-trained
ResNet model [10], in which the last fully connected and global average pooling
layers are eliminated. The first layer is a 7 × 7 convolutional with stride 2,
followed by a max-pooling layer. The rest of the encoder network consists of
four modules of residual blocks with higher depths and lower resolutions as
the number of modules increases. Each residual block consists of two or three
convolutional layers, depending on the selected ResNet architecture, followed
by batch normalization and ReLU activation and a shortcut connection. More
fine-grained spatial information is present in the early layers, while in the final
layers, the network extracts more semantic information.

In the decoder part, we utilize lateral connections from different parts of
the encoder, which allows us to maintain the high-resolution information. For
every lateral connection, we apply 1 × 1 convolution to generate a fixed num-
ber of channels. The decoder network has a feature pyramid structure involving
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four modules. At each level of the pyramid, the previous level’s output is fed to
the 3× 3 transposed convolution followed by a bilinear upsampling to obtain a
fixed number of higher-resolution features. These upsampled features are con-
catenated with the features from the corresponding lateral connection. Similar
to the encoder, ReLU and batch normalization is used to get the final output of
the module.

As high-resolution feature maps are essential for precise keypoint localiza-
tion [25], we leverage two scales of the feature pyramid hierarchy, i.e., 1/4 and
1/2 resolutions. As a result, the keypoints heatmaps K̂s at each scale s is gen-
erated by performing a final convolution on extracted features. As depicted in
Fig. 2, we have two scales of keypoint heatmaps with intermediate supervision,
inspired by HigherHRNet [4]. The final keypoints heatmaps K̂ are the average
over the predictions generated by these two scales after upsampling to the same
resolution as the input image in order to achieve accurate high-resolution pre-
dictions. Note that only one scale of limbs heatmaps L̂ is utilized, as we observe
that following the same approach as keypoints yields performance drop.

3.2 Keypoint Detection and Part Association

The ground truth heatmaps of the keypoints in a given image can be represented
as the set K = {K1,K2, ...,KP }, where Kp ∈ Rw′×h′ , p ∈ {1, 2, ..., P}, and P
is the total keypoints of a robot instance, which is equal to six for our dataset
(see Fig. 3 (left)). The heatmap Kp with the resolution of w′ × h′ includes the
Gaussian heatmaps of the pth part of all the robot instances. Let xp,n and yp,n
be the location of the pth part of the nth instance, where n ∈ {1, 2, ..., N} and
N is the total number of existing robots with the visible pth part in an image.
To embed the position of the annotated pth part, we use the 2D unnormalized
Gaussian distribution with the center of (xp,n, yp,n) and the standard deviation
σ, which is fixed for all the parts:

Kp(x, y) = exp(− (x− xp,n)2 + (y − yp,n)2

2σ2
). (1)

Due to occlusion or proximity of the robot instances in a given image, we utilize
the pixel-wise max operation on Eq. 1 to preserve the Gaussian peak of the pth
part for each instance.

For limbs, the ground truth heatmaps in a given image can be expressed as
the set L = {L1,L2, ...,LC}, where Lc ∈ Rw′×h′ , c ∈ {1, 2, ..., C}, and C is the
total limbs of a robot instance that is five in this work (see Fig. 3 (left)). Note that
the intended utility of limbs is only to encode the relations between keypoints, so
they do not necessarily lie on actual robot limbs. Therefore, to encode a limb’s
position, first, we compute a line segment between two keypoints and mark all of
the points that lie on such limb, following the approach proposed by Li et al. [12].
Then having these offsets, the final Gaussian heatmap of each limb is generated
by an unnormalized Gaussian distribution with the standard deviation 4σ that
controls the spread of the Gaussian peak in the same way as for the keypoint
heatmap. The final limb heatmap is the average of all the robots’ limb appearing
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in the image. In contrast to the PAFs method that encodes each limb in two
channels as vector directions, we encode each limb type in a single channel. This
simpler approach for encoding the limbs is enough for our application since our
experiments show better performance than the PAF method.

3.3 Loss

We use the mean square error to compute the loss between the predicted heatmaps
and the ground truth heatmaps for both keypoints and the limbs.

Lkeypoints =
1

2P

∑
s∈{ 1

4 ,
1
2}

P∑
p=1

W ·
∥∥∥Ks

p − K̂s
p

∥∥∥2
2
, (2)

Llimbs =
1

C

C∑
c=1

W ·
∥∥∥Lc − L̂c

∥∥∥2
2
, (3)

where W is a binary mask with W = 0 when the annotation is missing in the
image, and s is the scale of the predicted heatmaps. Finally, the total loss used
to train the network is the sum of the keypoint loss (2) and the limb loss (3).

3.4 Post Processing

By performing Non-Maximum Suppression (3× 3 kernel) on the predicted key-
point heatmaps, we obtain the peak of each Gaussian heatmap and the location
of its corresponding keypoint for the robot instances. We use the detected limb’s
heatmaps to acquire the candidate connections between the keypoints as [2]. As
there are multiple robot instances in an image, it is required to group the key-
points to determine the poses corresponding to the correct individuals. Having
the set of keypoints and the connection candidates, we employed the proposed
greedy algorithm by Cao et al. [2] to solve the assignment problem and obtain
the final pose of all robot instances. In this algorithm, instead of considering the
fully connected graph, the goal is to obtain the minimum spanning tree of the
pose instance and assign the adjacent tree nodes independently, resulting in a
well-approximate solution with efficient computational cost.

4 Dataset

This section explains the paper’s additional contribution, the HumanoidRobot-
Pose dataset, including data collection and annotation procedures and the eval-
uation metrics used for this dataset.

Our goal was to collect a dataset containing both single and multiple robots to
simulate the RoboCup’s real conditions. We gathered many YouTube videos from
the RoboCup Humanoid League, as well as some in-house videos and ROS bags.
Some videos originate from the qualification videos, which only demonstrate a
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Fig. 3: An example of the annota-
tions depicted in left. Visualization
for the distribution of pose variabil-
ity by considering the head as the ori-
gin is shown in right. Note that we did
not choose trunk joint as the origin to
show the dataset’s variability better.
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Fig. 4: Statistics for our dataset. The
diversity of the number of robot in-
stances is illustrated in left, and the
scale proportions of robot instances
is shown in right. The definition of
small, medium and large scale is iden-
tical to the COCO dataset.

specific robot; therefore, they only consist of a single pose. To include videos
with multiple robots and increase the diversity of robots in the dataset, we
also employ videos from drop-in games and round-robin competitions. These
videos are from recent years and contain various view angles, lens distortions,
brightness, and robots. Note that in most of the videos, there are humans present
in the pictures, e.g., the robot handler, the referee, and audiences around the
field. Overall, we annotated over 1.5K manually selected frames from 23 videos
with around 2.3k robot instances. These frames include teen and adult sized
robots and contain more than ten different robot types. About 30 percent of the
dataset was exclusively used for testing. Note that testing frames were collected
from different videos than the training videos.

4.1 Data Annotation

For data annotation, we used Supervise.ly2, a web-based data annotations and
management tool. We decided to ignore the truncated or severely occluded points
in the image, which are usually considered invisible keypoints. For each robot,
six keypoints are annotated, including head, trunk, hands, and feet. The head
keypoint is important, for instance, to estimate the height of the goalie robot.
We use these few keypoints to avoid annotation costs; however, they can be
easily extended to more keypoints. We define a minimal pose representation by
five limbs from these keypoints, which would be sufficient for the current soccer
behavior level. The annotation for a robot instance is illustrated in Fig. 3 (left).

2 https://supervise.ly
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To show the diversity of our dataset, we visualize the variability of annotated
poses in Fig. 3 (right) and statistics of the number and scales of the robot
instances are presented in Fig 4. About 60 percent of the collected frames contain
single pose instances and robot instances with medium scale, i.e., [322 < segment
area < 962], where the segment area of a robot instance is measured using the
size of the minimum encapsulating rectangle of the annotated keypoints. Our
definition of the size scales is identical to the COCO dataset 3.

4.2 Evaluation Metrics

We use the Object Keypoint Similarity (OKS) metric from COCO keypoint
dataset [23]. The OKS of a robot r between the detected keypoint (ŷi,r) and its
corresponding ground truth (yi,r) can be written as follows:

OKS(ŷr, yr) =

∑
i e
−
‖ŷri−yri

‖22
2a2k2

i δ(vi > 0)∑
i δ(vi > 0)

, (4)

where ki is a constant specific to each keypoint, which is equal for all keypoints
in our dataset, a is the segment area of the robot instance measured in pixels,
and vi is the keypoint visibility flag in the ground truth (vi = 0 for the invisible
keypoint). The OKS metric is robust to the number of visible keypoints as it
gives equal importance to the robot instances with different numbers of visible
keypoints. The evaluation metrics used for the proposed dataset are as following:
AP (the mean average precision over 10 OKS thresholds = [0.50:0.05:0.95]), AP50

(AP at OKS threshold = 0.50), AP75, APM for medium scale robot instances,
APL for large scale instances, and AR (the mean of average recall over 10 OKS
thresholds).

5 Experiments

We compare the proposed method with SOTA bottom-up approaches on the
HumanoidRobotPose dataset. These approaches are OpenPose [2], Associative
Embedding (AE) [16], PifPaf [11], and HigherHRNet [4]. OpenPose [2] utilizes
confidence maps to localize the keypoints and PAFs to encode the body parts’
location and orientation. For grouping the detected keypoints, the greedy algo-
rithm is proposed in which each part is scored, computing the line integral on
the corresponding PAF. Associative Embedding (AE) [16], merges the stacked
hourglass architecture [17] with associative embedding.

PifPaf [11] proposes Part Intensity Field to detect and localize the keypoints
and Part Association Fields to associate body parts with each other.

HigherHRNet [4] is using an adopted top-down model as the backbone with
a transposed convolution module to predict higher resolution heatmaps for the
keypoints detection. Similar to the AE approach, in HigherHRNet, the asso-
ciative embedding is employed to parse the poses. Following the configurations

3 https://cocodataset.org/#keypoints-eval
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Fig. 5: Four sample results from the test set. Methods used from top to bottom:
OpenPose [2], AE [16], PifPaf [11], HigherHRNet [4], and our model.

provided by the original papers, we reported the details of models and the in-
ference time evaluated on NimbRo-OP2X robot hardware [9] in Table 1.

For all methods, the hyperparameters are tuned to achieve the best possible
results. Our model is trained using the AdamW [15] optimizer with learning
rate of 10−4, batch size 16 and weight decay of 10−4 for the total 200 epochs.
Note that the encoder is initialized by pre-trained ResNet weights on ImageNet.
We conduct data augmentation that includes random horizontal flip, random
rotation, random scaling, and random translation during training.

The results on the test set are reported in Table 2. The reported results are
achieved without performing the flip test or the multi-scales test for preserving
the methods to be real-time. Our proposed method with ResNet18 backbone
outperforms the best existing methods in all metrics except for large scale when
we train the models from scratch on our dataset (see Table 2). Note that com-
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Table 1: Details for the used methods.
Method Input Size Backbone Params GFLOPs FPS

OpenPose [2] 368 VGG19 25.8M 159.8 14
AE [16] 512 Hourglass 138.8M 441.6 5

PifPaf [11] 385 ShuffleNetV2 9.4M 46.3 13
HigherHRNet [4] 512 HRNet-W32 28.6M 94.7 13

Ours 384 ResNet18 12.8M 28.0 48

Table 2: Results on the test set.
Method AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

OpenPose [2] 67.9 80.0 70.0 73.8 73.1 68.7 80.1 70.4 74.8 74.4
AE [16] 62.9 71.9 64.1 64.0 72.9 64.6 73.9 65.6 64.7 76.0

PifPaf [11] 76.1 81.6 75.6 76.0 91.0 77.9 83.6 77.2 77.7 93.0
HigherHRNet [4] 73.4 84.1 75.6 80.3 78.7 76.2 85.3 77.2 81.4 83.0

Ours 78.1 84.6 79.6 87.5 80.2 79.4 85.4 80.6 88.4 81.6

pared to other baselines, our model can utilize our limited dataset better. Based
on AP results of medium and large scales, our model can better handle the
different scales than the other approaches. Moreover, the strict metric results
demonstrate that the predicted pose instances are more accurate compared to
the other methods due to the high-resolution predictions. Fig. 5 illustrates some
samples of estimated poses for all the approaches.

6 Ablation Study

This section investigates different backbones for the encoder part of our model
and the importance of employing multi-scale predictions in our approach. As
shown in Table 3, although applying a deeper encoder helps achieve better per-
formance, it negatively affects the inference time of the model. Moreover, AP
results demonstrate that without multi-scale heatmaps, the accuracy of predicted
keypoints drops.

Table 3: Ablation study: the effectiveness of backbones and multi-scale predic-
tions on the test set.

Backbone Multi-scale AP APM APL Params GFLOPs FPS

ResNet18 76.6 83.6 82.0 12.4M 17.8 83
ResNet18 X 78.1 87.5 80.2 12.8M 28.0 48
ResNet50 X 78.6 86.0 82.1 27.0M 47.7 25
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7 Conclusion

In this paper, we presented a lightweight bottom-up model for estimating mul-
tiple humanoid robot poses in real-time. We showed that our proposed model is
capable of multi-robot pose estimation on NimbRo-OP2X robot hardware and
is more suitable for the RoboCup humanoid league in comparison with other
SOTA models. For the future, we will use this model for advanced soccer be-
havior decisions like recognizing rival robots’ actions or anticipating the ball’s
movement direction before the kicking motion. Since the developed model is very
similar to NimbRo-Net2, we will combine them to produce a unified network for
diverse perception tasks in RoboCup.

Acknowledgment: This work was partially funded by grant BE 2556/16-2 (Research

Unit FOR 2535 Anticipating Human Behavior) of the German Research Foundation

(DFG).
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