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Abstract
Terrain perception is essential for navigation planning in rough terrain. In this paper, we propose to generate robot-
centered 2D drivability maps from eight RGB-D sensors measuring the 3D geometry of the terrain 360◦ around the
robot. From a 2.5D egocentric height map, we assess drivability based on local height differences on multiple scales.
The maps are then used for local navigation planning and precise trajectory rollouts. We evaluated our approach
during the DLR SpaceBot Cup competition, where our robot successfully navigated through a challenging arena, and
in systematic lab experiments.

1 Introduction

Most mobile robots operate on flat surfaces, where obsta-
cles can be perceived with horizontal laser-range finders.
As soon as robots are required to operate in rough ter-
rain, locomotion and navigation becomes rather difficult.
In addition to absolute obstacles, which the robot must
avoid at all costs, the ground is uneven and contains ob-
stacles with gradual cost, which may be hard or risky to
overcome, but can be traversed if necessary.

To find traversable and cost-efficient paths, the perception
of the terrain between the robot and its navigation goal is
essential. As the direct path might be blocked, an omni-
directional terrain perception is desirable. To this end, we
equipped our robot, shown in Fig. 1, with eight RGB-D
cameras for measuring 3D geometry and color in all di-
rections around the robot simultaneously. The high data
rate of the cameras constitutes a computational challenge,
though.

In this paper, we propose efficient methods for assess-
ing drivability based on the measured 3D terrain geome-
try. We aggregate omnidirectional depth measurements
to robot-centric 2.5D omnidirectional height maps and
compute navigation costs based on height differences on
multiple scales. The resulting 2D local drivability map
is used to plan cost-optimal paths to waypoints, which
are provided by an allocentric terrain mapping and path
planning method that relies on the measurements of the
3D laser scanner of our robot [10].

We evaluated the proposed local navigation approach in
the DLR SpaceBot Cup—a robot competition hosted by
the German Aerospace Center (DLR). We also conducted
systematic experiments in our lab, in order to illustrate
the properties of our approach.

Figure 1: Explorer robot for mobile manipulation in
rough terrain. The sensor head consists of a 3D laser
scanner, eight RGB-D cameras, and three HD cameras.

2 Related Work
Judging traversability of terrain and avoiding obstacles
with robots—especially planetary rovers—has been in-
vestigated before. Chhaniyara et al. [1] provide a detailed
survey of different sensor types and soil characterization
methods. Most commonly employed are LIDAR sensors,
e.g. [2, 3], which combine wide depth range with high
angular resolution. Chhaniyara et al. investigate LIDAR
systems and conclude that they offer higher measurement
density than stereo vision, but do not allow terrain clas-
sification based on color. Our RGB-D terrain sensor pro-
vides high-resolution combined depth and color measure-
ments at high rates in all directions around the robot.
Further LIDAR-based approaches include Kelly et al. [6],
who use a combination of LIDARs on the ground vehi-
cle and an airborne LIDAR on a companion aerial ve-
hicle. The acquired 3D point cloud data is aggregated
into a 2.5D height map for navigation, and obstacle cell
costs are computed proportional to the estimated local
slope, similar to our approach. The additional viewpoint
from the arial vehicle was found to be a great advan-
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tage, especially in detecting negative obstacles (holes in
the ground), which cannot be distinguished from steep
slopes from afar. This allows the vehicle to plan through
areas it would otherwise avoid because of missing mea-
surements, but comes at the price of an increased system
complexity.

Structured light has also been proposed as a terrain sens-
ing method by Lu et al. [8], however, they use a single
laser line and observe its distortion to measure the terrain
geometry. Our sensor has comparable angular resolution
(0.1◦ in horizontal direction), but can also measure 640
elevation angles (0.1◦ resolution) at the same time.

Kuthirummal et al. [7] present an interesting map rep-
resentation of the environment based on a grid structure
parallel to the horizontal plane (similar to our approach),
but with height histograms for each cell in the grid. This
allows the method to deal with overhanging structures
(e.g. trees, caves, etc.) without any special consideration.
After removing the detected overhanging structures, the
maximum height observed in each cell is used for obsta-
cle detection, which is the same strategy we use.

The mentioned terrain classification works [1, 8] all in-
clude more sophisticated terrain models not only based
on terrain slope, but also on texture, slippage, and other
features. The novelty of our work does not lie in
traversability analysis, but in the type of sensor used. We
employ omnidirectional depth cameras, which provide
instantaneous geometry information of the surrounding
terrain with high resolution. In many environments, color
or texture do not provide sufficient traversability infor-
mation, so 3D geometry is needed. The used cameras
are consumer products (ASUS Xtion Pro Live) which
are available at a fraction of the cost of 3D LIDAR sys-
tems. Stereo vision is a comparable concept, but has the
disadvantage of being dependent on ground texture and
lighting. Our sensor also produces RGB-D point clouds,
which can also be used for other purposes like further ter-
rain classification based on appearance, visual odometry,
or even RGB-D SLAM.

A local navigation method alone does not enable the
robot to truly navigate the terrain autonomously. A higher
level, allocentric map and navigation skills are required.
Schadler et al. [10] developed an allocentric mapping,
real-time localization and path planning method based
on measurements from a rotating 2D laser scanner. The
method employs multi-resolution surfel representations
of the environment which allow efficient registration of
local maps and real-time 6D pose tracking with a particle
filter observing individual laser scan lines. The rotating
2D laser scanner takes around 15 s to create a full omni-
directional map of the environment. While the range of
our RGB-D sensors is not comparable to a laser scanner,
the update rate is much faster, allowing fast reaction to
vehicle motion and environment changes.

3 Omnidirectional Depth Sensor

Our robot, shown in Fig. 1, is equipped with three wheels
on each side for locomotion. The wheels are mounted
on carbon composite springs to adjust to irregularities of
the terrain in a passive way. As the wheel orientations
are fixed, the robot is turned by skid-steering, similar to a
differential drive system.
In addition to the omnidirectional RGB-D sensor, our
robot is equipped with a rotating 2D laser scanner for al-
locentric navigation, an inertial measurement unit (IMU)
for measuring the slope, and four consumer cameras for
teleoperation. Three of these cameras cover 180◦ of the
forward view in Full HD and one wide-angle overhead
camera is looking downward and provides an omnidirec-
tional view around the robot (see Fig. 3a).

3.1 Omnidirectional RGB-D Sensor

For local navigation, our robot is equipped with eight
RGB-D cameras (ASUS Xtion Pro Live) capturing RGB
and depth images. The RGB-D cameras are spaced such
that they create a 360◦ representation of the immediate
environment of the robot (Fig. 3b). Each camera pro-
vides 480×640 resolution depth images with 45◦ hori-
zontal angle. Because the sensor head is not centered on
the robot, the pitch angle of the cameras varies from 29◦

to 39◦ to ensure that the robot does not see too much of
itself in the camera images. The camera transformations
(from the optical frame to a frame on the robot’s base)
were calibrated manually.

3.2 Data Acquisition

The high data rate of eight RGB-D cameras poses a chal-
lenge for data acquisition, as a single camera already con-
sumes the bandwidth of a USB bus. To overcome this
limitation, we equipped the onboard PC with two PCI
Express USB cards, which provide four USB 3.0 host
adapters each. This allows to connect each RGB-D cam-
era on a separate USB bus which is not limited by trans-
missions from the other devices. Additionally, we wrote
a custom driver for the cameras, as the standard driver
(openni camera) of the ROS middleware [9] was neither
efficient nor stable in this situation. Our driver can output
VGA color and depth images at up to 30 Hz frame rate.
The source code of the custom driver is available online1.

4 Local Drivability Maps

A general overview of our data processing pipeline is
given in Fig. 2. The input RGB-D pointclouds are pro-
jected on a gravity-aligned plane, locally differentiated
and then used as cost maps for existing navigation com-
ponents.

1https://github.com/AIS-Bonn/ros_openni2_multicam

https://github.com/AIS-Bonn/ros_openni2_multicam
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Figure 2: Data flow of our method. Sensors are colored
blue, data filtering/processing modules yellow and navi-
gation components in red.

4.1 Omnidirectional Height Map

For wheeled navigation on rough terrain, slopes and ob-
stacles have to be perceived. Because we can measure the
gravity direction with the integrated IMU, we calculate
a 2.5D height map of the immediate environment which
contains all information necessary for local navigation.
This step greatly reduces the amount of data to be pro-
cessed and allows planning in real time.
Because depth measurements contain noise depending on
the type of ground observed, it is necessary to include
a filtering step on the depth images. In this filtering
step, outliers are detected with a median filter and sub-
sequently eliminated. In our case, we use a window size
of 10×10 pixels, which has proven to remove most noise
in the resulting maps. The median filter is based on the
optimization of Huang et al. [5] which uses a local his-
togram for median calculation in O(k) per pixel (for a
window size of k×k pixels). The filtering is executed in
parallel for all eight input point clouds.
To create an egocentric height map, the eight separate
point clouds are transformed into a local coordinate sys-
tem on the robot base, which is aligned with the gravity
vector measured by an IMU in the robot base.
The robot-centric 2.5D height map is represented as a
8×8 m grid with a resolution of 5×5 cm. For each map
cell H(x, y), we calculate the maximum height of the
points whose projections onto the horizontal plane lie
in the map cell. If there are no points in a cell, we as-
sign a special NaN value. The maximum is used because
small positive obstacles pose more danger to our robot
than small negative obstacles. The resulting height map
is two orders of magnitude smaller than the original point
clouds of the eight cameras.

4.2 Filling Gaps
Gaps in the height map (i.e. regions with NaN values)
can occur due to several reasons. Obviously, occluded
regions cannot be measured. Also, sensor resolution and
range are limited and can result in empty map cells at
high distance. Finally, the sensor might not be able to
sense the material (e.g. transparent objects). Our general
policy is to treat areas of unknown height as obstacles.
However, in many cases, the gaps are small and can be
filled in without risk. Larger gaps are problematic be-
cause they may contain dangerous negative obstacles.
To fill in small gaps, we calculate the closest non-NaN
neighbors of each NaN cell in each of the four coordinate
directions. NaN cells which have at least two non-NaN
neighbors closer than a distance threshold δ away will be
filled in. As the observation resolution linearly decreases
with the distance from the robot, δ was chosen to be

δ = δ0 + ∆ · r

where r is the distance of the map cell to the robot. With
our sensors, δ0 = 4 and ∆ = 0.054 (all distances in map
cells) were found to perform well.
The value of the filled cell is calculated from an average
of the available neighbors, weighted with the inverse of
the neighbor distance.
For example, the occlusion of the large robot antenna vis-
ible in Fig. 3(a,b) is reliably filled in with this method.

4.3 Drivability Assessment
An absolute height map is not meaningful for planning
local paths or for avoiding obstacles. To assess drivabil-
ity, the omnidirectional height map is transformed into a
height difference map. We calculate local height differ-
ences at multiple scales l. Let Dl(x, y) be the maximum
difference to the center pixel (x, y) in a local l-window:

Dl(x, y) := max
|u−x|<l;u 6=x
|v−y|<l;v 6=y

|H(x, y)−H(u, v)| .

H(u, v) values of NaN are ignored. If the center pixel
H(x, y) itself is not defined, or there are no other defined
l-neighbors, we assign Dl(x, y) := NaN.
Furthermore, we do not allow taking differences across
camera boundaries. This prevents small transformation
errors between the cameras from showing up in the driv-
ability maps as obstacles. In the relevant ranges close to
the robot, this additional constraint does not reduce infor-
mation, because the field of views overlap. The required
precision of the camera transformation calibration is thus
greatly reduced.
Small, but sharp obstacles show up on the Dl maps with
lower l scales. Larger inclines, which might be better to
avoid, can be seen on the maps with a higher l value.

5 Navigation Planning
For path planning, the existing ROS solutions were em-
ployed. Our method creates custom obstacle maps for
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Figure 3: Several exemplary navigation situations. a) Wide-angle overhead camera. b) Downscaled point cloud,
color-coded according to height. The color scale is chosen in each situation to highlight the important features. Red is
high, blue/purple is low. c) Drivability map DD with planned path (blue) to local goal (red). d) Obstacle map D1 for
precise trajectory rollout with optimal trajectory (blue).
First row: Slightly sloped ground, one close pair of rocks. Second row: Driving backwards through the opening
between two rocks. Third row: Driving towards people standing at the top of a large ramp.

a Dijkstra planner (navfn) and a trajectory rollout plan-
ner (base local planner). Both components had to be
slightly modified to allow for gradual, non-binary costs
in the obstacle maps.

5.1 Trajectory Planning
The Dijkstra planner is provided with a linear combina-
tion ofDl maps to include information about small obsta-
cles as well as larger inclines. The summands are capped
at a value of 0.5 to ensure that one Dl map alone cannot
create an absolute obstacle of cost ≥ 1:

D̃ :=
∑

l∈{1,3,6}

min {0.5;λlDl}

The coefficients λl were tuned manually and can be seen
in Table 1.

Table 1: Coefficients for combining height differences.
l 1 3 6
λl 5.0 2.5 3.5

In addition, costs are inflated, because the Dijkstra plan-
ner treats the robot as a point and does not consider the
robot footprint. In a first step, all absolute obstacles (with
a cost greater or equal 1 in any of the maps Dl), are en-
larged by the robot radius. A second step calculates local
averages to create the effect that costs increase gradually
close to obstacles:

P (x, y) := {(u, v)|(x− u)2 + (y − v)2 < r2},

DD(x, y) := max

D̃(x, y),
∑

(u,v)∈P (x,y)

D̃(u, v)

|P (x, y)|

 .

5.2 Robot Navigation Control

To determine forward driving speed and rotational
speed that follow the planned trajectory and avoid
obstacles, we use the ROS trajectory rollout planner
(base local planner). It already sums costs under the
robot polygon. As larger obstacles and general inclines
are managed by the Dijkstra planner, we can simply pass



theD1 map as a cost map to the trajectory planner, which
will then avoid sharp, dangerous edges.
Replanning is done at least once every second to account
for robot movement and novel terrain percepts.

5.3 Visual Odometry
Our local navigation method does not rely directly on ac-
curate odometry information, as no state is kept across
states and the input goal pose is updated with a high fre-
quency by our global path planner [10]. We use odome-
try, however, when the operator is manually giving goal
poses to the local navigation. This can be necessary when
higher levels of autonomy are not available and the oper-
ator has to take a more direct role in controlling the robot.
Odometry is used then to shift the given local goal pose
as the robot moves.
The odometry measured from wheel movements can be
very imprecise, especially in planetary missions with
sand-like ground. To improve this, we first estimate
movement for each camera with the well-known Fovis
algorithm [4] from gray-scale and depth images. Indi-
vidual camera movement, wheel odometry and IMU data
are then combined into a fused odometry estimate.

6 Evaluation
We evaluated our method during the DLR SpaceBot Cup
competition, which focused on exploration and mobile
manipulation in rough terrain. Communication between
operators and the robot was impeded by an artificial de-
lay, simulating an actual earth-moon connection. In or-
der to complete the tasks in acceptable time, autonomous
functions, such as local navigation and grasping, were re-
quired. Given local navigation commands by the opera-
tor, the system was able to navigate in all traversable parts
of the arena. After the competition, we also recorded
a full RGB-D dataset while steering the robot manually
through the arena. Figure 3 shows calculated drivability
maps and planned paths in three exemplary situations re-
trieved from the recording. It can be seen that the relevant
obstacles are reliably perceived and obstacle-free paths
are planned around them. Color information alone would
clearly not by sufficient for navigation in the SpaceBot
Cup environment—even the human operator cannot per-
ceive all dangerous obstacles and slopes in the overhead
camera image.
We also evaluated our proposed approach in our lab. Fig.
4 shows a series of drivability maps taken from a single
drive on an S-shaped path through the opening between
two obstacles. The goal pose was given once and then
shifted with visual odometry as the robot approached it.
Of course, obstacle detection is dependent on obstacle
size and distance to the obstacle. The limiting factors
here are depth sensor resolution and noisiness of the
depth image. To investigate this, we placed several ob-
stacles, shown in Fig. 5a at varying distances to the robot
on flat ground (carpet). In each situation, 120 frames of
the local obstacle map D1 were recorded. To estimate

detection probabilities, we count the number of frames
containing cells near the expected obstacle location with
a difference value higher than a pre-defined threshold. As
can be seen in Fig. 5b, the system can reliably detect ob-
stacles which pose danger to the robot up to 3.5 m away.

Somewhat surprisingly, the system also detects the glass
reliably for higher distances, even though the RGB-D
sensor itself has problems with transparent objects. The
reason for that is that even though the sensor cannot mea-
sure distance to the object, this creates a sizable gap
through occlusion in the height map, which of course is
not traversable and thus detected as an obstacle.

The processing pipeline from eight 240×320 RGB-D
point clouds to the two drivability maps runs in around
50 ms on an Intel Core i7-4770K processor with 3.5 GHz.
The method is open to further optimization, especially in
the noise filtering step, which can take up to 10 ms.

We also evaluated our custom camera driver. The stan-
dard ROS driver is not stable enough with eight cameras
for direct comparison, so we can only provide absolute
metrics for our driver. Capturing VGA color and depth
images and converting them to RGB-D point clouds at
30 Hz is possible and creates a CPU utilization of about
40 % on the same processor. At the reduced setting of
QVGA resolution and 10 Hz rate the CPU utilization is at
16 %.

Glass Stone 1 Stone 2 Stone 3 Stone 4
Object dimensions.

Object Glass Stone 1 Stone 2 Stone 3 Stone 4
Height [cm] 14.5 1.5 2.5 3.5 7.5
Width [cm] 7.5 4.5 5.0 9.0 10.0

(a) Investigated objects and robot wheel (for size comparison).
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(b) Estimated detection probabilities at increasing distance.

Figure 5: Obstacle detection experiment.



Figure 4: Lab driving experiment. The first image shows the initial situation observed from the robot overhead camera.
Subsequent drivability maps show the planned path (blue line) towards the goal (red arrow).

7 Conclusion
We have shown that the proposed method allows the
robot to navigate in previously unknown terrain using
only locally observed depth data. The method was proven
to be successful and reliable in the SpaceBot Cup compe-
tition.
This work is the first approach to omnidirectional ter-
rain sensing with depth cameras to our knowledge. As
explained above, this approach provides multiple advan-
tages over other sensor types. The inherent challenge of
our approach was the processing of depth data in accept-
able time, which was only possible with the chosen 2D
grid aggregation and the resulting applicability of effi-
cient image processing methods instead of expensive true
3D processing. The developed local navigation method
is an important step towards fully autonomous operation
in complex environments, which is our long-term goal.
The dependence on the existing ROS navigation planners
has proven to be a hindrance, though. These planners
were designed for navigation in 2D laser obstacle maps
and have to be modified to accept gradual costs. In the
future, a custom planner with inherent knowledge about
the multipleDl maps might be able to achieve even better
results and performance.
A more efficient kernel-space driver for the ASUS Xtion
cameras is also under development. We expect a sub-
stantial increase in performance by avoiding unnecessary
copies, buffering and vectorization of decompression and
conversion routines.
The sensor itself opens up new possibilities in terrain
sensing and navigation. The direct availability of color
information makes the sensor applicable to existing ter-
rain classification methods.
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É. Dupuis. Rough terrain reconstruction for rover

motion planning. In Computer and Robot Vision
(CRV), 2010 Canadian Conference on, pages 191–
198. IEEE, 2010.

[3] M. Hebert and N. Vandapel. Terrain classification
techniques from ladar data for autonomous naviga-
tion. Robotics Institute, page 411, 2003.

[4] A. S. Huang, A. Bachrach, P. Henry, M. Krainin,
D. Maturana, D. Fox, and N. Roy. Visual odometry
and mapping for autonomous flight using an rgb-d
camera. In International Symposium on Robotics
Research (ISRR), pages 1–16, 2011.

[5] T. Huang, G. Yang, and G. Tang. A fast two-
dimensional median filtering algorithm. IEEE
Trans. Acoust., Speech, Signal Processing,
27(1):13–18, 1979.

[6] A. Kelly, A. Stentz, O. Amidi, M. Bode, D. Bradley,
A. Diaz-Calderon, M. Happold, H. Herman,
R. Mandelbaum, T. Pilarski, et al. Toward reliable
off road autonomous vehicles operating in challeng-
ing environments. The International Journal of
Robotics Research, 25(5-6):449–483, 2006.

[7] S. Kuthirummal, A. Das, and S. Samarasekera. A
graph traversal based algorithm for obstacle detec-
tion using lidar or stereo. In Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Con-
ference on, pages 3874–3880. IEEE, 2011.

[8] L. Lu, C. Ordonez, E. Collins, E. Coyle, and
D. Palejiya. Terrain surface classification with a
control mode update rule using a 2d laser stripe-
based structured light sensor. Robotics and Au-
tonomous Systems, 59(11):954–965, 2011.

[9] M. Quigley, K. Conley, B. Gerkey, J. Faust,
T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng. ROS:
an open-source Robot Operating System. In ICRA
workshop on open source software, volume 3, 2009.

[10] M. Schadler, J. Stückler, and S. Behnke. Rough ter-
rain 3D mapping and navigation using a continu-
ously rotating 2D laser scanner. German Journal
on Artificial Intelligence (KI), to appear 2014.


	Introduction
	Related Work
	Omnidirectional Depth Sensor
	Omnidirectional RGB-D Sensor
	Data Acquisition

	Local Drivability Maps
	Omnidirectional Height Map
	Filling Gaps
	Drivability Assessment

	Navigation Planning
	Trajectory Planning
	Robot Navigation Control
	Visual Odometry

	Evaluation
	Conclusion

