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Abstract— Simultaneous Localization and Mapping (SLAM)
is an essential capability for autonomous robots, but due to
high data rates of 3D LiDARs real-time SLAM is challenging.
We propose a real-time method for 6D LiDAR odometry.
Our approach combines a continuous-time B-Spline trajectory
representation with a Gaussian Mixture Model (GMM) formu-
lation to jointly align local multi-resolution surfel maps. Sparse
voxel grids and permutohedral lattices ensure fast access to map
surfels, and an adaptive resolution selection scheme effectively
speeds up registration. A thorough experimental evaluation
shows the performance of our approach on multiple datasets
and during real-robot experiments.

I. INTRODUCTION

LiDAR plays a major role in environment perception and

mapping for autonomous driving [1], unmanned ground vehi-

cles (UGVs) [2] and unmanned aerial vehicles (UAVs) [3].

SLAM and odometry systems provide the basis for many

autonomy or assistance functionalities like out-of-sight oper-

ation in GNSS-denied environments and reduce strain on the

operator while improving their awareness of the surrounding

area.

Despite much progress, robustness and reliability in

crowded, dynamic scenes and close to structures remain

challenging. In recent years, the amount and density of

LiDAR measurements increased tremendously which poses

new challenges for real-time processing of large point clouds.

These factors are essential when a risk-minimizing state, like

stopping, is difficult to maintain, e.g., for UAVs.

Most odometry and SLAM systems do not take full ad-

vantage of dependencies between consecutive LiDAR scans

when aligning a scan against a local map or a previous

scan, only jump-starting their registration with prior motion

estimates. This may lead to unrealistic jumps in the trajectory

since the sensor motion imposes a dependence between con-

secutive scans. We address this limitation with a continuous-

time trajectory representation.

The main contribution of this paper is our novel Multi-

Adaptive-Resolution-Surfel (MARS) LiDAR odometry sys-

tem1 that jointly registers multiple point clouds against a

local multi-resolution surfel map using a continuous-time

This work has been supported by the German Federal Ministry of Ed-
ucation and Research (BMBF) in the project “Kompetenzzentrum: Aufbau
des Deutschen Rettungsrobotik-Zentrums (A-DRZ)”

Institute for Computer Science VI, Autonomous Intelligent Systems,
University of Bonn, Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany,
quenzel@ais.uni-bonn.de

1We will open-source our LiDAR odometry at: https:

//github.com/AIS-Bonn/lidar_mars_registration. An
accompanying video is available at https://ais.uni-bonn.de/

videos/iros2021_quenzel/

a)

b)

c)

Fig. 1: Multi-resolution surfel maps with adapted resolution repre-
sent the point clouds a) during registration with a continuous-time
trajectory B-spline. The surfel b) color depends on their normal,
while point color depends on height. c) The control points (blue
dots) interpolate the scan poses (green dots) and form the spline
(blue to yellow).

Lie group B-Spline [4], as visualized in Fig. 1. We adap-

tively select the most efficient resolution for registration and

employ (block-)sparse voxel grids or permutohedral lattices

for surfel map storage. We modify the GMM formulation

of Droeschel et al. [5] to improve numerical stability and

introduce a normal-distance-based weighting. We thoroughly

evaluate our system to support our key claims, which are:

• our system provides reliable pose estimates with state-

of-the-art quality on a variety of datasets,

• our GMM is more numerically stable and more appro-

riate given the typical LiDAR sensor geometry,

• our adaptive resolution selection effectively reduces the

required computation without degrading accuracy,

• our system runs in real-time onboard a UAV, enabling

safe operation in GNSS-denied environments.

II. RELATED WORK

Point cloud registration is a well-researched topic and has

wide applicability [6]. A basic registration method is the
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Iterative Closest Point (ICP) [7] algorithm. ICP aligns scan

and model point clouds in an iterative two-step process.

In the first step, the algorithm establishes correspondences

between the two point clouds. The second step calculates

a transformation to reduce the distance between all corre-

sponding points and repeats both steps with the transformed

scan until reaching some optimization criteria. The original

formulation assumes perfect correspondences, thus suffers in

reality when the sampling locations differ due to a moving

sensor.

Another popular scan registration approach is the Normal

distribution transform (NDT) [8]. Here, the model point

cloud is represented by normal distributions within a regular

grid. This reduces the memory consumption as well as

computation time for nearest-neighbor searches. NDT aims

at maximizing the likelihood of all scan points to observe the

underlying surface element (surfel) described by the normal

distributions.

Similarly, Segal et al. [9] rephrased ICP within a prob-

abilistic framework that allows incorporating information

from the correspondence’s covariance. Hence, points on a

planar surface will be pulled together in normal direction

but have more leeway along the surface.

Once there is a method to register (feature-)points, con-

tinuously estimating the sensor pose w.r.t. an updating

local map becomes possible. The localization and mapping

(LOAM) approach [10] extracts feature points on planar

surfaces and edges from the current scan based on the local

curvature. Matching features against the previous scan allows

estimation of the relative motion at scan frequency. Previous

pose estimates help to undistort a newly incoming scan. Ev-

ery n-th scan is then further processed in the mapping thread

and aligned against and integrated into the map. LeGO-

LOAM [2] adapted the general approach for horizontally

placed LiDARs on UGVs under the assumption of always

being able to measure the ground plane. More recently, filter-

based approaches [11], [12] use the same feature extraction

to directly fuse LiDAR with IMU.

SuMa [13] performs a projection-based data association

to avoid the need for costly nearest neighbor associations.

For this, it projects the current point cloud from spherical

coordinates to an image and renders a model view of the

surfel map using OpenGL and the currently estimated pose.

This allows easy association between projected points and

rendered surfels and enables frame-to-model alignment via

ICP with the point-to-plane metric. Afterwards, the map

integrates the new scan surfels with an exponentially moving

average if they are more accurate. A binary Bayesian Filter

estimates the stability and reliability per surfel such that only

stable surfels are kept. A pose graph reduces overall drift

upon loop-closures and directly deforms the surfel map via

the sensor poses.

Instead of a uniform resolution, MRSLaserMaps [5] repre-

sents the environment close to the sensor with higher detail.

The registration performs Expectation Maximization (EM) of

the joint log-likelihood that a scan surfel is an observation of

the GMM of the local map. Circular buffers over grid cells

and the fixed number of points stored within each cell enable

map shifting to preserve the map’s egocentric property. The

shifted local map is added to a pose graph to reduce drift over

time using constraints between neighboring local maps. The

approach was extended in [14] to a hierarchical pose graph

and a refinement step to realign scans within a previous local

map. These scans were further undistorted by a least-squares

fit of a cubic Lie group B-Spline to interpolate between scan

poses. In practice, this method provided offline generated

maps for robot localization [3].

Elastic LiDAR Fusion [15] uses only a linear continuous-

time trajectory. Here, a single transformation linearly interpo-

lates the trajectory within a time segment under an inherent

constant-velocity assumption. For the rotation, the Log map

of the Lie group SO(3) lifts the relative rotation between

start and end pose to its vector-spaced Lie algebra so(3),
where the interpolation itself takes place. The exponential

map Exp maps back to the interpolated rotation. This simple

strategy is quite efficient and fast but is limited in practice by

the constant-velocity assumption. Their trajectory optimiza-

tion facilitates geometric constraints penalizing deviations

along the normal direction between individual surfels at dif-

ferent time steps within the same scan as well as towards the

global map and inertial constraints for rotational velocity and

acceleration from IMU. Furthermore, the authors improve

map consistency on loop closures through a deformation

graph.

Although we base our work upon MRSLaserMaps, our

real-time odometry system (Fig. 2) is a full redesign with

robustness and efficiency in mind to cope with the large

number of scan points generated by modern LiDAR sensors.

While most odometry systems align each LiDAR scan indi-

vidually against the map, we jointly register multiple scans

at once in a sliding-window fashion using the continuous-

time trajectory B-Spline representation by Sommer et al. [4].

In contrast to MRSLaserMaps, we do not use dense but

sparse voxel grids or lattices for each level within our multi-

resolution surfel map. Additionally, we scale the surfels’

GMM weight to balance the influence of differently sampled

areas due to sensor geometry. We adaptively select the

appropriate resolution for registration instead of the finest

available. Furthermore, we fuse and shift maps via their

surfels instead of point-wise and apply a keyframe-based

sliding-window for the local map such that we integrate only

scans with differing view poses.

III. OUR METHOD

The point cloud P of a scan is a set of points pi ∈ R
3.

The statistics of all points falling into a single voxel cell

are represented by a surfel with their mean value µ and

the covariance Σ. The surfel normal n is computed as the

eigenvector to the smallest eigenvalue of Σ. We regard a

surfel as valid, if it represents at least 10 points and at least

the two largest eigenvalues are non-zero.
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Fig. 2: System overview: A continuous-time trajectory spline
describes each scans pose within the current sliding-registration-
window. The registration aligns the scan surfels with a local surfel
map and updates the spline. Keyframes are added if necessary to the
sliding-window of the local map and combined in the local surfel
map.

A. Multi-resolution Surfel Map

Our map covers a cubic volume with side length b, e.g.,

twice the sensor range. The map origin is at the center of

this volume.

We subdivide this volume in a uniform volume element

(voxel) grid or a 3-dimensional permutohedral lattice with

tetrahedral cells. In both cases, we set the distance between

adjacent vertices/corners to fixed-size m.

A scaled regular grid (d + 1)Zd+1 projected along the

one vector 1 onto the hyperplane Hd : p · 1 = 0 forms

the lattice [16]. Each vertex has 2(d + 1) neighbors and its

coordinates sum up to zero. In the lattice, we attribute all

points to their closest vertex. A simple rounding algorithm

provides the enclosing simplex for each point. One advantage

of the lattice compared to the regular voxel grid is the better

scalability for higher dimensions. More importantly, a vertex

has 2 (d+ 1) direct neighboring vertices instead of 3d, which

is more efficient for our soft assignments. Similarly, we do

not allocate the whole dense volume but use a sparse lattice

or a (block)-sparse voxel grid based on hash-maps. For a

more appropriate representation of the sensor geometry, we

increase the detail close to the sensor by introducing multiple

finer levels. With an increasing level, we half the side length,

keep the number of cells constant, and centered at the origin.

For registration, the finest available resolution is used or

adaptively selected (Sec. III-C).

Within a cell, we have a double-ended queue (deque) to

store individual surfels from different scans and a combined

surfel. The deque enables easier and faster removal of old

scans from the map, in comparison to MRSLaserMaps.

Adding a new scan creates a new surfel on top of the deque.

New scan points are fused only into the new surfel. The cell

center is subtracted prior to fusion for numerical stability

of the surfel. After processing all points, the changed cells

update the combined surfel. During registration, we only use

the combined surfels. Fig. 3 shows an example for a single

scan as well as the local map with either a voxel grid or the

lattice.

Each map stores its pose Tws ∈ SE(3) and the sensor

origin o ∈ R
3, since these may change during map fusion.

Every scan within the sliding registration window has its

own surfel map, placed at its respective origin. The scan is

added at the origin with identity transform. Although this

results in differing grid alignment between the scan’s surfel

map and the local map, it greatly simplifies and speeds up the

registration. Grid realignment of all scans within the window

is costly. Using the current estimate for the newly added scan

would require a more complex spline and would take longer

to optimize. Furthermore, we alleviate the grid differences

with the soft assignment (Sec. III-B).

We adopt a sliding-window keyframe approach for our

local map. Once the distance towards the previous keyframe

becomes too large, we add the last scan P from the sliding

registration window to the local map. If there are too many

keyframes in the local map, we remove the oldest one,

including the corresponding surfels from the cells deque and

recompute the combined surfel after adding the new scan.

The point cloud P in the sensor frame is transformed to the

local map frame and then integrated. Before integration, we

compute how many cells the new sensor pose moved away

from the origin on the coarsest level. Once the difference

is above a certain threshold, we shift the whole map to

maintain its egocentric property. Shifting by a multiple of

the coarsest cell enables efficient swapping of cells instead

of cumbersome recomputation from points.

B. Sliding-Window Continuous-time Trajectory Registration

We represent our trajectory using the cumulative B-Spline

formulation of Sommer et al. [4] on R
3 for the translation

and on the Lie group SO(3) for the rotation. A B-Spline

of order k itself is Ck−1 continuous and defined by its k
control points [4]:

i (t) = ⌊(t− t0)/∆t⌋, (1)

u (t) = ((t− t0) mod ∆t)/∆t, (2)

p (u) = pi ·
k−1
∏

j=1

λj (u) · (pi+j − pi+j−1) , (3)

R (u) = Ri ·
k−1
∏

j=1

Exp
(

λj (u) · d
i
j

)

, (4)

di
j = Log

(

R−1

i+j−1
Ri+j

)

∈ R
3, (5)

TX (t) =

[

R (u (t)) p (u (t))
0 1

]

. (6)

Here, i is the index of the first control point in the active

time segment [ti, ti+1) and u is the normalized time since

the start of that segment. For R ∈ SO(3) Log maps from

the Lie group to its vector-spaced Lie algebra and Exp maps

back to SO(3). Although the control points Xi = (Ri, pi) ∈
SO(3)×R

3 are from two different Splines, the result T (t)
is a rigid transform in SE(3).

In practice, we set the order to k = 3 and thus, have to op-

timize all k control points during registration — independent

of the number of scans n. The time interval ∆t is adaptively

chosen such that the last scan l in the sliding-window is

within the current time interval [tl−n, tl + tpred]. Here, tl−n

is the time of the last shifted out scan. We update the control
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Fig. 3: Comparison between surfel maps with voxel grid [b),e)] and permutohedral lattice [c),f)].

points after shifting through the following optimization:

Xinit = argmin
X

n
∑

i=1

e⊺
p
ep + e

⊺

ReR, (7)

ep = p (u (tj))− pj−1, (8)

eR = Log
(

R−1

j−1
R (u (tj))

)

, (9)

j = l − n+ i, (10)

where Rj−1 and pj−1 are the previous estimates for the

unshifted spline. The prediction time offset tpred helps

during the deployment of the system on real robots to predict

the robot’s position, e.g., 0.1 s or one scan into the future,

effectively reducing the lag due to processing time.

We model the likelihood of a scene surfel s observing a

map surfel m as the following normal distribution:

esm (T ) ∼ N
(

dsm,Σsm + σ2I
)

, (11)

dsm (T ) = Tµs − µm, (12)

Σsm (T ) = Σm +RΣsR
⊺, (13)

with R being the rotation of the rigid transform T and a

resolution-depending scaling term σ2. For better readability,

we will drop the transformation argument for above formulas

whenever possible. This model would require a hard decision

whether or not s corresponds to m. Instead, we apply a

GMM that represents a mixture of multiple map surfels being

observed by s following the normal distribution (11) with an

additional uniform component p(os) for outliers:

ps (T ) = p (os) +
∑

m∈As

p (asm) p (δsm) p (esm) , (14)

p (os) = p (o) p
(

N
(

0, RΣsR
⊺ + σ2I

))

. (15)

Here, As is the set of map associations for surfel s with the

prior association likelihood p(asm). For more details on the

GMM, we refer the reader to [5].

p(δsm) further takes the similarity between associated

surfels w.r.t. normal and viewing direction into account.

Both are modeled as:

pv (v) ∼ N
(

arccos ((Rvs) · vm) , (π/8)
2
)

. (16)

Additionally, we model the distance in the normal direction:

dn ∼ N
(

n⊺

mΣ−1
smdsm, σ2

)

, (17)

assuming indepedence results in the approximation:

p(δsm) = pv(n)pv(v)p(dn). (18)

Given this GMM formulation, we seek to find the spline

control points X that maximize the logarithm of the joint

observation likelihood over the mixture:

X⋆ = argmax
X

n
∑

i=1

∑

s∈S

log (ps (TX (tl−n+i))) , (19)

and solve (19) with EM. In the E-Step, we establish associa-

tions for all surfels within the sliding-window. The pose Tc,

evaluated the spline at time tc, transforms the mean µs from

the scan’s sensor frame into the map frame. Then, we lookup

the corresponding surfel in the map and check its 1-hop-

neighborhood for valid surfels. In 3D, this creates up to 27

scan-map associations for a 3D voxel grid or 9 for the lattice.

We calculate per association their conditional likelihood wsm

given the current estimate Tc:

wsm (Tc) =
p (asm) p (dsm) p (esm)

ps(Tc)
, (20)

and keep these associations and weights fixed during the M-

Step to compute an updated estimate for the control points

X:

X⋆ = argmin
X

n
∑

i=1

∑

s∈Si

∑

m∈As

rsm(TX(tl−n+i)), (21)

rsm(Tc) = w d⊺Σ−1d. (22)

The Levenberg-Marquardt algorithm optimizes (21).

We found empirically that the GMM assigns a higher

weight wsm to surfels in the 3D-LiDAR’s vicinity. This



leads in situations where one translation direction was un-

derconstrained, e.g. open park areas with tree trunks further

away, or dynamic environments with moving objects close

to the sensor, to wrongly estimate the translation as staying

in place while the orientation was correct. Thus, following

HeRO [17], we analyzed the condition number κ of the

covariance of surfel normals — since κ reflects the difficulty

to accurately solve a linear system of equations. Weighting

the normals with their conditional likelihood wsm increases

κ — in some cases by a factor of up to 50. We found that

this relates to the higher measurement density for surfaces

close to the LiDAR, because the prior association likelihood

p(asm) directly incorporates the number of measurements

per surfel and the LiDAR samples the environment non-

uniformly in 3D. Hence, we inversely weight wsm by the

number of surfel measurements to effectively level the influ-

ence between far and close surfels.

C. Adaptive Resolution Selection

Always restricting to the finest available map resolution for

registration is computationally inefficient for planar surfaces

like walls, roads, floors, or ceilings. Hence, we select the

most appropriate resolution adaptively.

We start collecting valid surfels on the finest map scale and

check for not yet processed valid surfels for the following

three conditions on the normalized Eigenvalues λ0 ≤ λ1 ≤
λ2 ∈ R s.t.

∑

i λi = 1 of the surfel covariance matrix C:

λ0 < θplanar, (23)

λ0 < λ1θscale, (24)

λ1 < θdegenerate. (25)

The first two cases directly relate to planar surfaces, while

the last case often occurs for surfels created from a single

scan line. Fig. 4 illustrates these. If at least one condition is

true, we test all valid neighbors falling into the same coarser

surfel and calculate the mean normal vector n̄. Once all valid

finer surfels pass this test, we perform the same check on the

coarser surfel. Additionally, we ensure that the mean and

coarser normal are similar:

|nc · n̄| > θn. (26)

Upon passing these tests, the coarser surfel will be further

processed instead of the smaller ones, thus, reducing the

total number of surfels and speeding up registration. Typical

values for the thresholds are θplanar = 0.01, θscale = 0.01,

θdegenerate = 0.1, θn = 0.8.

IV. EVALUATION

We evaluate our method on the Urban Loco dataset [18]

for autonomous driving, the Newer College dataset [19],

and nine self-recorded UAV flights through the DRZ Living

Lab. Furthermore, we show qualitative results from multiple

UAV flights. All experiments were conducted on a laptop

with an Intel Core i7-6700HQ with 32 GB of RAM and

an NVIDIA GeForce GTX 960M. We compare our method

against the two LOAM variants A-LOAM2 and F-LOAM3 as

well as SuMa4. We modified A/F-LOAM to use ROS mes-

sage_filters5 to enforce real-time with a limited queue size of

10 to prevent processing too old information. Furthermore,

we deactivated for fair comparison the loop-closing of SuMa.

We did not include MRSLaserMaps since it lost track on all

tested sequences. Our method is implemented in C++ and

runs on the CPU only. In all experiments we perform up to

three iterations within the Levenberg-Marquardt algorithm to

optimize (21). The storage type is by default set to a sparse

voxel grid unless otherwise noted.

For all systems, we evaluate the root mean squared ab-

solute trajectory error (ATE) for the at-runtime estimated

poses against the provided ground-truth. The best result will

be in bold, while the second best will be colored blue.

For both LOAM-derivatives, we report the more accurate

optimized poses instead of the initial odometry poses and

ignore unoptimized scans during ATE computation.

A. Newer College Dataset

Ramezani et al. [19] replicated the route of the New

College Dataset with a handheld Ouster OS-1 LiDAR with

64 beams at 10 Hz. We selected the sequences “01_short“

and “02_long“ and “05_quad_with_dynamics“. The first two

experiment runs “01“ and “02“ consist of multiple loops

between buildings and through a park for over 1530 s and

2656 s. Sequence “05_quad_with_dynamics“ is a shorter

398 s run with faster and partially swinging motion during

four loops within a quad. The authors aligned the LiDAR

scans against a terrestrial laser scanner to provide ground-

truth poses. Tab. I shows the resulting ATE. Although the

LOAM-derivates’ odometry processed each scan, both could

only fully optimize every third scan in real-time. On the

second sequence, SuMa unfortunately lost track in the park

area while A-LOAM and F-LOAM exhibited drift during

orientation changes. For sequence “05“ the limited size of

the quad and A-LOAMs’ local map optimization allows A-

LOAM to relocalize, thus keeping the error low. In contrast,

our sliding-keyframe-window accumulates more drift over

time but maintains high accuracy such that in the future the

extraction of loop-closure candidates based on some vicinity

criterion is possible.

B. Urban Loco Dataset

Wen et al. [18] equipped two cars with LiDAR and other

sensors to capture highly urbanized areas throughout San

Francisco and Hong Kong. A navigation system with RTK-

GPS and IMU provides the ground-truth for all sequences.

The Coli Tower sequence (ULCT) took 248 s and is a 1.8 km

long drive up hill within a dynamic environment. Similarly,

the Lombard Street sequence (ULLS) is a 1 km drive and

took 253 s. Both were captured with a RS-LiDAR-32 while

2https://github.com/HKUST-Aerial-Robotics/A-LOAM
3https://github.com/wh200720041/floam
4https://github.com/jbehley/SuMa
5http://wiki.ros.org/message_filters
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Fig. 4: Adaptive resolution selection selects coarser surfel in areas of finer resolution with planar surfels. The red rectangle highlights
merging multiple degenerate surfels, while the black and blue are examples for Eq. 23 and Eq. 24.

TABLE I: ATE [m] Evaluation on scenes from the Newer College
(NC) and Urban Loco (UL) datasets

Ours
(Grid)

Ours
(Lattice)

A-
LOAM

F-
LOAM

SuMa

NC01 2.17229 1.97836 3.30768 101.899 2.04814

NC02 4.93553 5.11236 62.64240 87.08770 X

NC05 0.46826 0.41505 0.14824 2.81843 1.87838

ULCT 4.99616 4.96610 10.37230 6.05617 7.77146

ULLS 7.82386 7.57318 8.40002 7.56019 10.69550

ULHH 2.35564 2.40788 2.43283 2.42415 2.32560

ULLL 2.73179 2.23304 2.07094 2.31379 8.44114

ULSL 3.19269 3.26606 3.16574 3.27051 2.87772

ULWH 2.95064 2.99434 2.42352 2.25923 3.50044

ULT2 2.54422 1.44114 17.34920 2.42821 2.21693

ULT3 1.59692 1.55525 9.67000 2.02969 2.94482

ULH5 1.55182 1.50516 17.35210 2.42821 2.21693

the seven Hong Kong sequences used a Velodyne HDL-

32E LiDAR. The Hong Kong sequences took between 150 s

and 365 s and are up to 2 km long through dense urban

environment.

Tab. I shows the results for all four algorithms. Our method

achieves consistent state-of-the-art results with placing first

in three and second in another two out of nine sequences.

C. DRZ Living Lab

We collected LiDAR scans from an Ouster OS-0 with 128

beams at 10 Hz attached to a DJI M210 v2 while flying

through the DRZ Living Lab6. A Motion Capture (MoCap)

system provides ground-truth poses in the starting section of

the lab, where we recorded multiple flights with up to 2.5 min

flight time. All sequences except for the second dataset

remain within the MoCap volume with varying angular

velocity and linear acceleration. In the second dataset we

traversed back and forth through the Living Lab. The flight

starts and finishes within the MoCap. Three further exper-

iments were conducted with three persons moving around

with a slow (3P-S), medium (3P-M) and fast (3P-F) flying

UAV. For comparison, we conducted similar exploration

flights with different motion speeds in a static environment.

For fair evaluation, we use the UAVs’ IMU orientation to

compensate for the rotation distortion and supply these scans

to all tested methods. Tab. II details the number of scans, the

6https://rettungsrobotik.de/living-lab/

median norm of the linear acceleration as well as the median

and maximum norm of the angular velocity and shows the

results for all algorithms.

The surfel-based methods cope well with the faster moving

sequences, while the LOAM-derivatives struggle, even with

the undistorted scans. Our method performs very well in

comparison, with the exception of the “hall“-sequence. This

has likely to do with the local map size of all methods, since

our sliding-keyframe-window is the only one that did not

cover the whole Living Lab.

To analyze the impact of different spline settings, we

evaluate multiple combinations on the most challenging

sequence “F2“. Tab. III reports the parameters for number

of control points k, the number of jointly optimized scans

n and the resulting ATE with the actual computation time

during registration. The storage type was set to sparse grid

since timings for block-sparse and sparse were similar due

to the relatively low surfel count. Increasing n provided

no benefit, but slows down computation and required in

some cases more iterations to compute a stable result. In

comparison, the registration took 29.82 ms when using a

permutohedral grid with k = 3 and n = 3 without adaptive

resolution selection at an ATE of 0.094 89 m. The resolution

selection reduced runtime to an avg. 22.95 ms, although

the ATE increased slightly to 0.100 16 m. In contrast, the

voxel grid without adaptive selection could not correctly

estimate all rotations resulting in a 90° drift during a high

angular velocity maneuver. Similarly, we typically obtained

more consistent and accurate results with enabled adaptive

resolution selection in open environments.

Fig. 5 shows the aggregated point cloud from the DRZ

Living Lab traverse flight.

D. Qualitative UAV Experiment

An early development version of our registration provided

the onboard LiDAR odometry for multiple autonomous

flights of the same DJI M210v2 UAV through GNSS-denied

areas. An EKF fused our pose estimates with the aircraft’s

IMU. For more details on the autonomous UAV flights, we

refer the reader to [20]7. Fig. 6 shows the finest resolution

of the local surfel map and the aggregated point cloud.

7https://ais.uni-bonn.de/videos/icuas2021_

schleich/



a)
b)

c)

Fig. 5: Aggregated point cloud from the traverse through the DRZ Living Lab. The roof is partially removed for better visualization.

a) b)

c) d)

Fig. 6: Local map [a),b)] and aggregated point cloud [c),d)] and from the autonomous flight. The trajectory is colored green in c) and d).



TABLE II: ATE [m] Evaluation for the DRZ Living Lab dataset

Seq. Scans median (‖a‖)
[m/s2]

median (‖ω‖)
[rad/s]

max(‖ω‖)
[rad/s]

Ours (Grid) Ours
(Lattice)

A-LOAM F-LOAM SuMa

Fast 1479 1.13119 0.22876 1.89359 0.094848 0.05566 2.26457 2.11024 0.06370

Hall 2421 0.39893 0.09758 1.14679 0.20538 0.09212 0.03032 0.03850 0.07256

3P-S 1085 0.27435 0.07900 0.86189 0.02181 0.01465 0.02244 0.01665 0.03834

3P-M 650 0.58921 0.11351 1.08112 0.02873 0.02393 0.02517 0.03076 0.04032

3P-F 604 1.99022 0.52543 3.54729 0.06066 0.04995 0.71797 0.83169 0.09472

S1 826 0.48876 0.10443 1.51561 0.04398 0.03968 0.04555 0.04636 0.041957

M1 1458 0.90011 0.21923 1.97838 0.08220 0.06385 3.73529 3.62154 0.17566

F2 795 2.30749 0.48656 3.98107 0.10458 0.10016 2.62554 2.80373 0.08839

F3 957 1.04914 0.24944 1.63187 0.08520 0.07374 0.14406 2.45972 0.17991

TABLE III: Statistics for varying spline parameters on the “F2“
sequence in the DRZ Living Lab. Entries with * required five
instead of three iterations.

Spline ATE avg. time

k n [m] [ms]

2

2 0.10628 41.28

3 0.10970* 65.45

4 0.22468* 71.03

3

3 0.10458 50.57

4 0.10759* 82.53

5 0.11229* 91.85

4

4 0.11133 117.03

5 0.11246 121.88

6 0.12333 121.88

V. CONCLUSION

We presented MARS, a novel multi-resolution surfel-based

LiDAR odometry. A sparse permutohedral lattice or voxel

grid stores the surfels within our multi-resolution surfel map.

Multiple LiDAR scans are jointly registered against the local

map using a continuous-time trajectory with adaptively se-

lected surfel resolution. In the future, we plan to incorporate

IMU measurements and visual features in the registration

process and extend our system with a pose graph to further

reduce the drift over time, incorporating GPS poses and loop

closures.
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