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Abstract— In this paper we present an approach to object
segmentation and recognition that combines depth and color
cues. We fuse information from color images with depth
from a Time-of-Flight (ToF) camera to improve recognition
performance under scale and viewpoint changes. Firstly, we
use depth and local surface orientation extracted from the
ToF image to normalize color and depth image features with
regard to scale and viewpoint. Secondly, we incorporate local
3D shape features into the classifier. The use of a Random Forest
classifier facilitates the seamless combination of depth and
texture features. It also provides image segmentation through
pixel-wise classification. We demonstrate our approach on a
labelled dataset of seven object categories in table-top scenes
and compare it with a vision-only approach.

I. I NTRODUCTION

In unconstrained, daily life environments, the segmenta-
tion and recognition of objects is an important yet difficult
to achieve capability for a service robot. Much effort in
computer vision has been devoted to this task over the last
decades with tremendous progress. In this paper, we present
an approach to object segmentation and recognition that com-
bines depth information from a Time-of-Flight (ToF) camera
with images acquired with a color camera. The availability
of dense depth measurements enables us to normalize texture
and depth features for scale and viewpoint changes.

We base our approach on discriminative Random Forest
classifiers which have been introduced to the computer vision
community by Lepetit et al. [1]. This kind of classifier has
many properties which can be useful in robotics applica-
tions: Both, training and classification can be performed
with high computational efficiency which facilitates real-time
operation. Random forests output a probability distribution
over multiple class categories for each pixel and thus solve
object segmentation and recognition concurrently. They also
allow to seamlessly integrate a variety of features like color,
texture, and depth from heterogeneous sensor modalities.

In our approach, we combine color and depth cues to
improve classifier performance. From color images, we de-
termine simple appearance features at pixels and by binary
comparisons between pixels. Complementarily, we extract
local shape features from the depth image.

We not only fuse color and ToF images, but also normalize
features for scale and viewpoint changes of the object
towards the camera. This can be achieved by scaling and
rotating relative query points with respect to the local surface
orientation on the object. We determine the local surface
orientation efficiently from the dense depth image.
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Fig. 1. Object segmentation and recognition with texture (top left) and
depth (top right) cues. Depth is acquired with a Time-of-Flight camera. We
apply Random Forest classification to segment the ToF image (176x144)
pixel-wise with a subsampling factor of 2. The classifier outputs a proba-
bility distribution over class labels for each pixel. The segmentation shows
the class label with maximum likelihood for each pixel (background: black,
apple: green, puncher: magenta).

In experiments on a labelled dataset of seven object
categories acquired in a table-top scene, we demonstrate that
our approach outperforms the standard approach to Random
Forest classification with unnormalized texture features.

This paper is organized as follows: In Sec. II we will
review related work on object segmentation and recognition
from color/texture and depth. Fundamentals and properties
of Random Forest classifiers are detailed in Sec. III. We
describe our main contribution, the combination of depth
and color cues for object segmentation and recognition, in
Sec. IV. Finally, we report experimental results in Sec. V.

II. RELATED WORK

Image segmentation is a well-studied topic in computer
vision. Early methods segment images by subsuming regions
with similar brightness, color, and texture or by separating
regions at discontinuities of such features [2]. However, the
basic assumption underlying these approaches is that objects
appear uniform in such features, which is typically not the
case for images of real-world scenes.

For class-based segmentation of color images, many ap-
proaches have been developed (e.g., [3], [4], [5], [6]). Se-
mantic Texton Forests [4] use simple features of luminance
and color at single pixels or comparisons between two pixels
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in a Random Forest classifier. Using image-level priors and
a second stage of Random Forests, local and scene context is
incorporated into the classification framework. In [5] the ba-
sic Random Forest classifier is enhanced by further features
such as Histograms of Oriented Gradients [7] and filterbanks.
Spatial smoothness of the resulting segmentations is achieved
using Conditional Random Fields (CRFs). Both approaches
demonstrate state-of-the-art results on the MSRC [8] and
VOC2007 [9] datasets. We extend the basic Random Forest
classification approach in [4] by incorporating depth features
and by normalizing features for scale and viewpoint changes.

Object and shape recognition in 3D point clouds has
also been studied for some time in computer graphics and
robotics. Wahl et al. [10] propose to represent 3D shapes
by histograms of surflet-pair-relations, i.e. distance andori-
entation between points and corresponding local surface
normals. In [11], such surflet-pair-relation histograms are
used to describe the local neighborhood of points. The
authors demonstrate that the proposed Point Feature His-
tograms (PFH) yield a persistent description of geometric
shape primitives useful for segmentation. Fast Point Feature
Histograms (FPFH), a fast approximation of PFH features,
have been proposed in [12]. We combine FPFHs with texture
features in our object recognition and segmentation frame-
work.

Gould et al. [13] integrate range and vision sensing
modalities for object detection of household objects. Features
extracted from range data are used to focus the attention of
image-based object detectors and, in this way, reduce compu-
tation. They furthermore combine image and 3D features in
binary logistic classifiers to improve detection accuracy.Our
approach seamlessly integrates vision and range information
in an object segmentation and recognition framework.

III. R ANDOM FORESTS

Random Forests extend decision trees [14] to mitigate
their shortcomings. Decision tree classifiers typically suffer
from over-fitting. To overcome this problem, Random Forests
combine the output of an ensemble of randomized decision
trees. The randomness is incorporated into the selection of
decision criteria during training. By this, Random Forests
achieve lower generalization error than decision trees and
comparable performance to SVMs on multi-class prob-
lems [15].

One major advantage of decision tree-based classifiers is
their high computational efficiency. The computational load
is mainly governed by the typically small depth and count of
trees, and the feature extraction method. This property makes
Random Forests ideally suited for real-time applications of
object segmentation and recognition as often required in the
robotics context.

A. Structure of Random Forests

A Random ForestF consists ofK randomized decision
treesTk. Each noden in a tree classifies an example by a
binary decision on a scalar node function over features. In

addition, each node is associated with a distributionP (c|n)
over class labelsc ∈ C.

To determine the posterior distribution over class labels
for an example, it is evaluated on each decision treeTk in
the ensemble. In this process, the example is passed down
the tree, branching at each node according to its binary
decision criterium until a leaf nodel is reached. The posterior
distribution is averaged over the individual distributions at
the leaf nodeslk the example reaches, i.e.

P (c|F) =
1

K

K
∑

k=1

p(c|lk, Tk).

For classification, this posterior distribution is evaluated
for each pixel in an image. Without further processing, the
class label with maximum likelihood can be chosen to obtain
an image segmentation into classes.

B. Learning Random Forests

Each randomized decision tree in the forest is trained
independently. Starting from the root node, the training ofa
tree either proceeds depth first or breadth first by successively
choosing binary decision criteria in a randomized manner.
The trees are limited to a maximum depth.

To select the decision criterium of a node, only a random
subset of the training data and the available node functionson
feature values is presented. The training algorithm needs to
determine the node function and a threshold on its value that
separates the training examples best. Commonly, information
gain is maximized for this purpose. The class distributions
of the nodes are estimated from the empirical distribution
given by all training examples.

We follow the approach of [4] and sample a distinct
number of threshold values. From these thresholds we select
the one with highest information gain. We also weigh each
training example for a class label with the inverse class label
frequency in the training dataset. This prevents the preference
of the classifier to better separate classes with larger portions
of the training set.

IV. OBJECTSEGMENTATION AND RECOGNITION FROM

DEPTH AND COLOR CUES

In our approach to object segmentation and recognition
we combine two complementary sensor modalities. While
a color camera provides detailed texture information on the
viewed scene, a Time-of-Flight camera measures depth of the
scene densely. We use the perceptually uniform CIELab color
space in our implementation. Fig. 2 shows the sensor setup
on the head of our domestic service robot Dynamaid [16].

In our Random Forest classification framework, features
are computed from both types of images. In the depth
image, we extract features that describe 3D shape locally.
In addition, for each depth image pixel we determine local
texture features through projection of the pixel’s 3D point
coordinate into the color image. The available depth enables
us to normalize the texture features for scale and viewpoint.
We assume that the rotation between object and camera only
changes in pitch and yaw.



Fig. 2. Sensor setup used in our experiments. A MESA SR4000 camera
and PointGrey Flea2 13S2C-C cameras acquire depth and color images. The
sensor head is mounted on a pan-tilt unit.

A. Sensor Data Preprocessing and Fusion

Time-of-Flight (ToF) cameras are compact, lightweight,
solid-state sensors which measure depth to surfaces densely
at a high frame rate and are therefore ideally suited for
robotic applications. They employ an array of LEDs that
illuminate the environment with modulated near-infrared
light. The reflected light is received by a CCD/CMOS chip.
Depth information is acquired by measuring the phase shift
of the reflected light for every pixel in parallel. The use of
ToF cameras has been studied in various fields of robotics.
Main limitations of this sensor are its limited measurement
range, measurement inaccuracies, limited unambiguity range,
and its restricted field-of-view (FoV).

Measurements of ToF cameras are subject to several error
sources [17]. From the image, we filter out measurements
with low amplitude, as these indicate either highly noisy
measurements of poorly reflecting objects or measurements
of objects beyond the unambiguity range of the camera.
Furthermore, we remove measurements at so-called jump-
edges at object boundaries. They can be determined by
examining local pixel neighborhoods. We detect jump-edges
when two points approximately lie along the line-of-sight of
the camera [18]. Since this procedure is sensitive to noise,
we apply a median filter to the depth values beforehand.

To be able to fuse information from both cameras, we
calibrate the cameras extrinsically similar to a stereo camera
rig.

B. Scale and Viewpoint Normalization through Depth

The dense depth information acquired by the ToF camera
enables us to estimate local surface properties. We exploit
this to normalize texture and depth features for affine trans-
formations of the objects under view.

At each ToF image pixel, we estimate the local surface
normal nS from 3D points in a local neighborhood of the
pixel’s 3D coordinate. The neighborhood is defined by a
sphere with radiusr. We determine the surface normal by
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Fig. 3. Two-dimensional illustration of feature normalization. We normalize
color and depth image features by rotating relative query positions p andq

onto the local surface orientation. We use the shortest rotation from image
plane normalnI onto surface normalnS . For depth features, we determine
the nearest neighbors of the rotated query pointsp and q. To determine
texture features, the query points are projected onto the image planeI

yielding pixel positionsp̂ and q̂.

the eigenvector of the 3D covariance of the neighboring
points corresponding to the smallest eigenvalue. If necessary,
we flip the extracted surface normal to point towards the
viewpoint. The range query has been efficiently implemented
through kd-trees.

In our approach, features are unary functions at or com-
parisons between pixels. In standard image processing ap-
proaches, values are extracted at relative pixel coordinates
in a local image patch around a pixel. To compute scale and
viewpoint invariant features, we rotate 3D query positions
that are relative to the pixel’s 3D coordinate from the image
plane onto the local surface (cf. Fig. 3). We then determine
nearest neighbors in the depth image or project the rotated
query points into the color image.

We determine the rotation between surface and image
plane by the shortest rotation from the image plane nor-
mal nI := (−1, 0, 0)

T onto the surface normalnS . This
is achieved by rotating with an angleθ along the axisv
perpendicular to the image plane normal and the surface
normal,

v :=
nI × nS

‖nI × nS‖
.

From

RI→S(v, θ) ·





−1
0
0



 =





− cos(θ)
−vz · sin(θ)
vy · sin(θ)



 = n (1)

we obtainθ = arctan2
(

−
ny

vz

,−nx

)

. In our formulation, we
assume that the object is upright with respect to the camera,
i.e. no roll rotation occurs between object and camera.

C. Feature Types

We extract four kinds of texture and surface describing
features from color and ToF depth images:

1) Texture: Features in the color image are simply com-
puted from pixel values and comparisons at projected query
points.



2) Local Surface Curvature:We use the second order
measure of surface curvature as feature. From the eigenval-
uesΛ = {λi}

3

i=1
of the local 3D covariance at each pixel,

we determine the curvatureκ as

κ =

∣

∣

∣

∣

∣

min Λ
∑

3

i=1
λi

∣

∣

∣

∣

∣

.

3) Moment Invariants:Three-dimensional moment invari-
ants [19] are features of object surfaces that are invariantto
rigid transformations. From the central moments in a local
neighborhoodP

mijk =
∑

p∈P

(px − µx)
i
(py − µy)

j
(pz − µz)

k

the 3D moment invariants are determined by

I1 =m200 + m020 + m002

I2 =m200m020 + m020m002 + m002m200

− m2

011
− m2

101
− m2

110

I3 =m200m020m002 + 2m011m101m110

− m2

011
m200 − m2

101
m020 − m2

110
m002,

whereµ is the mean of the neighorhoodP.
4) Fast Point Feature Histograms:Recently, Fast Point

Feature Histograms (FPFH) have been proposed as persistent
3D shape descriptors. The histograms are computed from 4-
dimensional features determined from pairs of surflets, i.e.
pointsp with associated local surface normalsn.

For a pair of pointspi and pj we extract surflet-pair-
relation features in the following way: First we determine the
source pointps as the point with the smaller angle between
its normal and the line between the points, i.e. if

arccos (ni · (pj − pi)) ≤ arccos (nj · (pi − pj)) ,

the pointpi is chosen as source andpj as targetpt. From
the points and their normals we construct the Darboux frame
with u = ns, v = (pt − ps) × u, andw = u × v.

The four surflet-pair-relation features then describe the
relative orientation and distance between the two surflets:

α = arctan2 (w · n2, u · n2) ,

β = v · n2,

γ = u ·
(pe − ps)

‖pe − ps‖
,

δ = ‖pe − ps‖ .

We then compute so-called Simplified Point Feature His-
tograms (SPFH) over the angular surflet-pair-relation features
between a point and its local neighbors in a specific ranger.
As proposed in [12], we neglect the distance featureδ. We
bin each feature intoK equally sized intervals of its value
range.

The SPFHs are further compressed to Fast Point Feature
Histograms (FPFH): At each pointp, the FPFH is the
weighted sum of the SPFHs in the point’s local neighbor-
hoodP

FPFH(p) = SPFH(p) +
1

|P|

∑

q∈P

1

d(p, q)
SPFH(q),

whered(p, q) is a distance metric between points.

D. Node Functions

We use the above features in unary node functions or to
compare shape or appearance between two local points at a
pixel.

1) Unary Node Functions:As unary node functions we
use value or absolute value of luminance, color, curvature,
moment invariants, and the individual FPFH bin values at
query positions relative to the pixel’s 3D coordinate.

To determine feature values for the query positions in
the depth image, we determine the nearest pixel in 3D
coordinates. In the color images, depth is not available at
every pixel. For this reason, we choose the relative query
positions to reside in the local surface plane given by the
pixel’s normal. The query position is then projected into the
color image to find its corresponding pixel.

It suffices to select relative positions and to rotate these
positions onto the surface plane according to the image-
plane-to-surface rotationRI→S in (1). During training of the
random forest, we randomly select relative query positions
within a selection rangersel.

2) Binary Node Functions:Binary node functions com-
pare features at two relative query positions. Analoguously
to the unary node function case, we determine the query
positions either on a plane for texture features or in 3D
for depth features. We use a variety of node functions over
different types of depth and texture features:

• Texture: We compare query positions in the color
image by the value or absolute value of addition, sub-
traction, and multiplication. By this, each path through
the decision tree is able to generate patch features
similar to derivative filter kernels [4].

• Point Statistics: Similar to binary node functions on
color, node functions are calculated on curvature and
moment invariants as value or absolute value of addi-
tion, subtraction, and multiplication.

• FPFH Matching: We also use the chi-squared distance

χ2(p, q) =
∑

k

(FPFH(p)k − FPFH(q)k)
2

(FPFH(p)k + FPFH(q)k)

between the FPFHs at the query pointsp andq as binary
node functions.

V. EXPERIMENTS

We evaluate our approach with a dataset of seven object
categories which we acquired in a table-top scene. The object
categories comprise cups, apples, bins, books, computer
mice, punchers, and staplers (cf. Fig. 4). Each category
consists of four example objects that add intra-class variety
in shape and appearance. In the object-view dataset (221
images), the objects are placed at the same spot and are
rotated in45◦ angle intervals around their yaw axis. In an
object-mix dataset (32 images), we place two or three objects
in random positions and orientations on the table.

We train the Random Forest classifier with standard unnor-
malized texture features in the image-plane (patchsize16 ×



Fig. 4. Objects from the seven categories used in the experiments.

with backgr. w/o backgr.
glob. avg. glob. avg.

standard texture 0.80 0.63 0.65 0.63
texture (0.025m) 0.81 0.59 0.62 0.57
texture (0.1m) 0.92 0.75 0.78 0.74
depth (0.07m) 0.90 0.51 0.81 0.75

texture, depth (0.025m, 0.07m) 0.95 0.66 0.73 0.64
texture, depth (0.1m, 0.07m) 0.95 0.69 0.77 0.67

TABLE I

GLOBAL AND AVERAGE ACCURACY OF MAX -LIKELIHOOD OBJECT

SEGMENTATION ON TEST IMAGES OF THE OBJECT-VIEW DATASET.

16) and several combinations and parameter settings for
normalized texture and depth features. In experiments with
the object-view dataset only, we split the dataset into testand
training subsets. By this, the classifier has to generalize on
unknown object views. Otherwise, we use the object-views
dataset as training set and test segmentation on the object-
mix dataset. The forest consists of 5 trees and we use a
random25% fraction of the training data for each tree. We
set the maximum depth of the trees to10 and select from400
node functions and5 thresholds drawn at random. Since it
may be of interest to segment objects from background like
the table-top, we add background as an additional class to
the object categories in a second set of experiments.

Table I shows global and average accuracy obtained on
the object-view dataset. The use of normalized texture and
depth features clearly outperforms the standard classifierwith
unnormalized texture features. It is remarkable that depth
alone yields better segmentation accuracy than the combined
approach when the background is neglected. However, the
use of normalized texture improves the classification of
background. The combination of depth and texture achieves
highest overall accuracy in segmenting background and ob-
jects. Fig. 5 depicts examples for good and bad segmentation
results obtained with this configuration.

On the object-mix dataset (Table II), our approach again
achieves better accuracy than the standard approach. Again,
the use of depth alone results in highest accuracy when the
background is neglected. Considering background, highest
overall and average accuracy is achieved by combining
texture and depth (example segmentations can be found in
Fig. 6).

VI. CONCLUSIONS

In this paper, we propose an approach to object seg-
mentation and recognition that fuses information from color
and Time-of-Flight cameras. From both types of images,

with backgr. w/o backgr.
glob. avg. glob. avg.

standard texture 0.77 0.54 0.51 0.52
texture (0.025m) 0.80 0.50 0.46 0.46
texture (0.1m) 0.84 0.47 0.52 0.44
depth (0.07m) 0.81 0.45 0.73 0.62

texture, depth (0.025m, 0.07m) 0.89 0.57 0.64 0.60
texture, depth (0.1m, 0.07m) 0.86 0.42 0.52 0.37

TABLE II

GLOBAL AND AVERAGE ACCURACY OF MAX -LIKELIHOOD OBJECT

SEGMENTATION ON THE OBJECT-MIX DATASET.

we extract shape and appearance features that we use in a
Random Forest classification framework. Furthermore, we
use depth to estimate local surface orientation at each ToF
pixel. By rotating features onto the surface orientation, we
normalize texture and depth features for scale and viewpoint.

Our experiments demonstrate that the combination of
depth and texture information yields superior classification
results to the use of unnormalized texture alone. However,
the small resolution of the Time-of-Flight camera and the
inherent restrictions due to its measurement principle limit
our approach. Depth from structured light or 3D laser range
finders could further enhance the performance of our ap-
proach. Also, while the maximum likelihood segmentations
obtained by our approach seem to be noisy and unsmooth
at first glance, the probabilistic output of the Random Forest
classifier could be used in a spatial smoothing stage using
a CRF, for example. By this, larger spatial context could be
incorporated into our recognition and segmentation approach.
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