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Combining Depth and Color Cues for Scale- and Viewpoint-Invaiant
Object Segmentation and Recognition using Random Forests

Jorg Stickler and Sven Behnke

Abstract—In this paper we present an approach to object
segmentation and recognition that combines depth and color
cues. We fuse information from color images with depth
from a Time-of-Flight (ToF) camera to improve recognition
performance under scale and viewpoint changes. Firstly, we
use depth and local surface orientation extracted from the
ToF image to normalize color and depth image features with
regard to scale and viewpoint. Secondly, we incorporate local
3D shape features into the classifier. The use of a Random Forest
classifier facilitates the seamless combination of depth and
texture features. It also provides image segmentation through
pixel-wise classification. We demonstrate our approach on a
labelled dataset of seven object categories in table-top scenes
and compare it with a vision-only approach.

I. INTRODUCTION

In unconstrained, daily life environments, the segmenta-
tion and recognition of objects is an important yet difficult
to achieve capability for a service robot. Much effort in
computer vision has been devoted to this task over the Id§9- 1. Object segmentation and recognition with texture (eft) and
d d ith d In thi epth (top right) cues. Depth is acquired with a Time-offiigamera. We

ecades wit tremen ous progrgss. n this pap.e_r, We presg ly Random Forest classification to segment the ToF imagex{#4)
an approach to object segmentation and recognition that copixel-wise with a subsampling factor of 2. The classifier ottpa proba-
bines depth information from a Time-of-Flight (ToF) cameraility distribution over class labels for each pixel. Thgsentation shows

ith i ired with | Th ilabili the class label with maximum likelihood for each pixel (backgrd: black,
with images acquired with a color camera. The availa ilithpple: green, puncher: magenta).
of dense depth measurements enables us to normalize texture
and depth features for scale and viewpoint changes.

We base our approach on discriminative Random Forest|n experiments on a labelled dataset of seven object

classifiers which have been introduced to the ComputerWiSiQ;ategorieS acquired in a table-top scene, we demonstiate th
community by Lepetit et al. [1]. This kind of classifier hasour approach outperforms the standard approach to Random
many properties which can be useful in robotics applicaForest classification with unnormalized texture features.
tions: Both, training and classification can be performed This paper is organized as follows: In Sec. Il we will
with high computational efficiency which facilitates réahe  review related work on object segmentation and recognition
operation. Random forests output a probability distrinti from color/texture and depth. Fundamentals and properties
over multiple class categories for each pixel and thus sol&f Random Forest classifiers are detailed in Sec. Ill. We
object segmentation and recognition concurrently. Thep al describe our main contribution, the combination of depth
allow to seamlessly integrate a variety of features likeocol and color cues for object segmentation and recognition, in

texture, and depth from heterogeneous sensor modalities.Sec. |V. Finally, we report experimental results in Sec. V.
In our approach, we combine color and depth cues to

improve classifier performance. From color images, we de- Il. RELATED WORK
termine simple appearance features at pixels and by binarylmage segmentation is a well-studied topic in computer

comparisons between pixels. Complementarily, we extragision. Early methods segment images by subsuming regions

local shape features from the depth image. _ with similar brightness, color, and texture or by separgatin
We not only fuse color and ToF images, but also normalizg,yions at discontinuities of such features [2]. Howevee, t

features for scale and viewpoint changes of the objeglgic assumption underlying these approaches is thattsbjec

towards the camera. This can be achieved by scaling agdnear uniform in such features, which is typically not the
rotating relative query points with respect to the locafate ;56 for images of real-world scenes.

orientation on the object. We determine the local surface g, c|ass-based segmentation of color images, many ap-
orientation efficiently from the dense depth image. '

proaches have been developed (e.qg., [3], [4], [5], [6]). Se-
All authors are with the Autonomous Intelligent Systems Grduipiver- mantic Texmr! Fores_ts [4] use S|mp_le features of Ium'n".ince
sity of Bonn, Germany. Email: stueckler@ais.uni-bonn.de and color at single pixels or comparisons between two pixels



in a Random Forest classifier. Using image-level priors anaddition, each node is associated with a distributitfa|n)
a second stage of Random Forests, local and scene contexvsr class labels € C.
incorporated into the classification framework. In [5]tte b To determine the posterior distribution over class labels
sic Random Forest classifier is enhanced by further featurts an example, it is evaluated on each decision tfgen
such as Histograms of Oriented Gradients [7] and filterbankthe ensemble. In this process, the example is passed down
Spatial smoothness of the resulting segmentations is\athie the tree, branching at each node according to its binary
using Conditional Random Fields (CRFs). Both approachetecision criterium until a leaf nodes reached. The posterior
demonstrate state-of-the-art results on the MSRC [8] ardistribution is averaged over the individual distribusoat
VOC2007 [9] datasets. We extend the basic Random Forghe leaf nodeg;, the example reaches, i.e.
classification approach in [4] by incorporating depth feasu K
and by normalizing features folr. sca!e and vie\{vpoint changes P(c|F) = L ZP(CW:; 75).

Object and shape recognition in 3D point clouds has Kkzl

also Pee” studied for some time in computer graphics and For classification, this posterior distribution is evaldht
robotics. Wahl et al. [10] propose to represent 3D shapqgr each pixel in an image. Without further processing, the

by h|§tograms of surfl_et-pa|r—relat|ons, 1.€. @stance arid class label with maximum likelihood can be chosen to obtain
entation between points and corresponding local surfacg image segmentation into classes

normals. In [11], such surflet-pair-relation histograme ar
used to describe the local neighborhood of points. ThB. Learning Random Forests

authors demonstrate that the proposed Point Feature HisEach randomized decision tree in the forest is trained
tograms (PFH) yield a persistent description of geometrigydependently. Starting from the root node, the training of
shape primitives useful for segmentation. Fast Point Featuree either proceeds depth first or breadth first by sucaggsiv
Histograms (FPFH), a fast approximation of PFH featureghoosing binary decision criteria in a randomized manner.
have been proposed in [12]. We combine FPFHs with texturghe trees are limited to a maximum depth.
features in our object recognition and segmentation frame- To select the decision criterium of a node, only a random
work. subset of the training data and the available node functians
Gould et al. [13] integrate range and vision sensingeature values is presented. The training algorithm needs t
modalities for object detection of household objects. f&® determine the node function and a threshold on its value that
extracted from range data are used to focus the attention €parates the training examples best. Commonly, infoomati
image-based object detectors and, in this way, reduce compgain is maximized for this purpose. The class distributions
tation. They furthermore combine image and 3D features igf the nodes are estimated from the empirical distribution
binary logistic classifiers to improve detection accur&@yr  given by all training examples.
approach seamlessly integrates vision and range infosmati \We follow the approach of [4] and sample a distinct
in an object segmentation and recognition framework.  number of threshold values. From these thresholds we select
the one with highest information gain. We also weigh each
Ill. RANDOM FORESTS training example for a class label with the inverse classllab
tfé;equency in the training dataset. This prevents the peefsr

Random Forests extend decision trees [14] to mitiga o ; )
their shortcomings. Decision tree classifiers typicalljfesu of the cla§S_|f|er to better separate classes with largeropsrt
tgf the training set.

from over-fitting. To overcome this problem, Random Fores
combine the output of an ensemble of randomized decisiony. OBJECT SEGMENTATION AND RECOGNITION EROM
trees. The randomness is incorporated into the selection of DEPTH AND COLOR CUES

decision criteria during training. By this, Random Forests

achieve lower generalization error than decision trees an In our approach to object segmentation and recognition
9 ) vge combine two complementary sensor modalities. While
comparable performance to SVMs on multi-class prob;

a color camera provides detailed texture information on the
lems [15].

viewed scene, a Time-of-Flight camera measures depth of the

One major advantage of decision tree-based classifiersdgane gensely. We use the perceptually uniform CIELab color
their high computational efficiency. The computationaldoa pace in our implementation. Fig. 2 shows the sensor setup

is mainly governed by the ‘YPica”y small deP‘h and count o n the head of our domestic service robot Dynamaid [16].
trees, and the feature extraction method. This propertyesiak |, ;- Random Forest classification framework, features

Random Forests ideally suited for real-time applicatiohs Yre computed from both types of images. In the depth

object segmentation and recognition as often requireden “T‘mage, we extract features that describe 3D shape locally.

robotics context. In addition, for each depth image pixel we determine local
texture features through projection of the pixel's 3D point
coordinate into the color image. The available depth esable

A Random ForestF consists of K randomized decision us to normalize the texture features for scale and viewpoint
trees7,. Each noden in a tree classifies an example by aWe assume that the rotation between object and camera only
binary decision on a scalar node function over features. lchanges in pitch and yaw.

A. Structure of Random Forests



MESA

Fig. 3. Two-dimensional illustration of feature normalipeti We normalize
color and depth image features by rotating relative querytipos p andgq
onto the local surface orientation. We use the shortestiootfrom image
plane normakh; onto surface normabs. For depth features, we determine
Fig. 2. Sensor setup used in our experiments. A MESA SR4000reameth€ nearest neighbors of the rotated query pojnandg. To determine
and PointGrey Flea2 1352C-C cameras acquire depth and owges. The ~ (exture features, the query points are projected onto theyénpane/
sensor head is mounted on a pan-tilt unit. yielding pixel positionsp andg.

A. Sensor Data Preprocessing and Fusion the eigenVECtOI’ Of the 3D COVariance Of the neighboring

Ti ¢ Fliaht (ToF liahtweiah points corresponding to the smallest eigenvalue. If nergss
ime-of-Flight (ToF) cameras are compact, lightweig K flip the extracted surface normal to point towards the

solid-st_ate sensors which measure depth to surface_s slensg wpoint. The range query has been efficiently implemented
at a high frame rate and are therefore ideally suited f%rough kd-trees

.rObOF'C appllcatlon§. They employ an array of LEPS that In our approach, features are unary functions at or com-
illuminate the environment with modulated near-infrare

. o . ~parisons between pixels. In standard image processing ap-
light. The reflected light is received by a CCD/CMOS Ch'p@roaches, values are extracted at relative pixel coorelnat

Depth information is acquired by measuring the phase sh a local image patch around a pixel. To compute scale and

of the reflected light for every pixel in parallel. The use o iewpoint invariant features, we rotate 3D query positions

ToF cameras has been studied in various fields of robotlclsf;Tat are relative to the pixel's 3D coordinate from the image

Main limitations of this sensor are its limited measuremer}gIane onto the local surface (cf. Fig. 3). We then determine
range, measurement inaccuracies, limited unambiguigeran nearest neighbors in the depth image or project the rotated

and its restricted field-of-view (FoV). uery points into the color image

Measurements of ToF cameras are subject to several err Me determine the rotation between surface and image
sources [17]. From the image, we filter out measuremen ane by the shortest rotation from the image plane nor-
with low amplitude, as these indicate either highly nois al ny = (—1,0 O)T onto the surface normats. This

H H i (g .
measurements of poorly reflecting objects or measurements . ioved by rotating with an angle along the axisv

of objects beyond the unambiguity range of the Car]_mr%'erpendicular to the image plane normal and the surface
Furthermore, we remove measurements at so-called ju Srmal

edges at object boundaries. They can be determined by nr X ng

examining local pixel neighborhoods. We detect jump-edges ve= Ins x ns||’
when two points approximately lie along the line-of-sight o
the camera [18]. Since this procedure is sensitive to noiseoM
we apply a median filter to the depth values beforehand. -1 — cos(0)
To be able to fuse information from both cameras, we R; . g(v,0)- 0 = —v.-sin(d) | =n (1)
calibrate the cameras extrinsically similar to a stereoezam 0 vy - sin(6)

rg.
we obtainf = arctan?2 —Z—% —ng ). In our formulation, we
B. Scale and Viewpoint Normalization through Depth  assume that the object is upright with respect to the camera,
The dense depth information acquired by the ToF camei#. no roll rotation occurs between object and camera.
enables us to estimate local surface properties. We exploit
this to normalize texture and depth features for affine tran&- Feature Types
formations of the objects under view. We extract four kinds of texture and surface describing
At each ToF image pixel, we estimate the local surfacéeatures from color and ToF depth images:
normalng from 3D points in a local neighborhood of the 1) Texture: Features in the color image are simply com-
pixel's 3D coordinate. The neighborhood is defined by @uted from pixel values and comparisons at projected query
sphere with radiug. We determine the surface normal bypoints.



2) Local Surface CurvatureWe use the second order whered(p, q) is a distance metric between points.
measure of surface curvature as feature. From the eigeanI— Node Functions
uesA = {\;}3_; of the local 3D covariance at each pixel,

we determine the curvature as We use the above features in unary node functions or to
) compare shape or appearance between two local points at a
min A .
Doica A 1) Unary Node Functions:As unary node functions we

3) Moment Invariants:Three-dimensional moment invari- Use value or absolute value of luminance, color, curvature,
ants [19] are features of object surfaces that are invat@nt moment invariants, and the individual FPFH bin values at
rigid transformations. From the central moments in a locJuery positions relative to the pixel's 3D coordinate.

neighborhoodP To determine feature values for the query positions in
; ; k the depth image, we determine the nearest pixel in 3D

mije = Z (Pe — )" (Py — 1yy)” (P2 — 1) coordinates. In the color images, depth is not available at

pEP every pixel. For this reason, we choose the relative query

the 3D moment invariants are determined by positions to reside in the local surface plane given by the

pixel's normal. The query position is then projected inte th

color image to find its corresponding pixel.

) ) N It suffices to select relative positions and to rotate these
— Mp11 — Mip1 — Ml positions onto the surface plane according to the image-

Is =ma00Mo20Mo002 + 2Mo11M101M110 plane-to-surface rotatioR;_, s in (1). During training of the

random forest, we randomly select relative query positions

within a selection rangese.

I1 =mago + Mo20 + Mooz

Iy =mogpmo20 + Mo20M002 + M0021200

2 2 2
— My11M200 — M7p1MM020 — M7107002;

where . is the mean of the neighorhodd. 2) Binary Node FunctionsBinary node functions com-

4) Fast Point Feature HistogramsRecently, Fast Point nare features at two relative query positions. Analogyous!
Feature Histograms (FPFH) have been proposed as persisignthe unary node function case, we determine the query

3D shape descriptors. The histograms are computed from gsqjtions either on a plane for texture features or in 3D

dimensional features determined from pairs of surflets, i.¢,, depth features. We use a variety of node functions over
points p with associated local surface normals different types of depth and texture features:

For a pair of pointsp; and p; we extract surflet-pair- Texture: We compare query positions in the color
relation features in the following way: First we determihet  * image By the valus or a%solztepvalue of addition. sub-
source poinb, s the point with the smaller angle between traction, and multiplication. By this, each path through

its normal and the line between the points, i.e. if the decision tree is able to generate patch features
arccos (n; - (p; — pi)) < arccos (n; - (p; — pj)), similar to derivative filter kernels [4].

« Point Statistics: Similar to binary node functions on
color, node functions are calculated on curvature and
moment invariants as value or absolute value of addi-
tion, subtraction, and multiplication.

« FPFH Matching: We also use the chi-squared distance

the pointp; is chosen as source apd as targetp;. From
the points and their normals we construct the Darboux frame
with u = ng, v = (pr — ps) X u, andw = u X v.

The four surflet-pair-relation features then describe the
relative orientation and distance between the two surflets:

a = arctan2 (w - ng, u - na) , Xz(p q) = Z (FPFH(p)x — FPFH(‘])k)2
B =wv-ng, 7 A (FPFH(p)r. + FPFH(q)x)
o (Pe — ps) between the FPFHSs at the query poinndg as binary
Y=U 7
[pe = psll’ node functions.
5 = Hpe _psH .

V. EXPERIMENTS

We evaluate our approach with a dataset of seven object
categories which we acquired in a table-top scene. The bbjec
categories comprise cups, apples, bins, books, computer
mice, punchers, and staplers (cf. Fig. 4). Each category
consists of four example objects that add intra-class warie

in shape and appearance. In the object-view dataset (221

H.Tthe SPFHng::erljlrtXter conr:pregsed tLO Fg;‘FZO'.” t cheathrrr?ages), the objects are placed at the same spot and are
istograms ( ): each poinp, the IS e otated ind5° angle intervals around their yaw axis. In an

\évgé%h;m sum of the SPFHs in the point's local nelghborEiject-mix dataset (32 images), we place two or three abject

1 in random positions and orientations on the table.
FPFH(p) = SPFH(p) + Bl >
qeP

We then compute so-called Simplified Point Feature His-
tograms (SPFH) over the angular surflet-pair-relationufiesst
between a point and its local neighbors in a specific range
As proposed in [12], we neglect the distance featur&Ve
bin each feature intd{ equally sized intervals of its value
range.

1 SPFH(q), We train the Random Forest classifier with standard unnor-
d(p,q) malized texture features in the image-plane (patchsize
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Fig. 4. Objects from the seven categories used in the expetine

with backgr. | w/o backgr. with backgr. | w/o backgr.

glob. avg.| glob. avg. glob. avg.| glob. avg.

standard texture 0.80 0.63| 0.65 0.63 standard texture 0.77 054| 051 0.52

texture (0.025m) 0.81 059 0.62 0.57 texture (0.025m) 0.80 0.50| 0.46 0.46

texture (0.1m) 092 0.75| 0.78 0.74 texture (0.1m) 0.84 0.47| 052 044

depth (0.07m) 090 051] 081 0.75 depth (0.07m) 0.81 0.45| 0.73 0.62

texture, depth@.025m, 0.07m) | 0.95 0.66| 0.73 0.64 texture, depth (0.025m, 0.07m) | 0.89 0.57| 0.64 0.60

texture, depth (0.1m, 0.07m) 095 0.69| 0.77 0.67 texture, depth@.1m, 0.07m) 0.86 0.42| 052 0.37

TABLE | TABLE I

GLOBAL AND AVERAGE ACCURACY OF MAX-LIKELIHOOD OBJECT GLOBAL AND AVERAGE ACCURACY OF MAX-LIKELIHOOD OBJECT

SEGMENTATION ON TEST IMAGES OF THE OBJEGVIEW DATASET. SEGMENTATION ON THE OBJECTMIX DATASET.

16) and several combinations and parameter settings fare extract shape and appearance features that we use in a
normalized texture and depth features. In experiments witfRandom Forest classification framework. Furthermore, we
the object-view dataset only, we split the dataset intodadt use depth to estimate local surface orientation at each ToF
training subsets. By this, the classifier has to generalize gixel. By rotating features onto the surface orientatioe, w
unknown object views. Otherwise, we use the object-viewsormalize texture and depth features for scale and viewpoin
dataset as training set and test segmentation on the objectOur experiments demonstrate that the combination of
mix dataset. The forest consists of 5 trees and we usedapth and texture information yields superior classifarati
random25% fraction of the training data for each tree. Weresults to the use of unnormalized texture alone. However,
set the maximum depth of the treesltband select from00 the small resolution of the Time-of-Flight camera and the
node functions and thresholds drawn at random. Since itinherent restrictions due to its measurement principletlim
may be of interest to segment objects from background likeur approach. Depth from structured light or 3D laser range
the table-top, we add background as an additional class fiaders could further enhance the performance of our ap-
the object categories in a second set of experiments. proach. Also, while the maximum likelihood segmentations

Table | shows global and average accuracy obtained aftained by our approach seem to be noisy and unsmooth
the object-view dataset. The use of normalized texture arad first glance, the probabilistic output of the Random Fores
depth features clearly outperforms the standard claseifier classifier could be used in a spatial smoothing stage using
unnormalized texture features. It is remarkable that depth CRF, for example. By this, larger spatial context could be
alone yields better segmentation accuracy than the comibinecorporated into our recognition and segmentation aggroa
approach when the background is neglected. However, the
use of normalized texture improves the classification of REFERENCES
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