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Abstract

In this paper, we propose a novel method for ob-
ject discovery and dense modelling in RGB-D im-
age sequences using motion cues. We develop our
method as a building block for active object percep-
tion, such that robots can learn about the environ-
ment through perceiving the effects of actions. Our
approach simultaneously segments rigid-body mo-
tion within key views, and discovers objects and hi-
erarchical relations between object parts. The poses
of the key views are optimized in a graph of spatial
relations to recover the rigid-body motion trajecto-
ries of the camera with respect to the objects. In ex-
periments, we demonstrate that our approach finds
moving objects, aligns partial views on the objects,
and retrieves hierarchical relations between the ob-
jects.

1 Introduction
Motion is an important cue in object perception. While many
static cues such as color or shape can be used to generate
object hypotheses, common motion is a further fundamental
grouping cue that is especially useful for active perception by
robots. For novel, previously unseen objects, motion provides
a clear segmentation hint for the constituent parts of an ob-
ject. Some approaches to the unsupervised learning of object
models have been proposed in the robotics community that
exploit motion (e.g., [Fitzpatrick, 2003; Kenney et al., 2009;
Sturm et al., 2011; Katz et al., 2012; Herbst et al., 2011]). In
this paper, we propose a novel approach that simultaneously
segments motion in image sequences, and builds dense 3D
models of the moving segments. Our approach also reasons
on the hierarchy of object parts on-the-fly.

We segment motion between images densely within an
expectation-maximization framework using an efficient reg-
istration method for RGB-D images. This motion segmen-
tation approach is integrated in a simultaneous localization
and mapping framework to incrementally build maps of mov-
ing objects and the background. In this process of si-
multaneous motion segmentation, localization, and mapping
(SMOSLAM), we incrementally extract key views and seg-
ment motion in these views. From the motion segments, we

generate objects, optimize poses of partial views onto the ob-
jects, and deduce a hierarchy of object parts from the relations
of the motion segments throughout the sequence.

We demonstrate in experiments that our approach is ca-
pable of finding moving objects, aligns partial views on the
objects, and infers hierarchical relations between the objects.

2 Related Work
Bottom-up cues for single-image segmentation such as tex-
ture [Cremers et al., 2007; Delong et al., 2012] or 3D-
shape [Holz and Behnke, 2012; Silberman et al., 2012] often
do not suffice to find segment borders that coincide with the
boundaries of objects. Thus, they are frequently combined
with top-down cues to integrate spatial and semantic context
(e.g., [Carreira and Sminchisescu, 2012]). Motion is a fur-
ther important bottom-up cue that can be utilized in image
sequences. In contrast to texture and shape, common motion
provides unambiguous segmentation hints for the constituent
parts of a rigid object.

Many approaches to motion segmentation employ point
features in multi-body structure-from-motion [Zelnik-Manor
et al., 2006; Gruber and Weiss, 2004; Schindler and Suter,
2006; Rothganger et al., 2007; Agrawal et al., 2005; Ross et
al., 2010; Katz et al., 2012], but these methods do not pro-
vide a dense segmentation of objects like ours. Several dense
methods [Cremers and Soatto, 2005; Unger et al., 2012; Ku-
mar et al., 2005; Ayvaci and Soatto, 2009; Zhang et al., 2011;
Wang et al., 2012; Roussos et al., 2012] have been proposed
that demonstrate impressive results. These methods are, how-
ever, either computationally demanding and yet far from real-
time performance, or they do not extract segments with com-
mon 3D rigid-body motion. Our motion segmentation ap-
proach makes use of dense depth available in RGB-D images
to retrieve 3D rigid-body motion segments efficiently. We
also take motion segmentation a step further by integrating
it with simultaneous localization and mapping (SLAM) and
deducing the hierarchical relations between the moving parts.

The mapping of static as well as dynamic parts of environ-
ments is an actively researched topic in the robotics commu-
nity. Early work focused on 2D mapping using laser scan-
ners. Anguelov et al. [2002] learned templates and object
classes of non-stationary parts of an environment in a two-
level hierarchical model. Haehnel et al. [2003] proposed an
EM algorithm that filters dynamic parts of the environment

behnke
Schreibmaschine
In Proceedings of 23rd Joint Conference on Artificial Intelligence (IJCAI), Beijing, China, 2013.



in order to make the 2D occupancy mapping of the static
environment parts robust. They then extract 3D models of
the dynamic parts by stitching the laser measurements. In
simultaneous localization mapping and moving object track-
ing (SLAMMOT, [Wang et al., 2004]), dynamic objects are
segmented in 2D laser scans through distance comparisons,
and subsequently tracked while concurrently mapping the en-
vironment statics in a SLAM framework. We integrate 3D
motion segmentation in a SLAM framework that also rea-
sons about hierarchical relations between object parts. Van
de Ven et al. [2010] recently proposed a graphical model
that integrates CRF-matching [Ramos et al., 2007] and CRF-
clustering [Tipaldi and Ramos, 2009] within a single frame-
work for 2D scan-matching, moving object detection, and
motion estimation. They infer associations, motion segmen-
tation, and 2D rigid-body motion through inference in the
model using max-product loopy belief propagation. We for-
mulate dense 3D motion segmentation of RGB-D images us-
ing efficient expectation-maximization and perform fast ap-
proximate inference of the motion segmentation using graph
cuts.

3 Multi-View Motion Segmentation
We assume that an image I is partitioned into a set of discrete
sites S = {si}Ni=1 such as pixels or map elements in a 3D rep-
resentation (see Fig. 1). Let L = {li}Ni=1 be the labelling of
the image sites. The labels denote the membership in distinct
motion segmentsM = {mk}Mk=1. All sites within a segment
move with a common six degree of freedom (6-DoF) rigid-
body motion θk between the image Iseg to be segmented and
a reference image Iref .

Our goal is to explain the segmented image by the rigid-
body motion of segments into the reference image, i. e., we
seek rigid-body motions Θ = (θ1, . . . , θM ) that maximize
the observation likelihood of the segmented image in the ref-
erence image:

arg max
Θ

p(Iseg | Θ, Iref ). (1)

The labelling of the image sites is a latent variable that we
estimate with the rigid-body motions of the segments using
an expectation-maximization (EM) algorithm,

arg max
Θ

∑
L
p(L | Iseg,Θ, Iref ) ln p(Iseg | Θ, Iref ,L),

(2)
where Θ is the recent motion estimate of the segments from
the previous iteration of the EM algorithm.

We model the likelihood of the labelling in a conditional
random field

p(L | Iseg,Θ, Iref )

∝ exp

∑
i

ln p(zi | li,Θ, Iref )
∑

(i,j)∈N

ln p(li, lj | Iseg)


(3)

that incorporates the likelihood of the labelling given the
observations zi at each site and the label’s corresponding

Figure 1: Dense motion segmentation. Top: Image to be
segmented (left) and reference (right). Middle: Max. like-
lihood labelling in image (left) and in 3D at 5 cm res. (right).
Bottom: Label likelihood for two segments (white: low;
green/blue: high, best viewed in color). The reference im-
age is overlayed and transformed with the motion estimates.

motion estimate. Pairwise interaction terms between direct
neighbors in the image representation enforce spatial coher-
ence within motion segments using a contrast-sensitive Potts
model p(li, lj | Iseg) = γ(si, sj) δ(li, lj), where

δ(li, lj) :=

{
li = lj , 0

li 6= lj , 1
(4)

and γ(si, sj) measures the dissimilarity of the image sites.
It is, however, intractable to compute the joint image la-

belling posterior exactly. Instead, we approximate it through
the maximum likelihood labelling LML, given the motion es-
timates Θ. We find this labelling using efficient graph-cut
optimization [Boykov et al., 2001]

LML = arg max
L

p(L | Iseg,Θ, Iref ). (5)

Given this labelling, we determine the pseudo-likelihood of a



site label li:

p(li = k | Iseg,Θ, Iref ,LML) =

η p(zseg,i | Θ, Iref , li = k)
∏

j∈N (i)

p(li = k, lML,j), (6)

where η normalizes the probability over label values of li.

3.1 Resolving Ambiguous Data Associations
The image site labellings decide for an association of sites
between both images. In order to prevent the graph-cut op-
timization from establishing labellings that would associate
multiple times to a site in the reference image, we introduce
additional pair-wise couplings. For sites i and j in the seg-
mented image that map to the same site in the reference im-
age for different motion segments k and k′, repectively, we
additionally model the pair-wise labelling log likelihood

ln pA(li, lj) :=

{
−α , if li = k ∧ lj = k′,

0 , otherwise,
(7)

where α sets the strength of the couplings.

3.2 Model Complexity
The pair-wise interaction terms prefer large motion segments
and naturally control the number of segments to be small. In
the case that a single 3D motion segment appears as multi-
ple unconnected image segments in the image, our approach
may still use different but redundant motion segments for the
image segments. Furthermore, it may not be desirable to set
the number of motion segments in advance. We thus adapt
the number of motion segments to the data similar to the ap-
proach in [van de Ven et al., 2010].

We initialize the EM algorithm with a guess of the number
of motion segments (M = 1 in our experiments). While this
guess influences the number of required iterations, we found
that it has only little effect on finding the correct number of
segments. Initially, we label all sites to belong to the first
segment. All sites in segments that are yet unsupported in the
image are assigned the outlier data likelihood pO. By this,
our EM algorithm prefers to explain sites that misalign with
the already existing segments with new motion segments. We
define a motion segment to be supported if it labels sites in
the image and reject very small segments as outliers.

To let our approach possibly increase the number of seg-
ments, we append one additional, yet unsupported segment
before the M-step. After the E-step, we reduce the number
of motion segments in two ways. We discard unsupported
segments (eventually also the additional segment) and merge
redundant segments. We measure the redundancy of a seg-
ment k using the average effective number of segments of the
image sites

Neff (k) :=

∑
i:li=k

Neff (i)

|{i : li = k}|
(8)

within the segment [van de Ven et al., 2010]. It takes the
average over the effective number of segments that the image
sites within the segment are matching, i.e.,

Neff (i) :=
∑
k

1

p(zi | θk, Iref )2
. (9)

Ideally, the image sites labelled as belonging to a mo-
tion segment are mainly explained by the segment and,
hence, Neff (k) ≈ 1. We classify a motion segment k to
be redundant, if Neff (k) is larger than a threshold (set to 1.8
in our experiments), and subsequently merge it with the most
similar segment.

3.3 Segmentation Towards Multiple Reference
Images

Our formulation supports the segmentation of an image in
reference to multiple other images Iref = {Iref,r}Rr=1 which
allows to include motion hints from multiple perspectives into
the segmentation of an image. Each motion segment in Iseg
then moves with a rigid-body motion θrk to the reference im-
age Iref,r. We denote the set of motions towards one refer-
ence image r by θr. We may either optimize the segmentation
for all reference images concurrently, i. e.,

arg max
θ1,...,θR

p(Iseg | θ1, . . . , θR, Iref ), (10)

or we may only estimate the motion estimate towards a spe-
cific reference image r while keeping the motion estimates of
the other images fixed, i. e.,

arg max
θr

p(Iseg | θ1, . . . , θr, . . . , θR, Iref ). (11)

In both cases, the label likelihood given the observations
at a site is the product of the observation likelihoods in the
individual reference images,

p(li | zseg,1,i, . . . , zseg,R,i,Θ, Iref )

∝
∏
r

p(zseg,r,i | li,Θ, Iref )α. (12)

To keep the data term in balance with the pairwise interaction
terms, we normalize the combined observation likelihood to
the effect of a single image using α := 1/R.

3.4 Image Representation
In principle, any image representation is suitable for our mo-
tion segmentation method that defines data likelihood p(zi |
θli , Iref ), image site neighborhood N (i), and dissimilar-
ity γ(si, sj) for the pair-wise interaction terms. To solve for
the motion estimates of the segments in Eq. (2), an image
registration technique is required that allows to incorporate
individual weights for the image sites.

Instead of labelling the RGB-D image pixel-wise, we
choose to represent the image content in a multi-resolution
3D representation to gain efficiency. These multi-resolution
surfel maps [Stückler and Behnke, 2012] respect the noise
characteristics of the sensor, provide a probabilistic represen-
tation of the data, and support efficient registration of mo-
tion segments. They store the joint color and shape statistics
of points within 3D voxels at multiple resolutions in an oc-
tree. The maximum resolution at a point is limited propor-
tional to its squared distance in order to capture the disparity-
dependent noise of the RGB-D camera. In effect, the map
exhibits a local multi-resolution structure which well reflects



the accuracy of the measurements and compresses the im-
age from 640×480 pixels into only a few thousand voxels.
RGB-D images can be efficiently mapped into this represen-
tation and registered. We use an open-source implementation
of multi-resolution surfel maps.1

Observation Likelihood
Each voxel si in a multi-resolution surfel map contains a sur-
fel observation zi specified by mean and covariance of the
points falling into the voxel. The observation likelihood of a
site sseg,i given label li = k and reference image Iref is the
matching likelihood of the surfel zseg,i under the rigid-body
motion θk for the labelling,

p(zseg,i|zref,j , θk, li = k) = N (di,j(θk); 0,Σi,j(θk)) ,

di,j(θk) := µref,j − T (θk)µseg,i,

Σi,j(θk) := Σref,j +R(θk)Σseg,iR(θk)T ,
(13)

where T (θk) is the transformation matrix for the pose esti-
mate θk and R(θk) is its rotation matrix. We only use the
spatial components of the surfels.

Spatial Coupling and Local Dissimilarity Measure
Each voxel in the map is connected to its eight direct neigh-
bors in the 3D grid. In addition, we connect each voxel to its
parent and childs. For the contrast-sensitive Potts model in
Eq. (4), we measure local dissimilarity through γ(si, sj) :=
1 − min(1,max(ξ(si), ξ(sj))), where ξ(s) is a linear com-
bination of the principal shape curvature [Pauly et al., 2003]
and the trace of the color covariance within voxel s.

Motion Estimation
In order to maximize our EM objective function for the in-
dividual motion segments k, we augment our registration
approach [Stückler and Behnke, 2012] with the weighting
through the label likelihoods, i.e.,

arg max
θk

∑
(i,j)∈Ak

p(li = k | Iseg,Θ, Iref ,LML)

ln p(zseg,i | θk, zref,j , li = k). (14)

Exemplary label likelihoods in two motion segments are vi-
sualized in Fig. 1.

Border and Occlusion Handling
Special care needs to be taken at image borders, background
at depth discontinuities, and occlusions. We assign the last
observed data likelihood to map nodes at such borders and
occlusions.

4 Hierarchical Object Modelling through
Simultaneous Motion Segmentation,
Localization, and Mapping

We extend our view-based SLAM approach [Stückler and
Behnke, 2012] towards simultaneous motion segmentation,
localization, and mapping (SMOSLAM) of objects O =

1http://code.google.com/p/mrsmap/

Figure 5: Segmentation accuracy for incremental segmenta-
tion of the first frame to all other images in the chairs se-
quence. The segmentation accuracies of the chairs rapidly
reach high values when the objects start to move. The achiev-
able segmentation accuracy is limited due to sensor noise, oc-
clusions, and limited field-of-view. This is handled through
motion segmentation towards multiple key views in later pro-
cessing stages.

{oi}Oi=1. For each object, we maintain a graph of view poses
for those key views that contain the object. The view poses
are connected through edges that represent spatial relations
which we estimate through motion segmentation between the
key views. The poses of the pose graphs are optimized us-
ing the g2o graph optimization framework [Kuemmerle et al.,
2011].

Not all objects may be visible in a single key view, or ob-
jects may split into sub-parts between different key views.
This property enables us to learn part-of relations between the
objects in a hierarchical object map. We infer these relations
from the overlap of motion segments between key views.

We perform SMOSLAM incrementally, working sequen-
tially on the images in a RGB-D video sequence. The current
image is segmented towards the latest key view in the map in
order to track the relative motion of the camera towards the
objects in the reference key view. If one of the objects moved
a specific distance or angle, we generate a new key view and
resume tracking towards this view. We initialize the motion
segmentation of the new key view with the segmentation of
the previous one, and add the previous key view as a refer-
ence image to the segmentation. By this, the segmentation of
the previous key view acts as a regularizing prior while the
segmentation is further optimized with respect to the current
image. Most importantly, we associate the motion segments
of the previous key view with the object SLAM graph to dis-
cover object relations.

4.1 Discovering Objects and Hierarchical
Relations

We analyze relations of motion segments between key views
to associate motion segments with objects and to infer hier-
archical relations between objects. We quantify the image
overlap of the motion segments to set equivalence and part-
of relations between segments, i.e., we define a motion seg-
ment m to be part of another segment m′, if m overlaps m′ at



Figure 2: Key views (top) and motion segmentations (bottom) estimated with our approach in the chairs sequence. Each key
view is concurrently segmented in reference to its predecessor and successor.

Figure 3: Key views (top) and motion segmentations (bottom) estimated with our approach in the static container sequence.
Each key view is concurrently segmented in reference to its predecessor and successor.

least by some threshold (e.g., set to 80% in our experiments)
within the image:

overlap(m,m′)⇒ part-of(m,m′). (15)

The segments are defined equivalent, if both segments overlap
each other significantly:

overlap(m,m′) ∧ overlap(m′,m)⇒ equivalent(m,m′).
(16)

From these relations, we infer new objects, or equivalence
and part-of relations of motion segments towards existing ob-
jects. If a motion segment m in a key view is equivalent part
of an object o, i. e., equivalent(m, o), all motion segmentsm′

that are equivalent to m are also equivalent part of o:

equivalent(m, o) ∧ equivalent(m′,m)

⇒ part-of(m′, o) ∧ equivalent(m′, o). (17)

Analogeously, for all motion segments m that are part of an
object o, motion segments m′ from other key views in part-of
relations to m are also contained in the same object,

part-of(m, o) ∧ part-of(m′,m)

⇒ part-of(m′, o). (18)

A motion segment that is not equivalent part of an object cre-
ates a new part. It is then equivalent part of the new object.
For each pair of key views for which motion segments are

part of the same object, we create an edge between the key
views in the SLAM graph of the object.

Finally, we deduce hierarchical relations between objects
from the relations between key views and objects. An object o
is contained within another object o′, if a motion segment m
exists in a key view for which this segment is equivalent to the
contained object o, but only part of the containing object o′:

∃m : equivalent(m, o) ∧ ¬ equivalent(m, o′)

∧ part-of(m, o′)⇒ part-of(o′, o). (19)

Isolated smallest objects have no further parts.

5 Results
We demonstrate our approach in three RGB-D image
sequences that contain 30 images per second at VGA
(640×480) resolution. Note that our current implementa-
tion does not process the sequences in real-time, but achieves
about 80 to 800 msec per frame on a notebook PC with an
Intel Core i7 3610QM 2.3 GHz (max. 3.3 GHz) QuadCore
CPU. The first sequence shows two moving chairs from a
static camera position (see Fig. 2). In the second sequence,
a drawer of a container at a fixed position is opened while
the camera is moving (see Fig. 3). The third sequence in-
volves the same container which is now first moved before
it is opened (Fig. 4). Since ground truth motion estimates
are not available, we visualize resulting segmentations of key



Figure 4: Key views (top) and motion segmentations (bottom) estimated with our approach in the moving container sequence.
Each key view is concurrently segmented in reference to its predecessor and successor.

Figure 6: Objects found with our approach in the chairs sequence. The numbering specifies the temporal order of retrieval.
The key view poses within the object SLAM graphs are visualized by coordinate frames. Black lines depict spatial relations
between the key views. We overlay the motion segments that have been associated with the objects in the estimated key view
poses relative to the object.

views, object relation graphs, and object SLAM graphs for
the sequences.

5.1 Chairs Sequence
In the first sequence, two chairs are moved in the horizontal
plane and rotated around the vertical axis while the camera
is static. Both chairs move separately, starting with the right-
most chair (see Fig. 2).

We first demonstrate the performance of our dense mo-
tion segmentation approach. We compare the resulting la-
belling with a manual ground truth image through σ =
true positives/(true pos. + false pos. + false neg .) as a
measure of segmentation accuracy [Everingham et al., 2010].
The initial key view is sequentially segmented in reference to
the images in the sequence, performing one iteration of our
EM algorithm per frame. We project the 3D segmentation
into the image to compare the image segmentation with the
ground truth labelling, and associate each found segment to
the ground truth segment with best overlap. The results in
Fig. 5 show that our approach is well capable of segment-
ing the moving objects with high accuracy. The segmenta-
tion accuracy of the chairs rapidly reaches high values when
the objects start to move. Note that due to sensor noise, oc-
clusions, and parts of the objects leaving the field-of-view,
the achievable segmentation accuracy is limited. This is han-
dled through motion segmentation of key views towards both
preceding and subsequent key views in our SMOSLAM ap-

proach.
Fig. 2 shows the key views extracted by our approach and

the estimated motion segmentation of the views. The seg-
ments correspond well to the actual objects in the images.
The objects and the poses of the key views in the object
SLAM graphs are shown in Fig. 7. The trajectory of the
camera with respect to the objects has been well recovered,
such that the corresponding motion segments of the objects
accurately align. Both chairs and the background segment
are smallest parts in the object hierarchy. Since between the
first two key views and their neighbors, the left chair does
not move, left chair and background are found within a single
segment. The object relation graph reflects the containment
of both parts (left chair and background segment) within this
combined object, which is inferred through the split of the
segment in the third key view. Similar arguments apply for
the left chair and the background in the last two key views.

5.2 Static Container Sequence
In the second sequence, a drawer is moved open by a person,
while the container is kept fixed and the camera is slowly
moved. Our algorithm succeeds in segmenting the drawer
with good accuracy (see Fig. 3). From the object SLAM
graphs it can be seen that the relative pose of the camera to-
wards the objects is recovered and the motion segments accu-
rately overlap for the estimated key view poses. Remarkably,
the drawer segment makes the inside of the container explicit.



Figure 7: Object hierarchies deduced by our approach from
the chairs (top left), the static (top right), and the moving con-
tainer sequence (bottom). The object numbering specifies the
temporal order of retrieval. Each node corresponds to an ob-
ject. Arrows depict part-of relations (pointing from contain-
ing object to the part).

5.3 Moving Container Sequence
In the third sequence, our algorithm partially succeeds in
segmenting the container from the background (see Fig. 4).
Since the container moves parallel to the ground plane, our
approach cannot well distinguish if the ground plane itself is
moving or not. As a consequence, the drawer is part of the ob-
ject combined from container, drawer, and background. The
wall part is found twice, since it is not detected in the second
key view.

6 Conclusions
In this paper, we introduced a novel method for learning ob-
ject maps with hierarchical part relations from motion cues.
Motion segmentation between RGB-D key views finds the
rigid parts in images and estimates their motion. It is based
on an efficient expectation-maximization algorithm and em-
ploys a compact local multi-resolution 3D representation of
RGB-D images to process images efficiently.

We integrate our motion segmentation method with SLAM
into a framework for simultaneous motion segmentation, lo-
calization, and mapping. Our mapping approach extracts
moving objects from key views and aligns the parts by op-
timizing a graph of spatial relations. From the overlap of mo-
tion segments, we deduce a hierarchy of object parts.

In experiments, we demonstrated that our approach is ca-
pable of extracting motion segments and aligning multiple
views on objects. In each of the sequences, our approach
deduces hierarchical object relations.

The robustness and accuracy of our motion estimates and
segmentation strongly depend on the underlying registration
method. We currently work on including point features into

Figure 8: Object parts found with our approach in the static
container sequence. The numbering specifies the temporal or-
der of retrieval. The key view poses within the object SLAM
graphs are visualized by coordinate frames. Black lines de-
pict spatial relations between the key views. We overlay the
motion segments that have been associated with the objects
in the estimated key view poses relative to the object.

the registration to further improve the range of applications
of our approach. This would allow for tracking smaller ob-
jects, or reduce aperture problems along planar surfaces. One
limitation of our method is that we currently only establish
relations between segments in temporal sequence. In future
work, we will also establish equivalence and part-of relations
between parts that interrupt their motion. The robustness of
our approach could further be increased by reasoning on the
uncertainty of segmentation decisions and hierarchical rela-
tions. Our overlap measure between segments could be en-
hanced by tracking correspondences through time between
key views. In order to scale our approach to larger scenes,
graph pruning and map merging needs to be incorporated. We
also plan to extract articulation models from the hierarchical
object relations and the relative object trajectories. Finally,
we will pursue the application of our approach for interactive
perception of objects by robots.
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