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Abstract— Pose estimation and map building are central
ingredients of autonomous robots and typically rely on the
registration of sensor data. In this paper, we investigate a
new metric for registering images that builds upon on the idea
of the photometric error. Our approach combines a gradient
orientation-based metric with a magnitude-dependent scaling
term. We integrate both into stereo estimation as well as visual
odometry systems and show clear benefits for typical disparity
and direct image registration tasks when using our proposed
metric. Our experimental evaluation indicats that our metric
leads to more robust and more accurate estimates of the scene
depth as well as camera trajectory. Thus, the metric improves
camera pose estimation and in turn the mapping capabilities
of mobile robots. We believe that a series of existing visual
odometry and visual SLAM systems can benefit from the
findings reported in this paper.

I. INTRODUCTION

The ability to estimate the motion of a mobile platform
based on onboard sensors is a key capability for mobile
robots, autonomous cars, and other intelligent vehicles. Com-
puting the trajectory of a camera is often referred to as
visual odometry or VO and several approaches have been
presented in this context [1], [2], [3], [4], [5]. VO as
well as stereo matching approaches should provide accurate
estimates of the relative camera motion and scenes depth
under various circumstances. Thus, optimizing such systems
towards increased robustness is an important objective for
robots operating in the real world.

The gold standard for computing the relative orientation
of two images of a calibrated camera is Nister’s 5-point algo-
rithm [6]. This approach computes the 5-DoF transformation
between two monocular images based on known feature
correspondences. It requires at least five corresponding points
per image pair. In practice, more points are required to
combine the 5-point algorithm with RANSAC followed by
a least-squares refinement using only the inliers correspon-
dences. An alternative approach to using explicit feature
correspondences are comparisons of the pixel intensity values
within the image pair. This approach is also called direct
alignment and one often distinguishes semi-dense and dense
methods, depending on the amount of compared pixels [5],
[7], [8].
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Features are often designed to be resilient against changes
in the intensity values of the images, for example caused by
illumination changes. Often, features are sparsely distributed
over the image and their extraction can be a time consuming
operation. In contrast to that, the intensity values of each
pixel are directly accessible, raw measurements, and can
be compared easily. Several direct methods consider the so-
called photometric consistency of the image as the objective
function to optimize. A key challenge of direct approaches is
to achieve robustness because slight variations of the camera
exposure, illumination change, vignetting effects, or motion
blur directly affect the intensity measurements. In this paper,
we address the problem of robustifying the direct alignment
of image pairs through a new dis-similarity metric and in
this way enable an improved depth estimate and alignment
of image sequences.

The main contribution of this paper is a novel metric for
direct image alignment and its exploitation in direct visual
odometry. We build upon the gradient orientation-based
metric proposed by Haber and Modersitzki [9] and improve
it through the introduction of a magnitude depending scaling
term. We furthermore integrate our metric into four different
estimation systems (OpenCV, MeshStereo, DSO and Basalt)
to show that our metric leads to improvements and evaluate
our system to support our key claims, which are: First,
our proposed metric is better suited for stereo disparity
estimation than existing approaches. Second, it is also well-
suited for direct image alignment. Third, our metric can
be integrated into existing VO systems and increase their
robustness while running at the frame rate of a typical
camera.

II. RELATED WORK

There has been extensive work to improve the robustness
of visual odometry and visual SLAM methods towards
illumination changes to ensure photometric consistency. Typ-
ically, feature-based methods are more resilience towards
illumination changes since descriptors are designed to be
distinguishable even under severe changes, across different
seasons and invariant of camera type. SIFT is the standard
choice for Structure-from-Motion [11] but has a significant
computational cost. PTAM [12] using FAST [13] features
and ORB SLAM [4] are two prominent examples, which
show that feature-based visual SLAM can work well in many
scenarios while maintaining real-time performance when
exploiting binary descriptor.

Under the assumption of a good initial guess, direct
methods can obtain more accurate estimates of the camera
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Fig. 1: Matching cost comparison on [10]: Disparity estimation against the same image with slight vignetting and different exposure time
results in large disparity errors. The circle in ephoto occurs where vignetting and exposure change cancel out.

trajectory than feature-based approaches as they exploit all
intensity measurements of the images. For this reason, Dai
et al. [14] use features for initialization and to constrain a
subsequent dense alignment. A popular approach, e.g. used
by Schneider et al. [15], is to extract GoodFeaturesToTrack
based on the Shi-Tomasi-Score and use the KLT optical
flow tracker operating directly on intensity values. Similar
to that, the Basalt system [16] uses locally scaled intensity
differences between patches at FAST features within optical
flow.

A further popular method for motion estimation from
camera images is LSD-SLAM [1]. For robustness, the au-
thors use the Huber norm during motion estimation and map
creation, while minimizing a variance-weighted photometric
error. LSD-SLAM creates in parallel the map for tracking
by searching along the epipolar lines minimizing the sum of
squared differences. For the stereo version, Engel et al. [17]
alternate between estimating a global affine function to
model changing brightness and optimizing the relative pose
during alignment. As an alternative, Kerl et al. [2] propose
to weight the photometric residuals with a t-distribution that
better matches the RGB-D sensor characteristics.

Engel et al. [5] furthermore proposed with DSO a sparse-
direct approach that further incorporates photometric calibra-
tion if available or estimates affine brightness changes with
a logarithmic parametrization. They maintain an information
filter to jointly estimate all involved variables.

Pascoe et al. [18] proposed to use the Normalized Infor-
mation Distance (NID) metric for direct monocular SLAM.
This works well even for tracking across seasons and un-
der diverse illumination. Yet, the authors report to prefer
photometric depth estimation for a stable initialization and
only use NID after revisiting. Furthermore, Park et al. [8]
presented an evaluation of different direct alignment metrics
for visual SLAM. They favored the gradient magnitude
due to its accuracy, robustness and speed while the census
transform provided more accurate results at a much larger
computational cost. In Stereo matching the census transform,
e.g. in MeshStereo [19], and the absolute gradient difference
combined with the photometric error, e.g. in StereoPatch-
Match [20], are common.

In our work1, we improve the gradient orientation based
metric of Haber and Modersitzki [9] by introduction of a
magnitude-dependent scaling term to simultaneously match-
ing gradient magnitude and orientation. We apply this to
solve direct image alignment for visual odometry as well
as semi-dense disparity and depth estimation. We integrated
our metric in two stereo matching algorithms as well as two
VO systems. Hence, we evaluate and compare the metric
against existing approaches on two stereo estimation and VO
datasets.

III. OUR METHOD

Our approach provides a new metric for pixel-wise match-
ing and is easy to integrate into existing visual state estima-
tion system. The metric measures the orientation of image
gradients while also taking the magnitude into consideration.
In the following, we denote sets and matrices with capital
letters and vectors with bold lower case letters. We aim to
find for a pixel ui in the ith image the corresponding pixel uj

in the jth image that minimizes a dissimilarity measurement
e (ui,uj). The image coordinates u = (ux, uy)ᵀF are defined
in the image domain Ω ⊂ R2. For stereo matching, i and j
correspond to the left and right image, while in direct image
alignment i is often the current frame and j a previous (key-)
frame.

A basic error function ephoto is photometric consistency

ephoto (ui,uj) = Ii (ui)− Ij (uj) , (1)

but more robust versions often rely on intensity gradients:

egm (ui,uj) = (‖∇Ii (ui)‖ − ‖∇Ij (uj)‖) , (2)
egn (ui,uj) = ∇Ii (ui)−∇Ij (uj) . (3)

The difference of the gradients egn incorporates both, mag-
nitude and orientation. PatchMatch Stereo algorithms [20]
typically combine this with the photometric error:

epm(ui,uj) = (1− α)|ephoto(ui,uj)|+ α ‖egn(ui,uj)‖`1 .
(4)

1An accompanying video is available at
https://www.ais.uni-bonn.de/videos/ICRA_2020_
Gradient_Dissimilarity.

https://www.ais.uni-bonn.de/videos/ICRA_2020_Gradient_Dissimilarity
https://www.ais.uni-bonn.de/videos/ICRA_2020_Gradient_Dissimilarity
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Fig. 2: Error comparison for gradient based metrics on a toy
example. The lower boxes show the error between the green
reference box and a shifted box along the red horizontal line. eugf
prefers strong edges with same orientation, while emag does not
take the orientation into account and thus generates further local
minima. Our esgf provides the correct minima which are marked
with a green circle.

A. Normalized Gradient-based Direct Image Alignment

A complementary approach is to align the gradients orien-
tation. The naı̈ve approach may use the costly atan-operation
to obtain the orientation angle θ and simply calculate differ-
ences. Instead, we follow the approach of [9], [21] to use
the dot product and its relation to the cosine as a measure
of orientation. If the two vectors a,b have unit length, the
dot product is equal to the cosine of the angle between the
vectors, which is zero for perpendicular vectors, one for same
and minus one for opposite orientation. Simply normalizing
the gradient by its magnitude is undesirable as noise in low
gradient regions will predominate the orientation. Hence,
Taylor et al. [21] normalizes the dot product by its magnitude
over a window:

egom (ui,uj) = 1−
∑

u∈W |∇Ii (ui) · ∇Ij (uj)|∑
u∈W ‖∇Ii (ui)‖ ‖∇Ij (uj)‖

. (5)

Instead we follow [9] and regularize the magnitude by a
parameter ε:

ε =
1

|Ω|
∑
u∈Ω

‖∇I(u)‖2 , (6)

∇εI =
∇I√

‖∇I‖2 + ε
. (7)

a) eugf b) esgf

Fig. 3: Association impact: engf and eugf tend to match patches
with similar gradient orientation but stronger magnitude. This can
cause severe distortions in the 3D reconstruction (left). Associating
patches with similar gradient orientation and magnitude using esgf
allows for correct triangulation (right).

This effectively downweighs the gradients magnitude in low
gradient regions such that ‖∇εI‖ will be close to zero. We
estimate the parameter ε on a per image basis and will use ε
and ϑ to make the distinction between different images more
visible.

In the context of multi-modal image registration the au-
thors of [9] minimize the per pixel error engf :

engf (ui,uj) = 1− [∇εIi(ui) · ∇ϑIj(uj)]
2
. (8)

Squaring the dot product, or taking the absolute value,
ensures, that not only gradients with same orientation but
also with opposite orientation coincide. This is important
for registering CT to MRT data and vice versa where the
image gradients may have opposite direction. This error has
an important flaw as low gradient pixels prefer to match with
higher magnitude ones rather than similar gradients. If the
largest magnitude edge is always matched, we would obtain
inconsistent depth estimates with high reprojection errors or
when successively reducing the search region skew the region
and obtain wrong estimates as visualized in Fig. 3.

Since we want to use images from the same sensor type,
we can omit the square and only use the following residual:

eugf (ui,uj) = 1−∇ϑIj (uj) · ∇εIi (ui) . (9)

The errors engf and eugf are bounded in the interval [0, 2].
To ensure the correct behavior for smaller gradients as visu-
alized in Fig. 2, we scale the dot product by the maximum
value:

esgf (ui,uj) = 1− ∇ϑIj (uj) · ∇εIi (ui)

max
(
‖∇εIi (ui)‖2 , ‖∇ϑIj (uj)‖2 , τ

) .
(10)

The scaling term of SGF thereby increases the number of
successfully estimated points in semi-dense depth estimation.
Here, τ is a small constant to prevent division by zero.

To further reduce the number of mathematical operations
in above equation, especially the division by the regularized
norm, we derived two further combinations of orientation



and magnitude:

n (ui,uj) = ∇Ij (uj) · ∇Ii (ui) , (11)

nij(ui,uj) =
‖∇ϑIj (uj)‖
‖∇εIi (ui)‖

‖∇Ii (ui)‖2 , (12)

nji(ui,uj) =
‖∇εIi (ui)‖
‖∇ϑIj (uj)‖

‖∇Ij (uj)‖2 , (13)

esgf2 (ui,uj) = max (nij, nji)− n (ui,uj) (14)
esgf3 (ui,uj) = ‖∇Ii (ui)‖ ‖∇Ij (uj)‖ − n (ui,uj) . (15)

Given a formulation for the error, we can now formulate
stereo matching and direct image alignment. The former aims
to find for each pixel ul in the left image the corresponding
pixel ur in the right image that minimizes a dissimilarity
measurement e (ul,ur):

d∗u = arg min
d∈R

∑
ul∈W

e (ul,ur (d)) , (16)

ur (d) = ul − (d, 0)
ᵀ
. (17)

Here, the disparity d is defined as the distance along the
x-axis of the stereo rectified left and right image pair. For
robustness, the error function e is calculated over a patch Wu

with window size w centered around the pixel u rather than
a single pixel. In the latter, we seek the transformation Tcr
that aligns the reference with the current image optimally
w.r.t. an error metric e between a reference pixel-patch Npr

around pr and its projection onto Ic:

Tcr = arg min
∑

pr∈M

∑
pk∈Npr

ρ
(
‖e (pi)‖2

)
. (18)

A robust cost function ρ like the Huber norm reduces
the effect of outliers. This minimization is typically solved
iteratively with the standard Gauss-Newton algorithm.

Hence, the Jacobian for esgf w.r.t. the pixel ui is needed:

nn = ∇ϑIj (uj) · ∇εIi (ui) , (19)

s1 = nn

{
−1, if ‖∇ϑIj‖2>‖∇εIi‖2

1− 2
‖∇εIi‖ , otherwise

(20)

∂esgf
∂ui

= − (∇ϑIj + s1∇εIi)
ᵀ

max (‖∇εIi‖ , ‖∇ϑIj‖)
(∇2) Ii
‖∇Ii‖ε

, (21)

s2 =


‖∇ϑIj‖
‖∇εIi‖

(
2− ‖∇Ii‖2

‖∇Ii‖2+ε

)
, if nij>nji

‖∇εIi‖
‖∇ϑIj‖

‖∇Ij‖2

(‖∇Ii‖2+ε)
, otherwise

(22)

∂esgf2
∂ui

= (s2∇Ii −∇Ij) (∇2) Ii, (23)

∂esgf3
∂ui

=

(
1

2

‖∇Ij‖
‖∇Ii‖

∇Ii −∇Ij
)

(∇2) Ii. (24)

Here, (∇2) Ii denotes the hessian of the intensity at pixel
ui.

TABLE I: Evaluation on Middlebury Stereo 2014 training set [22]

Orig. esad eagm epm esgf

St
er

eo
B

M

mean 7.20 5.80 6.31 4.56 3.29
bad 1 18.36 20.51 21.33 17.19 12.60
bad 2 16.41 17.01 17.79 14.25 10.36
bad 4 14.88 14.19 14.69 11.94 8.61
invalid 40.44 34.51 52.69 44.74 45.49

M
es

hS
te

re
o mean 5.68 11.22 7.85 6.70 4.17

bad 1 16.87 46.55 33.45 28.51 20.61
bad 2 13.02 40.25 27.38 23.32 15.94
bad 4 10.71 33.18 22.02 18.78 12.53
invalid 0.01 1.01 0.09 0.08 0.04

TABLE II: Evaluation on KITTI Stereo 2015 training set [23]

Orig. esad eagm epm esgf

St
er

eo
B

M

mean 6.11 3.21 3.17 1.74 1.61
bad 1 19.80 19.79 22.13 15.93 13.99
bad 2 11.60 10.07 11.04 6.87 5.91
bad 4 9.03 6.34 6.73 3.94 3.41
invalid 46.74 29.57 53.02 39.33 45.17

M
es

hS
te

re
o mean 2.03 2.94 2.92 2.07 2.02

bad 1 27.95 42.34 33.84 29.60 29.35
bad 2 12.00 25.45 17.32 13.67 13.48
bad 4 5.57 14.01 8.85 6.77 6.67
invalid 0.07 0.15 0.10 0.08 0.06

IV. EVALUATION

The first experiment is designed to illustrate the robustness
of our metric under small image variations. To underline
how even minimal image variations impact the dissimilarity
metrics, we used images from the ICL-NUIM ”lr kt2”
sequence [10] and changed the exposure time and added
a vignetting to frames 120 and 808, see Fig. 1 for a
visualization. The disparity error is minimal in green regions
with ideal disparity being 0 and window size 3. We evaluated
d ∈ [0, 20) for the different metrics. As expected, ephoto is
large (avg. 8.13 px / 7.76 px ), while gradient orientation
alone (eugf ) achieves on avg. 4.49 px / 4.78 px. Normalized
cross-correlation (encc) results in a disparity error of 3.04 px
/ 2.38 px. The magnitude (emag ) is better suited (2.11 px /
1.40 px) while egom (2.02 px / 0.49 px) and epm (1.24 px /
0.18 px) perform best after our metric (1.21 px / 0.18 px)
showing the smallest dissimilarity values.

The second experiment is designed to show our metrics
suitability for (semi-) dense depth estimation supporting the
first claim. For this, we integrated a variety of metrics
for cost volume calculation into OpenCVs stereo block
matching as well as the more sophisticated MeshStereo
algorithm [19]. We evaluate the mean disparity error and
report the percentage of bad pixels with 1, 2, and 4 px
disparity error. Both algorithms are tested on the training sets
of the Middlebury Stereo Benchmark [22] (half size) and the
KITTI Stereo Benchmark [23]. We compare our metric esgf
against the sum of absolute differences esad =

∑
|ephoto |,

the absolute difference of gradient magnitude eagm = |egm |,
the PatchMatch dissimilarity epm , and the original imple-



TABLE III: ATE results in meters on EuRoC dataset [24].

MH1 MH2 MH3 MH4 MH5 V11 V12 V13 V21 V22 Avg
O

ri
gi

na
l

OKVIS 0.085 0.083 0.135 0.143 0.278 0.041 0.956 0.102 0.054 0.063 0.194
ORB-SLAM2 0.124 0.094 0.253 0.151 0.132 0.090 0.219 0.270 0.149 0.203 0.168

SVO2 0.093 0.111 0.355 2.444 0.456 0.074 0.174 0.270 0.109 0.158 0.424
DSO 0.051 0.045 0.165 0.164 0.460 0.194 0.151 1.075 0.080 0.098 0.227
Basalt 0.076 0.045 0.058 0.096 0.141 0.041 0.052 0.073 0.032 0.046 0.066

O
ur

s

DSO w/ esgf 0.071 0.050 0.264 0.235 0.237 0.142 0.178 0.933 0.072 0.086 0.206
Basalt w/ egm 0.090 0.044 0.084 0.091 0.135 0.049 0.099 0.161 0.030 0.079 0.086
Basalt w/ egn 0.076 0.055 0.057 0.112 0.115 0.039 0.042 0.093 0.037 0.048 0.067
Basalt w/ esgf 0.078 0.062 0.080 0.215 0.111 0.043 0.107 0.156 0.037 0.108 0.100
Basalt w/ esgf2 0.086 0.065 0.081 0.109 0.148 0.040 0.069 0.061 0.029 0.058 0.075
Basalt w/ esgf3 0.061 0.042 0.065 0.094 0.106 0.041 0.056 0.082 0.034 0.054 0.063
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Fig. 4: Disparity comparison on Teddy of the Middlebury Stereo
2014 Benchmark [22] for the original algorithms and the two best
metrics.

mentation. The dissimilarity in MeshStereo is calculated
with Census-Transform. While OpenCV StereoBM uses esad
too, a different prefilter provided a better result for esad .
All other metrics were evaluated without prefiltering. We
omitted egn since the results were nearly indistinguishable
from epm . The results are shown in Tab. I and Tab. II. As

can be seen, our metric provides in all cases the best mean
disparity error. Fig. 5 shows an example on the KITTI Stereo
Benchmark. Please note for esgf , although the bicyclist is
not well represented with MeshStereo, it is with StereoBM.
Furthermore, in the background less incorrect (too close)
disparities are calculated with our metric.

To support our second and third claim, we provide com-
parisons to a set of state-of-the-art VO and VIO approaches
including DSO [5], ORB-SLAM2 [4], OKVIS [25] and
SVO2 [7] on the EuRoC dataset. We implemented the
different metrics in the optical flow frontend of Basalt and
carried out a two-fold cross validation with hyperopt [26]
to obtain suitable parameters for each metric. We use the
Scharr-Operator [27] on the rotated patches to obtain the
intensity gradients. We observed that using finite differences
degraded the obtainable precision for this task. For disparity
estimation finite differences are sufficient.

In the case of DSO, we also show a modified version
which replaces in the depth estimation the original patch
similarity metric based on Brightness-Constancy-Assumption
ephoto with our esgf term. Fig. 6 shows an example for both
on V1 01 of the EuRoC dataset. For a fair comparison we
disable the global bundle adjustment of ORB-SLAM2 and
use Basalt purely in VIO mode. Furthermore, we evaluate
the approaches, if provided, with the tailored parameters for
the EuRoC dataset.

We report the mean ATE after alignment using [28] for all
the frames which have a pose estimate. We align DSO with
a similarity transform and the stereo algorithms with a rigid
transform. To achieve a more reliable error estimate we run
the algorithms repeatedly for each scenario and average the
results. We report also the number of successful trackings for
each algorithm out of a total of 250. Tracking is considered
failed if the maximum scale error is above 1.5 m or the
median scale error is greater than 0.1 m. Tab. III gathers the
final results.

One can see that our modified DSO using the esgf term
for depth estimation performs better than the original DSO,
having a lower average ATE. Furthermore, we observed an
increase in successful tracking attempts by 10 % on V1 02
and V1 03 which exhibit strong lighting changes and reduced
variance in ATE.



Basalt achieves with all tested metrics excellent results.
Presumably esgf performs worse than our other derived
metrics due to the more complex Jacobian, which is more
difficult to optimize. Here, the simplifications of esgf2 and
esgf3 payoff with esgf3 achieving the best result.
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Fig. 5: Disparity comparison on image pair 2 of the KITTI Stereo
2015 Benchmark [23] for the original algorithms and the two best
metrics.

Orig.

esgf

Fig. 6: Resulting map and trajectory (red line) of DSO [5] w/o and
with esgf for depth estimation on V1 01 of the EuRoC dataset [24].
The reduced drift is clearly visible in the sharper edges and an
reduction of double walls.

V. CONCLUSION

In this paper, we proposed a new metric for direct im-
age alignment that is useful for motion and stereo depth
estimation. Our metric improves the gradient orientation
metric proposed by Haber and Modersitzki [9] and inte-
grates a magnitude-dependent scaling term. This improves
the robustness of the image alignment and is beneficiary
for stereo matching and visual odometry computation alike.
We integrated and evaluated our approach in a multitude of
settings showing that the proposed metric is better suited
for disparity estimation than existing approaches and well
suited for image alignment. Furthermore, our approach is
easy to integrate into existing visual systems and thus can
make a positive impact on various visual odometry, SLAM,
or similar state estimation approaches.
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