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Abstract. We present an efficient multi-resolution approach to segment a 3D
point cloud into planar components. In order to gain efficiency, we process large
point clouds iteratively from coarse to fine 3D resolutions: At each resolution, we
rapidly extract surface normals to describe surface elements (surfels). We group
surfels that cannot be associated with planes from coarser resolutions into co-
planar clusters with the Hough transform. We then extract connected components
on these clusters and determine a best plane fit through RANSAC. Finally, we
merge plane segments and refine the segmentation on the finest resolution. In ex-
periments, we demonstrate the efficiency and quality of our method and compare
it to other state-of-the-art approaches.
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1 Introduction

Depth sensors such as 3D laser range finders or the Microsoft Kinect provide dense
3D measurements that typically consist of millions of points. In robotics applications
like object manipulation or teleoperation, it is often crucial to interpret this massive
amount of data in real-time. In this paper, we propose efficient means to segment 3D
point clouds into planar segments (see Fig. 1). In structured environments, the planar
segmentation gives a compact representation of scene content. It can also be used to
generate object hypotheses by focussing on point clusters not explained by the main
planes.

We gain the efficiency required for the processing of large point clouds by adopting
a coarse-to-fine strategy: We extract surface elements (surfels, described by location,
extent, and surface normal) on multiple resolutions, starting from the coarsest one. On
each resolution, we associate the surfels with planar segments that have been found on
coarser resolutions. New planes are created from the remaining unassociated surfels
by first grouping them into co-planar clusters with the Hough transform. We split each
cluster into a set of connected components. For each connected component, we apply
RANSAC to determine a best plane fit and to reject outliers robustly. In a final process-
ing step, we merge plane segments and refine the segmentation on the finest resolution.

The use of a coarse-to-fine strategy has several advantages over a segmentation on
a single resolution. Firstly, large plane segments can be detected from only few surfels
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Fig. 1. Example scene and its planar segmentation.

which renders our method very efficient. Furthermore, our approach handles variability
in the extent of plane segments more robustly, since it uses as much context as possible
to decide for co-planarity.

We organize this paper as follows: After a brief discussion of related work in Sec. 2,
we detail our approach to plane segmentation in Sec. 3. Finally, we evaluate our method
in experiments in Sec. 4.

2 Related Work

The robotics and computer graphics communities have developed a rich set of ap-
proaches for segmenting a scene into geometric shape primitives. Many of these ap-
proaches also extract plane segments. We identify three main lines of research: ap-
proaches based on Random Sample Consensus (RANSAC, [1]), methods using the
Hough transform, and algorithms that perform region growing on depth images.

RANSAC [1] is a method to robustly fit a model into a set of data points that may
contain even a large number of outliers. It randomly selects a minimal set of data points
for estimating the model parameters. From the random samples, it chooses the one that
is best supported by the complete set of points. As of its general formulation, RANSAC
can be easily applied to fit any kind of geometric shape primitive. However, the basic
RANSAC approach assumes that only one model can be fit to the data. Schnabel et
al. [10] propose to extend basic RANSAC through multi-resolution and locality heuris-
tics. Instead of uniformly drawing samples for the minimal sample set from the com-
plete point cloud, they sample from a local normal distribution in 3D Cartesian space.
Furthermore, they randomly select a sampling scale in an octree representation of the
point cloud. By such means, they achieve an efficient and robust method. Gotardo et
al. [3] extract planar surfaces with a modified RANSAC approach. They first extract an
edge map from the depth gradient image and determine connected components in the
edge map. Then they apply RANSAC to robustly fit planar segments into the connected
components.
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The Hough transform [6] is an alternative approach to estimate model parameters
from a set of measurements. In contrast to RANSAC, its formulation is sound when the
measured points support multiple instances of the model with different parametriza-
tions (such as different planes in a scene). It transforms the given measurements from
the original space (e. g., R3 for point clouds) into a set of possible parameter vectors in
the parameter space of the model. Each original point votes for a manifold in parameter
space. Vote clusters in the parameter space then represent the model fits. The Hough
transform is computationally demanding when extracting geometric shape primitives
from 3D point clouds, because such models contain multiple parameters which corre-
sponds to a high-dimensional Hough space. Consequently, in a naive implementation a
single point in 3D must vote for a high-dimensional manifold in parameter space. The
quality of the model fit strongly depends on the clustering method in parameter space.
Using histograms, for example, the quality is affected by the discretization of the his-
togram. Vosselman et al. [12] propose an efficient variant of the Hough transform for
extracting shape primitives. They estimate model parameters from surfels (points with
local surface normals) and divide model fitting into several stages. In a first stage, they
apply the Hough transform to find parallel surfels. Secondly, they find co-planar surfels
in parallel surfels with a similar distance to the origin of the coordinate frame. In our ap-
proach, we improve this method in efficiency and accuracy by applying a coarse-to-fine
strategy and combining the Hough transform with efficient RANSAC.

Both, the Hough transform and RANSAC, are global methods that ignore point
neighborhood. Some methods have been proposed that exploit the neighborhood in-
formation in dense depth images. In [7] or [2], region-growing and region-merging
techniques are applied to extract planar segments. Taylor et al. [11] use a split-and-
merge approach. Finally, Harati et al. [4] extract edges from bearing-angle images to
find connected components. Our approach is not restricted to point clouds for which
an image-like point neighborhood is known. It can be readily applied to point clouds
that have been registered from multiple views. We consider the neighborhood of points,
since we process surface normals in local neighborhoods on multiple resolutions. In
addition, we reestablish the neighborhood of surfels by finding connected components
in co-planar surfels.

3 Efficient Multi-Resolution Segmentation into Planar Segments

We combine the Hough transform with RANSAC to robustly extract plane segments
from 3D point clouds (s. Fig. 2). In order to improve efficiency, we use a coarse-to-fine
strategy: We extract local surface normals at multiple resolutions to describe surface el-
ements (surfels). We implemented a highly efficient method for multi-resolution normal
estimation using octrees. At each resolution, we determine which surfels can already be
explained by planes that have been found on coarser resolutions. On the remaining sur-
fels, we apply the Hough transform to pre-segment the scene into co-planar surfels. In
order to improve accuracy and robustness, we fit plane segments on connected compo-
nents using RANSAC. On the finest resolution, we merge co-planar connected plane
segments and distribute the remaining points.
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Fig. 2. Overview over our coarse-to-fine planar segmentation approach. See text for details.

3.1 Efficient Normal Estimation through Multiple Resolutions

We represent the point cloud with an octree. An octree consists of branching nodes and
leaf nodes that each cover a 3D volume. The root of the tree spans the complete 3D
volume of interest. Each branching node divides its volume into eight equally sized
cubes (called octants) at its center position. For each of its octants, the node contains a
child that is either a branching node itself or a leaf in the tree.

The octree can naturally be used to regularly sample the point cloud at sampling
resolutions that correspond to the volume sizes of the nodes in the various depths of
the tree. For a sampling depth d, we determine all nodes at the sampling depth or all
leaf nodes at coarser resolutions. Furthermore, the octree allows to efficiently calculate
integral values in the volume of nodes: In each node, we maintain the integral over
the values of points that lie within the volume of the node. During the construction of
the tree, we distribute the value of a point to all nodes that the point visits while it is
recursively passed from the root to its final leaf node.

We exploit this property to efficiently calculate the mean and sample covariance of
points in each node. For the mean µ = 1

N

∑
i pi, we simply maintain the number of

points N and the sum of 3D point coordinates
∑

i pi. The sample covariance can be
obtained by the computational formula of variance

Cov(p) = E
[
ppT

]
− (E [p]) (E [p])

T
=

1

N

∑
i

pip
T
i − µµT .

Thus, it suffices to additionally maintain the sum of squared 3D point coordi-
nates

∑
i pip

T
i in each node.

Once the octree has been constructed, we estimate surface normals at every reso-
lution by finding the eigenvector to the smallest eigenvalue λ0 of the sample covari-
ance (λ0 ≤ λ1 ≤ λ2). Fig. 3 shows example normals extracted on two resolutions with
our method.
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Fig. 3. Normals on a coarse (left) and a fine (right) resolution estimated with our fast normal
estimation method. The normals are color-coded for direction (best viewed in color). The length
of the normals indicates the space discretization.

We require a minimum number of points to support the normal estimate. We further
evaluate the quality of the normals by considering the eigenvalues of the covariance
matrix. The curvature

γ :=
λ0

λ0 + λ1 + λ2
(1)

is small, when the points are mainly distributed in a plane. The relation λ1/λ2 is close to
one, when the points are equally distributed in both directions in the plane. Thresholding
these indicators rejects normal estimates on ridges and at plane borders. Finally, we
require the largest eigenvalue λ2 to be large in relation to the volume length of the
node, such that the points fully spread the volume size.

3.2 Pre-segmentation in Hough-Space

We find clusters of co-planar surfels on a single resolution with the Hough transform.
Similar to Vosselman et al. [12], we use a fast two-stage approach.

In the first stage, each surfel votes for planes with corresponding normals in an ori-
entation histogram. We discretize the orientation histogram approximately equidistant
in inclination and azimuth angles following the approach by Rabbani [8]. The curva-
ture γ in Eq. (1) provides a measure of uncertainty in the normal estimates. We use this
curvature to distribute the normal orientation of surfel k with a weight wj to a range of
bins j with similar orientations in the histogram, i. e.,

wj = Nk ·
(
1− γk

γmax

)
· (|〈nk,nj〉| − cos(α)) / cos(α),
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Fig. 4. Clusters found by the Hough transform on two consecutive resolutions (grey: not yet
segmented, blue: previously segmented).

where Nk is the number of points in the surfel, γmax is the threshold on the normal
curvature, nk and nj are the normal of the surfel and the histogram bin, respectively,
and α < 90◦ is the angular influence range of the normal. We detect local maxima in
the orientation histogram in order to find clusters of parallel surfels.

In the second stage, we determine co-planar surfels from the clusters of parallel
surfels. Each surfel votes for the distance of a plane to the origin of the coordinate
frame (e. g., the view point). Similar to the orientation histogram, we distribute votes
onto neighboring bins with a linear decay. We find clusters of co-planar surfels again at
the maxima of the distance histogram. Figure 4 shows results of this pre-segmentation
step in our example scene. To make this process efficient, we keep the resolution of
the histograms coarse and postpone an accurate estimate of the model parameters to
later processing stages. The resolution of the distance histograms is increased with the
resolution of the surfels, however.

3.3 Segmentation into Connected Components

The Hough transform does not consider the spatial connectivity of surfels. We therefore
extract connected components from the sets of co-planar surfels. Fig. 5 illustrates this
with an example. We overlay a grid over the plane that corresponds to the Hough-space
maximum of the surfels. The resolution of the grid is chosen according to the resolution
of the surfels. We project each surfel position into the grid and mark occupied grid cells.
Region-growing yields connected components which we discard when the component
is not supported by a minimum number of surfels (set to 3 in our implementation).

3.4 Accurate Segmentation through RANSAC

We further improve the plane fit to the connected components of co-planar surfels. The
plane estimate by the Hough transform is only a rough estimate of the true underlying
plane due to the coarse resolution of the orientation and distance histograms. We there-
fore apply RANSAC directly to the points represented by the surfels. An example of
the outlier detection is visualized in Fig. 6.
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Fig. 5. Segmentation of the clusters from Fig. 4 into connected components. In the left image, the
green segment is split into two components. The left component is not supported by sufficient
surfels and is discarded. In the right image, the segmentation is only shown for the red cluster
from Fig. 4, which is split into two planar segments (yellow and cyan). The rightmost part is
discarded for low support.

Fig. 6. RANSAC refinement on connected components (green: inliers, red: outliers).

RANSAC estimates plane parameters from a random set of three point samples.
Within a fixed number of iterations, we determine the plane estimate that is best sup-
ported by all points of the surfels. Points are accepted as inliers to the plane fit when
their distance to the plane is below some threshold. We adapt this threshold to the res-
olution of the surfels. We only accept plane fits that are supported by a large fraction
of the surfel points. We also require the extracted plane to be similar to the initial fit
determined by the Hough transform. When the plane fit is accepted, we redetermine the
connected component of the segment.

3.5 Coarse-To-Fine Segmentation

In the previous sections we detailed how we segment planes on a single resolution. We
propose however to segment a scene with a coarse-to-fine strategy. By this, large plane
segments can be detected efficiently from only few surfels. Furthermore, our approach
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inherently adapts to the extent of planes in the scene. It uses as much context as possible
to decide for co-planarity.

We process the scene from coarse to fine resolutions. We transit to the next finer
resolution, when no more plane segments are found on a resolution. In order to improve
the segmentation of the already found plane segments, we redistribute the surfels on the
finer resolution onto the segments. We test, if the surfel orientation and position fits well
to each plane segment, and if it lies within or at the border of its connected component.

Eventually, we also adapt the connected components. For this purpose, we increase
the sampling rate of the occupancy map according to the new resolution. We project the
surfels into the plane segment and mark the corresponding cells occupied. However,
we keep the coarser occupancy decisions from previous layers. Note, that while plane
segments may expand during this process, segments that grow together are not merged.
We merge co-planar connected segments in a final processing step.

3.6 Post-Processing

After all resolutions have been processed, we improve the segmentation on the finest
resolution. First, we merge connected co-planar plane segments. We then distribute the
nodes onto the plane segments without using normal information. For each node, we
determine a list of plane segment candidates with small distance towards the mean
of the points within the node’s volume. In addition, the node needs to fall within the
connected component or at the borders of each candidate.

We further examine nodes that could not be assigned uniquely to plane segments and
distribute the points in the node’s volume individually. We pick the best two plane seg-
ment candidates s1, s2 according to distance and compute the equidistal plane through
the intersecting line of s1 and s2 with normal direction

ncut =

(
ns1 + ns2

2

)
× (ns1 × ns2).

When the center of gravities of the plane segments lie on distinct sides of this plane, we
distribute the points on either side of the equidistal plane accordingly. Otherwise, we
simply associate the points to the closest plane.

4 Experiments

We evaluate our approach on Kinect depth images and 3D laser scans as well as on range
images from the popular SegComp ABW image dataset [5]3. The SegComp dataset
allows for an objective evaluation of our approach in the context of planar range image
segmentation. We compare our approach with results published in [3].

The 30 ABW test images have a resolution of 512×512 pixels. The dataset also pro-
vides ground truth segmentation in conjunction with an evaluation tool. Table 1 shows
the results of our approach on the SegComp ABW test images at 80% tolerance for the
overlap with the ground truth. While our approach is not specifically designed for range

3 available at http://marathon.csee.usf.edu/seg-comp/SegComp.html
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approach correct error overseg. underseg. missed noise time (sec)
USF 12.7 (83.5%) 1.6◦ 0.2 0.1 2.1 1.2 -
WSU 9.7 (63.8%) 1.6◦ 0.5 0.2 4.5 2.2 -
UB 12.8 (84.2%) 1.3◦ 0.5 0.1 1.7 2.1 -
UE 13.4 (88.1%) 1.6◦ 0.4 0.2 1.1 0.8 -
OU 9.8 (64.4%) - 0.2 0.4 4.4 3.2 -
PPU 6.8 (44.7%) - 0.1 2.1 3.4 2.0 -
UA 4.9 (32.2%) - 0.3 2.2 3.6 3.2 -

UFPR 13.0 (85.5%) 1.5◦ 0.5 0.1 1.6 1.4 -
RansacOnly 6.6 (43.4%) 2.4◦ 1.9 0.2 6.2 7.8 13.2
HoughOnly 4.4 (28.9%) 3.1◦ 0.2 0.4 9.7 3.0 3.163
singleRes16 5.6 (36.8%) 1.4◦ 0.0 0.5 8.6 1.1 0.555
singleRes8 10.0 (65.8%) 1.5◦ 0.2 0.3 4.4 1.2 0.655
singleRes4 7.2 (47.4%) 1.2◦ 1.1 0.1 6.8 7.0 1.001

ours 11.1 (73.0%) 1.4◦ 0.2 0.7 2.2 0.8 1.824

Table 1. Comparison with other segmentation approaches (from [3]) on the SegComp ABW
dataset at 80% overlap tolerance. The ground truth images contain 15.2 regions on average.

Fig. 7. Two segmented scenes from the SegComp ABW dataset.

images, its segmentation quality as well as plane fit accuracy lies in the upper range of
results on this dataset. Note, that the best segmentation results have been obtained with
methods that exploit the connectivity information encoded in the image structure. This
also restricts these methods to the processing of single-view range images. Furthermore,
the range images contain strong systematic noise in the form of depth discretization ef-
fects, which are difficult to handle for small segments composed of only few points.

In order to assess the contribution of the individual stages of our algorithm, we per-
formed tests with several variants. The method RansacOnly uses a greedy method to
detect planes (implemented with the Point Cloud Library, PCL [9]). It iteratively finds
the best supported plane fit for the not yet attributed points without using normal in-
formation. It only achieves average performance and its run-time strongly depends on
the complexity of the scene. HoughOnly is based on our multi-resolution approach but
does not perform RANSAC to refine the initial Hough segmentation. It is thus similar
to the approach by Vosselman et al. [12]. The HoughOnly method segments the scenes
with less accuracy compared to our complete approach. This is attributed to discretiza-
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Fig. 8. Results of our approach on the SegComp ABW (left) and our Kinect (right) dataset for
various overlap tolerances. The ground truth contains 15.2 and 12.8 regions on avg., respectively.

tion effects introduced by the accumulator histograms in the Hough transform. In our
method, the subsequent RANSAC step filters outliers from the Hough planes and ren-
ders the approach robust and accurate. For the methods singleRes16, singleRes8, and
singleRes4 we restrict our method to operate on single resolutions (16 cm, 8 cm, 4 cm).
The results demonstrate that our multi-resolution approach is important to capture all
scales of planes in a scene.

Fig. 8 (left) shows results of our approach on the SegComp ABW test images for
different overlap tolerances. It can be seen that the errors in our approach are in large
parts due to missed plane segments. As of the high noise, some points may not be
assigned to planes or boundaries may not be resolved correctly. Since our method does
not consider image neighborhood, it is difficult to achieve 90% overlap. Fig. 7 shows
two exemplary segmentations for the ABW dataset. In the left image our algorithm
missed multiple planar segments. We attribute some of the misses to the discretization
by the octree. This issue could be solved by reprocessing the unsegmented parts in a
different discretization.

We also evaluate our approach on depth images of indoor scenes obtained with a
Microsoft Kinect camera (s. Fig. 10). Our approach requires ca. 2.06 sec on 640×480
images. In QQVGA resolution (160×120), we are able to process single images in
about 106 msec, which allows for real-time applications. We generated a segmentation
dataset4 of 30 images with manually annotated ground truth and evaluate segmentation
quality with the SegComp evaluation tool. From Fig. 8 (right) we see that our approach
correctly segments 54.9% but only misses 24.2% of the planes at an overlap tolerance
of 51%. Despite the strong noise of the sensor due to the discretization of the disparity
measurements, our approach is able to segment the major planes in the scene. Note that
non-planar segments have been annotated as noise in the ground truth. We therefore
neglect the noise in the evaluation. Furthermore, for the manual annotation itself it is
not possible to achieve perfect overlap with the actual segments in the scene. Since no
ground truth of the relative angle between surfaces is available, we do not assess the
angular error on this dataset.

4 available at http://www.ais.uni-bonn.de/download/segmentation/kinect.html
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Fig. 9. Indoor scene acquired with a 3D laser mounted on a manipulator (black: unsegmented).

In addition to Kinect depth images, we tested our approach on indoor scenes ac-
quired with a laser scanner that is swept with the end-effector of a manipulator (s.
Fig. 9). Our approach finds the major plane segments in the building structure. It also
finds planar segments in cluttered regions where the sampling density is sufficient.

5 Conclusion and Future Work

In this paper we proposed an efficient method for extracting planar segments from 3D
point clouds. We combine the Hough transform with robust RANSAC to fit planes on
multiple resolutions. By using a coarse-to-fine strategy, we make efficient use of the
available data. It allows to consider the largest possible context to make decisions of
co-planarity. This also makes our approach data efficient.

In experiments, we demonstrate the robustness and the run-time efficiency of our
approach. We compare our method to state-of-the-art approaches using the SegComp
database. Our experiments show that we process 3D point clouds of 3D lasers and depth
sensors such as the Kinect at high framerates with good quality.

In future work, we will extract further types of geometric shape primitives such as
cylinders and spheres. We also plan to tune our approach to the sequential processing
of depth images from high framerate sensors such as the Kinect.

Acknowledgments

This research has been partially funded by the FP7 ICT-2007.2.2 project ECHORD
(grant agreement 231143) experiment ActReMa.

References
1. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with

applications to image analysis and automated cartography. Commun. of the ACM (1981)



12 B. Oehler, J. Stueckler, J. Welle, D. Schulz, and S. Behnke

Fig. 10. Example Kinect scene (top left), close-view on segmented points in the upper left image
corner (top right), ground truth (bottom left), and resulting segmentation (bottom right). White:
invalid/unknown, black: unsegmented.

2. Fitzgibbon, A.W., Eggert, D.W., Fisher, R.B.: High-level model acquisition from range im-
ages. Computer-Aided Design 29(4), 321 – 330 (1997)

3. Gotardo, P., Bellon, O., Silva, L.: Range image segmentation by surface extraction using
an improved robust estimator. In: Proc. of the Int. Conf. on Computer Vision and Pattern
Recognition (CVPR) (2003)
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