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Abstract. We present a system for 3D semantic scene perception con-
sisting of a network of distributed smart edge sensors. The sensor nodes
are based on an embedded CNN inference accelerator and RGB-D and
thermal cameras. Efficient vision CNN models for object detection, se-
mantic segmentation, and human pose estimation run on-device in real
time. 2D human keypoint estimations, augmented with the RGB-D depth
estimate, as well as semantically annotated point clouds are streamed
from the sensors to a central backend, where multiple viewpoints are fused
into an allocentric 3D semantic scene model. As the image interpretation
is computed locally, only semantic information is sent over the network.
The raw images remain on the sensor boards, significantly reducing the
required bandwidth, and mitigating privacy risks for the observed persons.
We evaluate the proposed system in challenging real-world multi-person
scenes in our lab. The proposed perception system provides a complete
scene view containing semantically annotated 3D geometry and estimates
3D poses of multiple persons in real time.

Keywords: Semantic scene understanding, intelligent sensors and sys-
tems, visual perception, sensor fusion

1 Introduction

Accurate semantic perception of 3D scene geometry and persons is challenging and
an important prerequisite for many robotic tasks, such as safe and anticipative
robot movement in the vicinity of people as well as human-robot interaction.
In this work, we propose a system for 3D semantic scene perception consisting
of a network of distributed smart edge sensors. It provides a complete scene
view containing semantically annotated 3D geometry and estimates 3D poses of
multiple persons in real time.

We build upon our previous work on real-time 3D human pose estimation
using semantic feedback to smart edge sensors [2]. While this existing pipeline
is able to track poses of multiple persons in real time, it lacks modeling of
other aspects of the scene, i.e. 3D geometry, object detections, and surface
categorization. Semantically annotated 3D geometry, however, is required to
explain and predict interactions between persons and objects in the scene, and
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Fig. 1: Semantic perception with distributed smart edge sensors: (a) developed
sensor node, (b) 3D semantic scene model with 3D human skeleton, (c) RGB and
(d) thermal detections, (e) semantic segmentation. Person detections in red and
skeleton keypoints colored by joint index. Occluded joints are marked in orange.
CNN inference runs online on distributed sensors and semantic information is
aggregated into an allocentric 3D scene model on the backend including 3D
geometry (e.g., furniture, walls, floor) and 3D human pose.

to handle occlusions. Temporal aggregation and fusion of semantic point clouds
from multiple sensor perspectives further leads to a consistent and persistent
3D semantic scene model with the field of perception not being limited by the
measurement range or occlusions of a single sensor.

To enable perception of these additional characteristics of the scene, the
sensor network is extended with updated smart edge sensors with higher compute
capabilities and greater flexibility w.r.t. the employed vision CNNs, as shown in
Fig. 1. This enables to run object detection and semantic image segmentation
together with human pose estimation on the sensors in real time. RGB-D cameras
estimate 3D scene geometry and thermal cameras increase the person detection
performance in low-light conditions. Semantic information from detections and
image segmentation is fused into the point cloud computed from the depth image
and 2D human joint detections are augmented with the depth measured at the
keypoint location. Semantic point cloud and human poses are communicated to a
central backend, where they are fused into an allocentric 3D metric-semantic scene
model. Only the semantic information is sent over the network; the raw images
remain on the sensor boards, significantly reducing the required bandwidth, and
mitigating privacy issues for the observed persons.

The semantic point clouds from multiple viewpoints are aggregated into an
allocentric map of 3D scene geometry and semantic classes on the backend. The
map is further updated via ray-tracing to account for moving objects. 3D human
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poses are estimated in real time in the scene via multi-view triangulation. The
allocentric 3D human poses are projected into the local camera views and sent
back to the sensors as semantic feedback [2], where they are fused with the local
detections. The 3D scene geometry enables to compute occlusion information for
each joint in the respective camera view. This information is included into the
semantic feedback from backend to sensors, improving the local scene model of
each sensor by incorporating global context information. Unreliable, occluded
joint detections can be discarded, and the local model is completed by the more
reliable semantic feedback reprojected from the global, fused 3D model.

We evaluate the proposed system in experiments with challenging real-world
multi-person scenes. In summary, our contributions are:

– The development of a smart edge sensor platform based on the Nvidia Jetson
Xavier NX development kit and an RGB-D and thermal camera, running
efficient vision CNN models for object detection and semantic segmentation
together with human pose estimation on-device in real time;

– Temporal multi-view fusion of semantic point clouds from individual sensors
into an allocentric semantic map of 3D scene geometry;

– The integration of multiple instances of the proposed novel sensor nodes into a
network of distributed smart edge sensors for real-time multi-view 3D human
pose estimation using semantic feedback [2], complementing the feedback
from backend to sensor with occlusion information for human joints in the
respective camera views, computed via ray-tracing through the estimated 3D
scene geometry.

We make our implementation for both sensor boards1 and backend2 publicly
available.

2 Related Work

Lightweight Vision CNNs for Embedded Hardware. Convolutional neural networks
(CNNs) set the state-of-the-art for image processing and computer vision. On
systems with restricted computational resources, like mobile embedded sensor
platforms, however, lightweight, efficient models must be employed to achieve real-
time performance. A popular approach is to replace classical backbone networks
such as ResNets [10] with MobileNet [20, 11] or EfficientNet [23] architectures,
as the main computational load of CNN inference often lies in the backbone
feature extractor. These architectures decrease the number of parameters and the
computational cost significantly, e.g., by replacing standard convolutions with
depthwise-separable convolutions.

For object detection on embedded devices, single-stage architectures such
as SSD [13] or YOLO [17], which use predefined anchors instead of additional
region proposal networks, were shown to be efficient. In our work, we employ the
1 https://github.com/AIS-Bonn/JetsonTRTPerception
2 https://github.com/AIS-Bonn/SmartEdgeSensor3DScenePerception
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recently proposed MobileDets [26], that are optimized for embedded inference
accelerators using the SSD architecture with MobileNet v3 backbone.

The DeepLab v3+ architecture [5] for semantic segmentation uses elements of
MobileNets, such as depthwise-separable convolutions, for efficiency on embedded
hardware and shows state-of-the-art performance on large, general datasets. We
employ a DeepLab v3+ model with MobileNet v3 backbone in our work.

For human pose estimation, OpenPose [4] set a new standard by detecting
body parts of multiple persons in an image and associating them to individuals
via Part Affinity Fields (PAFs). This bottom-up approach scales well with the
number of person detections. Top-down approaches, on the other hand, first detect
individuals and then estimate body keypoints for each single-person crop. These
approaches achieve higher accuracy and better scale-invariance, as the person
detections are interpolated to a fixed input resolution before pose inference. Xiao
et al. [25] propose an efficient CNN architecture consisting of a backbone feature
extractor and deconvolutional layers. We adopt this architecture and replace the
ResNet backbone with MobileNet v3 for better efficiency on embedded hardware.

Semantic Mapping. Semantic information about the environment is a prerequisite
for many high-level robotic functions. For this, semantic mapping systems build
an allocentric model of 3D scene geometry with semantic class information.

SemanticFusion [14] builds semantic maps from RGB-D camera input us-
ing surface elements (Surfels), where a Gaussian approximates the local point
distribution. Pixel-wise class probabilities are obtained from the color image
via semantic segmentation and fused into the map using a Bayesian approach
assuming independence of individual measurements.

Dengler et al. [8] proposed an object-centric 2D/3D map representation for
real-time service robotics applications, using RGB-D data as input. A geometric
segmentation of small objects in the point cloud is obtained via Euclidean
clustering. Stückler et al. [22] fuse probabilistic object segmentations from multiple
RGB-D camera views into a voxel-based 3D map using a Bayesian framework.

Recently, Bultmann et al. [3] proposed a framework for online multi-modal
semantic fusion onboard a UAV combining 3D LiDAR data with detections and
semantic segmentation of 2D color and thermal images. The semantic point clouds
are aggregated into an allocentric voxel-based map using poses from LiDAR
odometry to transform multiple viewpoints into a common coordinate frame.

3D Human Pose Estimation. 2D human joint detection, inferred by image CNNs
as introduced above, provides the input for 3D human pose estimation. 3D poses
are recovered from 2D keypoint detections from multiple, calibrated camera views
via variants of the Pictorial Structures Model (PSM) [15, 9] or based on direct
triangulation [6, 18]. The PSM approaches are computationally expensive, due to
a large discrete state space used in the optimization, restricting them to offline
processing. Triangulation-based approaches are more computationally efficient
and enable 3D pose estimation for multiple persons in real time.

In previous work [2], we proposed a pipeline for real-time 3D human pose
estimation using multiple calibrated smart edge sensors that perform 2D pose
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Fig. 2: Overview of the multi-sensor pipeline for 3D semantic mapping and human
pose estimation: The Jetson NX smart edge sensors extend a sensor network
from prior work [2] of nodes with lower compute capabilities. Semantic point
clouds from multiple sensor views are aggregated into an allocentric 3D semantic
map and 3D human poses are estimated in real time. The map is used to check
reprojected joints for occlusion in the resp. sensor view via ray-tracing and this
information is added to the semantic feedback sent to the smart edge sensors.

estimation on-device. Semantic pose information is transmitted to a central
backend where multiple views are fused into a 3D skeleton via triangulation
and an efficient, factor graph-based skeleton model. The fused allocentric 3D
joint positions, after motion prediction to compensate for the pipeline delay, are
reprojected into local views and sent back to the sensors as semantic feedback,
where they are fused with the detected keypoint heatmaps. This enables the
sensors to incorporate global context information into their local scene view
interpretation. The pipeline delay is estimated as the difference of the timestamps
of the current detection and the latest received feedback message on a sensor and
updated using a moving average filter.

We build upon this work and extend the sensor network with new smart
edge sensor nodes with significantly increased computational power and RGB-D
cameras that enable the perception of 3D geometry. In addition to human pose
estimation, object detection and semantic image segmentation are computed
on the sensor boards and fused via 3D projection into a semantic point cloud.
Semantic point clouds from multiple sensor views are fused into a sparse voxel
hash-map with per-voxel full semantic class probabilities on the backend. The
semantic map is used to obtain occlusion information for person keypoints in
the local camera views, which is added to the semantic feedback to increase the
robustness of the pose estimation pipeline.

3 Method

Figure 2 illustrates the proposed multi-sensor pipeline for 3D semantic percep-
tion and human pose estimation combining two types of smart edge sensors.
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Fig. 3: Smart edge sensor semantic perception system overview. Human poses
are estimated in real time, while the semantic point cloud of the static or slowly
moving scene geometry is output at a lower frequency to save compute resources.

The proposed Jetson NX sensors are integrated into a sensor network from
prior work [2], consisting of nodes based on the Google Edge TPU with lower
compute capabilities and RGB image-only 2D human pose estimation, without
local depth estimation. We consider a calibrated camera network, with known
projection matrices from sensor to world coordinates, where the sensors are
software-synchronized via NTP. Semantic mapping is only performed with the
here proposed Jetson NX sensor nodes, while data from both sensor types is
combined for 3D human pose estimation.

An overview of the proposed approach for semantic perception onboard each
Jetson NX smart edge sensor is given in Fig. 3. We detail individual components
of the data processing on each sensor board, as well as the fusion of multiple
sensor views for 3D mapping and 3D human pose estimation in the following.

3.1 Smart Edge Sensor Hardware

We developed smart edge sensors based on the Nvidia Jetson Xavier NX developer
kit3 (cf. Fig. 1 (a)). They are equipped with a 6-core ARM processor, 384 CUDA
cores, and 8GB of RAM. The Jetson NX embedded system achieves a CNN
inference performance of 21 trillion operations per second (TOPS), a significant
increase compared to the 4 TOPS of the sensor platform employed in our previous
work [2]. For visual perception, we connect an Intel RealSense D455 RGB-D
camera and a FLIR Lepton 3.5 thermal camera to the Jetson NX board.

3.2 Single-View Embedded Semantic Perception

Person and Object Detection. We employ the recent MobileDet architecture [26]
for person and object detection. The RGB detector is trained on the COCO
dataset [12] using person and 12 indoor object classes (e.g., chair, table, com-
puter / tv), with an input resolution of 848× 480 px. The same network architec-
ture is used for the thermal detector, taking one-channel 8-bit gray-scale thermal
3 https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit
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images at the camera resolution of 160× 120 px as input. The thermal detector
is trained on the ChaLearn IPHD dataset [7], with annotations for the person
class only.

Person Keypoint Estimation. We adopt a top-down approach for person pose
estimation on the smart edge sensors, where crops of single persons are analyzed
by the keypoint estimation CNN. The CNN architecture of Xiao et al. [25] is the
basis of our person pose estimation, but we exchange the ResNet backbone with
the significantly more lightweight MobileNet v3 feature extractor [11]. We train
the pose estimation network on the COCO dataset [12] using person keypoint
annotations.

Person detections from RGB and thermal images are forwarded to the keypoint
estimation CNN. The RGB-D depth thereby is used to project detections from the
thermal camera to the color image. Redundant detections of the same person in
both modalities are filtered via non-maximum suppression (NMS). Each person
crop is then resized to the fixed 192× 256 input resolution of the keypoint
estimation CNN and inference is run for all crops together in batched mode.
Batch processing gives a significant improvement in the scaling of inference time
with the number of persons compared to previous work [2], where the embedded
hardware only supported processing a single crop at a time (cf. Sec. 4.4).

The pose estimation model outputs multi-channel images, called heatmaps,
encoding the confidence of a joint being present at the pixel location. As single-
person crops are processed, 2D joint locations are determined as global maxima of
the respective heatmap channel. The RGB-D range image is used to augment the
2D keypoints to a 2.5D pose representation. For each joint, the median depth of
a 5× 5 px region around the joint location is obtained from the depth image. The
local depth estimate enables the projection of keypoints into three-dimensional
space but often suffers from noise and occlusions, as is further analyzed in Sec. 3.5.
The 2.5D pose estimate for each detected person is sent to a central backend,
where multiple sensor views are fused into a coherent 3D pose representation. The
pose estimation pipeline runs with the highest real-time priority on the sensor
boards, to enable tracking of dynamic human motions. To save computational
resources, the person detector is run only once per second and the crops are
updated based on the keypoint estimations between detector runs.

Semantic Segmentation. We adopt the DeepLab v3+ [5] architecture with Mo-
bileNet v3 [11] backbone for semantic segmentation. We train the model on the
indoor scenes of the ADE20K dataset [27] and reduce the labels to 16 classes
most relevant for the intended indoor application scenarios (cf. Fig. 1). The input
image size is set to 849× 481 px during inference, fitting to the 16:9 aspect ratio
of our camera. The semantic segmentation is run only once per second, similar
to the person and object detector, to save computational resources.

3.3 Multi-Modal Semantic Point Cloud Fusion
We obtain a geometric point cloud by projecting the RGB-D range image into
3D. The point cloud is uniformly subsampled using a voxel-grid filter with 5 cm
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resolution to reduce the amount of data, economizing computational resources,
and later network bandwidth for transmission to the backend. Sparse outlier
measurements are further removed by a statistical outlier filter, as implemented
in the PCL library [19]. A point is deleted when the distance to its neighbors
is outside an interval defined by the mean and standard deviation of the entire
point cloud.

Semantic information from RGB and thermal detections, as well as RGB
semantic segmentation, is fused into the point cloud using a projection-based
approach as proposed by Bultmann et al. [3]. For this, the points are projected into
the segmentation mask inferred from the RGB image. The semantic class scores
csegm ∈ RC are obtained from semantic segmentation via bilinear interpolation
at the projected point location. A normalized probability distribution over the
employed C = 16 classes is then approximated by applying the soft-max operation:

pi = σ (ci) = exp ci∑C
j=1 exp cj

, (1)

obtaining psegm ∈ RC , with pi ∈ [0, 1] and
∑

i pi = 1. If a projected point falls
inside a detection bounding box in either thermal or color images, we further
fuse the detector result with the semantic segmentation. We reconstruct the
detection probability distribution pdet from the score for the detected class
following the maximum entropy principle: The probability of the detected class
pdet is given by the detector score and the remaining probability mass 1− pdet is
equally distributed over the remaining C − 1 classes. Both estimates are fused
following the Bayesian update rule [14], assuming independence of segmentation
and detection:

pfused = psegm ◦ pdet∑C
i=1 pi,segm pi,det

, (2)

with ◦ being the coefficient-wise product. For better numerical stability, we use
the implementation of the Bayesian fusion in logarithmic form from [3].

As the detection bounding boxes are axis-aligned, border-effects have to be
considered for non-rectangular or non-axis-aligned objects before detection fusion.
Inclusion of all points projected into the bounding box in the fusion would falsely
label points on the ground and in the background as the detected class. To
alleviate this issue, the ground plane is removed and the remaining points are
clustered in 3D Euclidean space by a distance threshold [3]. Only the clustered
points are included into detection fusion.

The output semantic point cloud includes the class probability vector and the
argmax class color per point (cf. Fig. 4 (a)) and is sent to the central backend over
the network. It is computed at a reduced update frequency of 1Hz on the sensors,
as it is targeted to observe the static or slowly moving scene geometry. Thus,
computational resources are kept free for the real-time estimation of dynamic
human motions in the pose estimation pipeline.
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Fig. 4: 3D Semantic Mapping: (a) semantic point cloud of a single sensor, (b)
prior map, (c) fused semantic map. The smart edge sensors send semantic point
clouds of their resp. perspectives to the backend. Here, the fused map is initialized
with a prior map and updated with the observations including semantic classes.

3.4 3D Semantic Mapping

Semantic point clouds from multiple calibrated camera perspectives are fused into
an allocentric semantic map on the central backend, as illustrated in Fig. 4. For
this, the 3D space is uniformly subdivided into cubic volume elements (voxels).
We employ sparse voxel hashing [16] as a memory-efficient data structure.

For indoor environments, prior information on building structure is often
easily available, e.g., via floor plans or 3D models. To incorporate this prior
information, we initialize the scene model with a prior map of the empty building
(Fig. 4 (b)). Here, the prior map was obtained from aggregated laser scans of the
empty rooms, but it could also be replaced, e.g., by a floor plan with a fixed wall
height or an architectural CAD model of the building.

To include semantic information and current observations into the map, we
transform the semantic point clouds from individual sensors (Fig. 4 (a)) into
global coordinates using the known camera calibration and bin the points into
voxels of 10 cm side length. The semantic probabilities of all points falling into a
voxel are fused probabilistically, using Bayes’ rule [14], assuming independence
between observations P (li|Xk) for the semantic point cloud Xk with label li for
class i:

P (li|X1:k) = P (li|X1:k−1)P (li|Xk)∑
i P (li|X1:k−1)P (li|Xk) . (3)

We again use the implementation of Bayesian fusion in logarithmic form from [3]
for better numerical stability. Points labeled as person are not included in the
semantic map, as dynamic human segments are tracked at a higher update rate
via the 3D skeleton representation (cf. Sec. 3.5).

The fused semantic map (Fig. 4 (c)) contains 3D geometry and semantic
classes of the areas observed by the smart edge sensors and is completed by the
prior information for currently unobserved areas.

To account for moving objects, we adopt a simple ray-tracing approach to
update occupancy information of the voxels [21], as illustrated in Fig. 5. Starting
from the sensor pose towards the measured voxels, we ray-trace using a 3D
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Fig. 5: Map update: 3D Semantic map and 3D person skeleton (a) before and (b)
after moving a chair (highlighted with red circle). The semantic map is updated
via ray-tracing to account for moving objects.

implementation of Bresenham’s algorithm [1]. All voxels between the start and
endpoint of the ray are updated as being free space, while the measured voxels
are updated as being occupied. The semantic class probability is reset when a
voxel state transitions from occupied to free.

3.5 3D Human Pose Estimation with Occlusion Feedback

The 3D joint positions of the detected persons are recovered from a set of 2D
keypoint detections from multiple viewpoints via triangulation, and the result
is refined using a factor graph skeleton model, as proposed in [2]. Furthermore,
a semantic feedback channel from backend to sensors is implemented in our
framework that enables the local semantic models of each sensor to incorporate
globally-fused 3D pose information.

In this work, we add occlusion information for each joint to the semantic
feedback, using the estimated 3D semantic map (cf. Fig. 2). We employ ray-
tracing to check each joint for occlusion in the respective local sensor view. For
this, we traverse the ray from the respective camera pose to the 3D joint through
the 3D map using Bresenham’s 3D line-search [1]. When the ray hits a minimum
number of k = 2 occupied voxels, the joint is marked as occluded in the respective
local view.

The benefits of the occlusion information for the local sensor model are
illustrated in Fig. 6. Without occlusion feedback, heavy occlusion causes the
pose estimation to collapse to the visible side only (Fig. 6 (b)), which cannot be
recovered by the feedback on the heatmap level [2]. With occlusion information
(Fig. 6 (a)), unreliable, occluded joint detections can be discarded, and the local
model is completed by the more reliable semantic feedback. Completely occluded
persons can also be added back into the local model (Fig. 6 (d)), making the
sensor aware of persons that are going to re-appear in the future. Furthermore,
the known occluded joints are excluded from multi-view triangulation in the next
forward pass, as no new information can be gained from the respective sensor
view. In Sec. 4.2, we show that the added occlusion information improves the
overall consistency in terms of reprojection error.
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(a) (b) (c) (d)

Fig. 6: Occlusion information in semantic feedback: Local 2D pose estimation (a)
with and (b) without occlusion information via semantic feedback, (c) reference
view without occlusion, (d) fully occluded person. Person detections in red and
skeleton keypoints colored by joint index. Occluded joints are marked in orange.
Heavy occlusion causes the pose estimation to collapse to the visible side only.
With occlusion information, unreliable, occluded joint detections can be discarded,
and the local model is completed by the more reliable semantic feedback.

(a) (b) (c)

Fig. 7: Comparison of multi-view triangulation and local depth for estimating
person keypoints in 3D: (a) multi-view triangulated 3D skeleton, (b) local depth
from front view, and (c) local depth from side view. The local depth estimate
results in a good approximation of the 3D skeleton for a front view, but is
inaccurate in case of self-occlusion, e.g. from a side view. Multi-view triangulation
is more robust but requires synchronization with other sensors.

We further investigate the reliability of the local depth estimate of skeleton
joints from the Jetson NX smart edge sensors. The local depth enables estimating
3D joint positions from a single camera only, without dependence on other sensors.
However, the RGB-D depth suffers from significant noise at larger distances and
the depth measurement for a joint often is obstructed by occlusions or self-
occlusions, as illustrated in Fig. 7. The local depth estimate results in a good
approximation of the 3D skeleton for a front view, but is inaccurate in case of
self-occlusion, e.g. from a side view. Multi-view triangulation is more robust to
these issues but requires synchronization with other sensors.

The local depth estimate, however, can still be used as an indication to
constrain the data association between cameras for multi-view triangulation.
Person detections from different camera views are associated based on the epipolar
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distance of their joints using the efficient iterative greedy matching proposed
by Tanke et al. [24]. Keypoint detections from one image are projected as
epipolar lines into the other cameras, where the distance from corresponding
joint detections to the epipolar line is used as data-association cost. When a
depth estimate is available, including an uncertainty interval computed from the
keypoint confidence and the distribution of local depth readings, the matching
can be restricted to a line segment. This helps to resolve ambiguous situations,
where keypoints from multiple persons have a low distance to the epipolar line
but are located at different positions along the line. Keypoints located on the line
segment close to the projected depth estimate will receive lower data association
cost while correspondences outside the projected depth interval will be discarded.

4 Evaluation

We evaluate the proposed system in challenging, cluttered real-world indoor
scenes with multiple persons.

4.1 Implementation Details

Our sensor network consists of 20 smart edge sensors, thereof 4 based on the
Jetson NX board, as introduced in this paper, and 16 based on the Google
Edge TPU [2]. The boards are connected to mains power supply and the power
consumption of an NX board is 20 – 25W during inference, thereof ∼5W for
powering the RGB-D camera, compared to 7W for the Edge TPU board. The
sensors cover an area of roughly 12×22 m. The cameras face downward towards
the center and run at 30Hz. We conduct experiments with the proposed, extended
sensor network, with 8 persons moving in the covered area, which are evaluated
in the following using a sequence of 106 s containing ∼3,000 frames per camera.

4.2 Quantitative Results

To analyze the consistency between local and globally-fused human pose estima-
tion, we evaluate the error between 2D poses detected in the individual sensor

Table 1: Evaluation in real-world multi-person scenes with 20 cameras and 8
persons: Reprojection error (px) per joint class between detected 2D poses and
fused 3D poses.
Feedback Cams Pers Head Hips Knees Ankls Shlds Elbs Wrists Avg

w/o fb 20 8 5.09 5.98 5.75 6.87 4.67 5.53 6.95 5.69
fb [2] 20 8 4.76 5.51 4.98 5.94 4.34 4.88 5.66 5.08
fb + occl. 20 8 4.36 4.68 4.37 5.44 3.97 4.38 5.04 4.56
fb + occl. +
local depth 20 8 4.30 4.63 4.32 5.42 3.91 4.33 5.04 4.51
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Fig. 8: Experiments in real-world multi-person scenes: Local detections of two
reference sensor views and 3D semantic scene view with 3D poses of eight persons
estimated in real-time. The geometry of the room is accurately represented by
the map, fusing prior map (black) and current observations of smart edge sensors
with their semantic classes (e.g., tables, chairs, computers). Interactions between
persons and the scene, e.g., persons sitting on chairs (violet), are explained in a
physically plausible way by the scene model.

views and reprojected fused 3D poses in Tab. 1. The reprojection error decreases
for all joint classes when using the semantic feedback proposed in [2] over a
purely feed-forward pipeline. Adding the occlusion information, as proposed
in this work, further decreases the reprojection error, as unreliable occluded
keypoint detections can be discarded and excluded from multi-view triangulation.
Constraining the data association using the local depth estimates of the RGB-D
cameras gives a further small improvement. The proposed pipeline leads to the
lowest reprojection error for all joint classes, amounting to 4.51 px on average,
indicating that the consistency between local and globally-fused pose estimation
increases through the semantic feedback with occlusion information and by using
local depth estimates in the data association step for multi-view triangulation.

4.3 Qualitative Results

An exemplary scene of the real-world multi-person experiments is shown in Fig. 8.
Local detections and pose estimation in two reference camera views are depicted
together with the 3D semantic scene view. 3D poses of eight persons are estimated
online, in real-time during the experiment. The semantic map represents the
3D geometry of the scene, fusing prior map and current sensor observations,
including semantic class probabilities. Interactions between persons and objects
in the scene, e.g., persons sitting on chairs, are explained in a physically plausible
manner by the scene model.
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Table 2: Average inference time and validation score (given as mAP for detectors
and pose estimation and mIOU for segmentation) of CNN models (batch size 1)
on different embedded hardware and for different numerical precision.
Model Input Res. Edge TPU (int8) Jetson NX (fp16) Jetson NX (int8)

time val. score time val. score time val. score

RGB det. 848× 480 - - 24.1ms 36.2% 11.8 ms 36.0%
RGB det. 640× 480 21.5ms 36.7 % - - - -
Pose est. 192× 256 4.5ms 68.4% 4.0ms 69.3 % 3.5 ms 68.6%
Thermal det. 160× 120 - - 13.9ms 25.4 % 6.0 ms 24.9%
RGB segm. 849× 481 - - 27.0ms 50.0 % 20.0 ms 48.8%

Table 3: Average processing time for pose estimation (inference + post-processing)
for increasing number of person detections per image. Batch processing can be
used on Jetson NX while crops are processed one by one on the Edge TPU.
Sensor Type Precision 1 2 3 4 5 6

Edge TPU int8 14.4ms 23.6ms 33.0ms 43.9ms 54.3ms 65.9ms
Jetson NX int8 12.1ms 15.0 ms 18.0 ms 27.4ms 31.0 ms 38.8 ms
Jetson NX fp16 11.8 ms 17.4ms 21.9ms 26.4 ms 31.7ms 41.5ms

4.4 Run-time Analysis

We analyze the run-time of CNN inference and the validation score on the respec-
tive training dataset (cf. Sec. 3.2) on different embedded hardware accelerators
and for different numerical precision for the employed models in Tab. 2. Thermal
detector and RGB segmentation are only executed on the Jetson NX, as the Edge
TPU does not have enough computational power to run all models in parallel.
The run-times on Jetson NX in 16-bit floating-point mode (fp16) are comparable
to 8-bit quantized (int8) inference on the Edge TPU. The inference times roughly
halve when using int8 precision on Jetson NX for the detectors and also decrease
for the segmentation. For pose estimation, here stated for a single crop and
batch size 1, the difference is less significant. The inference time is only about
4ms, and the precision is less relevant compared to other overhead from the
inference framework in this case. The validation score is given as bounding-box
or keypoint mean average precision (mAP) for the person class as defined for
the COCO dataset [12] for the detectors or pose estimation, respectively, and as
mean intersection over union (mIOU) for the semantic segmentation. It decreases
between 0.2 and 1.2% when using int8 precision instead of fp16. The slightly
better performance of the RGB detector on the Edge TPU can be explained as
it was trained for the person class only, while the detector used on Jetson NX
was trained for person and 12 indoor object classes.

Table 3 shows the scaling of processing time for pose estimation, including
CNN inference and post-processing, with an increasing number of person detec-
tions per image. During our experiments with 8 persons in the scene, a maximum
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of 6 persons were visible at a time in one camera. On the Edge TPU sensors [2],
crops are processed one by one, as only a batch size of one is supported, and the
runtime scales linearly. Up to three persons can be tracked at the full camera
frame rate of 30Hz. On the Jetson NX platform, batch-processing is possible,
and therefore the run-times scale sub-linearly. Up to five persons can be tracked
at the full camera frame rate. For pose inference, there is only a small difference
in run-time between fp16 and int8 mode on Jetson NX.

We run CNN inference in fp16 mode on the Jetson NX smart edge sensors
during our online experiments to benefit from the higher numerical precision,
as 8-bit quantization gives only little gains in run-time for the pose estimation
with strong real-time constraints, and the fp16 inference time is sufficient for the
other models that run with lower priority at a 1Hz update rate.

5 Conclusion

In this work, we presented a network of distributed smart edge sensors for 3D
semantic scene perception, including static or slowly moving geometry as well as
dynamic human motions. RGB-D and thermal camera images are processed locally
on the sensor boards with vision CNNs for person and object detection, semantic
segmentation, and human pose estimation. 2D human keypoint estimations,
augmented with the RGB-D depth estimate, as well as semantically annotated
point clouds are streamed from the sensors to a central backend, where multiple
viewpoints are fused into an allocentric 3D semantic scene model. The individual
sensors incorporate global context information into their local models via a
semantic feedback channel. For this, the globally-fused 3D human poses are
projected into the sensor views, where they are fused with the local detections.
The estimated 3D geometry enables to add occlusion information for each joint
to the semantic feedback, such that unreliable, occluded joint detections can be
discarded on the sensors, and the local models can be complemented by the more
reliable feedback joint positions. We built a sensor network of 20 smart edge
sensors, thereof 4 based on the novel Jetson NX board, covering an area of about
12×22 m, and evaluated the proposed system in challenging, cluttered real-world
scenes with up to 8 persons. Dynamic human motions are estimated in real time
and the semantically annotated 3D geometry provides a complete scene view
that also explains interactions between persons and objects in the scene.

Future work includes using the 3D semantic scene model and human poses
estimated by the smart edge sensors to enable anticipative robot behavior and
safe human-robot interaction in a shared workspace. Mobile sensor nodes could
further be added to the sensor network for active exploration of areas not covered
by the permanently installed sensors.
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