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Abstract. For autonomous navigation in restricted environments, mi-
cro aerial vehicles (MAV) need to create 3D maps of their surroundings
and must track their motion within these maps. In this paper, we propose
an approach to simultaneous localization and mapping that is based on
the measurements of a lightweight 3D laser-range finder. We aggregate
laser-range measurements by registering sparse 3D scans with a local
multiresolution surfel map that has high resolution in the vicinity of
the MAV and coarser resolutions with increasing distance, which corre-
sponds well to measurement density and accuracy of our sensor. Modeling
measurement distributions within voxels by surface elements allows for
efficient and accurate registration of 3D scans with the local map. The
incrementally built local dense 3D maps of nearby key poses are regis-
tered globally by graph optimization. This yields a globally consistent
dense 3D map of the environment. Continuous registration of local maps
with the global map allows for tracking the 6D MAV pose in real time.
In experiments, we demonstrate accuracy and efficiency of our approach.

1 Introduction

In recent years, micro aerial vehicles (MAV), such as quadrotors, have attracted
much attention in the field of aerial robotics. In many of the current MAV
applications, these vehicles are tracked by external motion capture systems, fly
in obstacle-free altitudes based on global navigation satellite systems (GNSS),
such as GPS, or are remotely controlled by a human operator. For autonomous
navigation in restricted, GNSS-denied environments, MAVs need to create 3D
maps of their surroundings from measurements of onboard sensors and must
track their 6D motion within these maps in real time.

The size and weight limitations of MAVs pose a challenge for environment
perception, however. Typical lightweight sensors, such as ultrasonic distance sen-
sors, are restricted in measurement range and resolution. Cameras have a limited
field-of-view (FoV) and depend on textured environments and lighting condi-
tions. For navigation of ground vehicles, laser range finders (LRF) are popular
sensors. Only few MAVs are equipped with 2D LRFs, however [28, 8, 2, 23].

We designed a small and lightweight 3D laser-range finder, making up to
40.000 measurements per second in almost all directions. Aggregation of these
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range measurements to globally consistent maps is challenging, because the 6D
MAV pose changes continuously during data aquisition.

For MAV-centric measurement aggregation, we use a local multi-resolution
map that stores occupancy information and the respective distance measure-
ments. Measurements are stored in grid cells with increasing cell size from the
robot’s center. Thus, we gain computational efficiency by having a high resolu-
tion in the close proximity to the sensor and a lower resolution with increasing
distance, which correlates with the sensor’s characteristics in relative accuracy
and measurement density. Compared to uniform grids, local multi-resolution
leads to the use of fewer grid cells without loosing information and consequently
results in lower computational costs.

Aggregating measurements from consecutive time steps necessitates a robust
and reliable estimate of the sensor’s motion. Thus, we use the point-based repre-
sentation in the map to gain an estimate of the sensor’s motion between consec-
utive 3D scans by scan registration. We propose a highly efficient and accurate
registration method that matches Gaussian point statistics in grid cells (sur-
fels) between local multi-resolution surfel maps. For registering 3D scans with
a map, we also represent the scans in local multi-resolution grid maps. In order
to achieve accuracy despite the sparsity of measurements and the discretization
into grids, we assign surfels in a probabilistic way within a Gaussian mixture
model (GMM).

The work presented here builds upon our previous work [6] by globally reg-
istering these local dense 3D maps by graph optimization. This yields a globally
consistent dense 3D map of the environment. Continuous registration of local
maps with the global map allows for tracking the 6D MAV pose in real time.

Since laser-based ego-motion estimation relies on structure in the scene, it
works best in scenarios where GNNS typically are not available, like in indoor
or urban environments.

2 Related Work

Building maps with 3D laser scanners has recently attracted attention in the
field of autonomous navigation with mobile ground robots [17, 14]. Laser range
sensors provide accurate distance measurements in a large FoV with only minor
dependencies on lighting conditions.

A common research topic in SLAM with 3D laser scanners is how to maintain
high run-time performance and low memory consumption simultaneously. Hor-
nung et al. [10] implement a multi-resolution map based on octrees (OctoMap).
Ryde et al. [18] use voxel lists for efficient neighbor queries. Both of these ap-
proaches consider mapping in 3D with a voxel being the smallest map element.
Similar to our approach, the 3D-NDT [14] represents point clouds as Gaussian
distributions in voxels at multiple resolutions. Our local multi-resolution surfel
grids adapt the maximum resolution with distance to the sensor to incorpo-
rate measurement characteristics. Moreover, our registration method matches
3D scans on all resolutions concurrently, utilizing the finest common resolution
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Fig. 1: 3D laser scanner obtained by rotating a 2D LRF. a) CAD drawing; b)
mounting on the MAV; c) 3D scan of indoor environment (color encodes height).

available between both maps, which also makes registration efficient. In previous
own work [25, 19], we used this concept within an octree voxel representation.
We model up to six view directions such that multiple 3D scans from different
view points can be integrated in a single multi-resolution surfel map. Compared
to the dense RGB-D images used in our previous work, the 3D scans obtained
from our laser range finder are much sparser. We overcome this sparsity through
probabilistic assignments of surfels during the registration process. While the
many methods assume the robot to stand still during 3D scan acquisition, some
approaches also integrate scan lines of a continuously rotating laser scanner into
3D maps while the robot is moving [4, 7, 24, 13, 1].

Up to now, such 3D laser scanners are rarely employed on lightweight MAVs
due to their payload limitations and the difficulty of aggregating 3D scans
in-flight. Instead, frequently MAVs are equipped with rigidly mounted two-
dimensional laser range finders [9, 28, 8, 2, 23, 11], which restricts their FoV to
a mostly horizontal plane at the height of the MAV.

Some MAVs have been equipped with 3D laser scanners. For instance, Scherer
and Cover et al. [20, 5] use a 3D laser scanner for obstacle perception for autono-
mous river exploration. They approach MAV localization with a vision sensor. In
contrast, we combine visual odometry with 3D scan registration in a 3D multi-
resolution map to localize the MAV. Takahashi et al. [26] also build environment
maps with a 3D laser scanner. They localize the robot using GPS and IMU sen-
sors. Thrun et al. [27] propose a 3D mapping system with a rigidly mounted
2D laser scanner on a helicopter. The laser scanner measures in a vertical plane
perpendicular to the flight direction. In order to localize the helicopter, measure-
ments from GPS and IMU are fused and consecutive 2D scans are registered,
assuming scan consistency in flight direction. In our approach, we do not make
such an assumption on scan consistency.

3 Sensor Setup

Our continuously rotating 3D laser scanner consists of a Hokuyo UTM-30LX-
EW 2D laser range finder (LRF) which is rotated by a Dynamixel MX-28 servo
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Fig. 2: One-dimensional illustration of the hybrid local multi-resolution map.
Along with the occupancy information, every grid-cell (blue) maintains a circular
buffer with its associated measurement points (green). The map is centered
around the robot and in case of a robot motion, ring buffers are shifted according
to the translational parts of the movement, obtaining the egocentric property of
the map. Cells at coarser levels are used to retain points from vanishing cells at
finer levels and to initialize newly added cells (red arrows).

actuator to gain a 3D FoV. As shown in Fig. 1a, the scanning plane is parallel to
the axis of rotation, but the heading direction of the scanner is twisted slightly
away from the direction of the axis—in order to enlarge its FoV. The 2D LRF
is electrically connected by a slip ring, allowing for continuous rotation of the
sensor. The sensor is mounted on our multicopter (Fig. 1b) pitched downward by
45◦ in forward direction, which places the core of the robot upwards behind the
sensor. Hence, the sensor can measure in all directions, except for a conical blind
spot pointing upwards behind the robot. The total weight of the 3D scanner is
approximately 400 g.

The Hokuyo LRF has an apex angle of 270◦ and an angular resolution of
0.25◦, resulting in 1080 distance measurements per 2D scan, called a scan line.
The Dynamixel actuator rotates the 2D LRF at one rotation per second, resulting
in 40 scan lines and 43,200 distance measurements per full rotation. Slower
rotation is possible if a higher angular resolution is desired. For our setup, a
half rotation leads to a full 3D scan of most of the environment. Hence, we can
acquire 3D scans with up to 21,600 points with 2 Hz (Fig. 1c).

4 Local Multi-Resolution Surfel Map

Distance measurements from the sensor are accumulated in a 3D multi-resolution
map with increasing cell sizes from the center of our MAV. The representation
consists of multiple MAV-centered 3D grid-maps with different resolutions. On
the finest resolution, we use a cell length of 0.25 m. Each grid-map is embedded
in the next level with coarser resolution (doubled cell size).

We use a hybrid representation, storing 3D point measurements along with
mean and covariance of the points and occupancy information in each cell. Point
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measurements of consecutive 3D scans are stored in fixed-sized circular buffers,
allowing for point-based data processing and facilitates efficient nearest-neighbor
queries.

Fig. 2 shows a 1D schematic illustration of the map organization. We aim
for efficient map management for translation and rotation. Therefore, individual
grid cells are stored in a circular buffer to allow for shifting elements in constant
time. We interlace three levels of circular buffers to obtain a map with three
dimensions. The length of the circular buffers depends on the resolution and the
size of the map. In case of a translation of the MAV, the circular buffers are
shifted whenever necessary to maintain the egocentric property of the map. In
case of a translation equal or larger than the cell size, the circular buffers for
respective dimensions are shifted. For sub-cell-length translations, the transla-
tional parts are accumulated and shifted if they exceed the length of a cell.

Since we store 3D points for every cell for point-based processing, single
points are transformed in the cell’s local coordinate frame when adding, and
back to the map’s coordinate frame when accessing. Every cell in the map stores
a list of 3D points from the current and previous 3D scans. This list is also
implemented by a fixed-sized circular buffer. If the capacity of the circular buffer
is exceeded, old measurements are discarded and replaced by new measurements.

Since rotating the map would necessitate to shuffle all cells, our map is ori-
ented independent to the MAV’s orientation. We maintain the orientation be-
tween the map and the MAV and use it to rotate measurements when accessing
the map.

Besides the scan registration described in the following section, the map is
utilized by our obstacle avoidance control. Thus, measurements are integrated
by ray-casting. For every measurement, the occupancy information for the cells
along the ray and the end point are updated using a beam-based inverse sensor
model. Occupied cells are avoided using a predictive potential field method [16].

5 Scan Registration

We register consecutive 3D laser scans with our local multi-resolution surfel grid
map to estimate the motion of the MAV. We acquire 3D scans in each half
rotation of the laser. Since the scans are taken in-flight in a sensor sweep, the
motion of the MAV needs to be compensated for when assembling the scan
measurements into 3D scans. We register 3D scans with the so far accumulated
local map of the environment. The local map is then updated with the registered
3D scan.

5.1 3D Scan Assembly

We estimate the motion of the MAV on a short time scale using visual odome-
try [21] from two pairs of wide-angle stereo cameras. This 6D motion estimate is
used to assemble the individual 2D scan lines of each half rotation to a 3D scan
(see Fig. 3).
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Fig. 3: Side view on an indoor 3D scan with flat ground. Left: assembled 3D
scan without considering sensor movement during the scan acquisition. Right:
We incorporate visual odometry to correct for the sensor movement.

5.2 Registration Approach

We register the points P = {p1, . . . , pP } in a 3D scan with the points Q =
{q1, . . . , qQ} in the local grid map of the environment [6]. Instead of considering
each point individually, we map the 3D scan into a local multi-resolution grid
and match surfels, i.e.,

p(P | θ,Q) ≈
N∏
i=1

p(xi | θ, Y )Px,i . (1)

By this, several orders of magnitudes less map elements are used for registration.
Similarly, the registration of two local maps is treated as the registration of
their point sets. We denote the set of surfels in the scene (the 3D scan) by
X = {x1, . . . , xN} and write Y = {y1, . . . , yM} for the set of model surfels in
the environment map. E.g., a surfel xi summarizes its attributed Px,i points by
their sample mean µx,i and covariance Σx,i. We assume that scene and model
can be aligned by a rigid 6 degree-of-freedom (DoF) transformation T (θ) from
scene to model.

5.3 Gaussian Mixture Observation Model

We explain each transformed scene surfel as an observation from a mixture
model, similar as in the coherent point drift (CPD) method [15]. A surfel xi
is observed under the mixture defined by the model surfels and an additional
uniform component that explains outliers, i.e.,

p(xi | θ, Y ) =

M+1∑
j=1

p(ci,j) p(xi | ci,j , θ, Y ). (2)

The binary variable ci indicates the association of xi to one of the mixture
components. The model is a mixture on Gaussian components for the M model
surfels that measure the matching likelihood between the surfels through

p(xi | ci,j , θ, Y ) := N
[
T (θ)µx,i;µy,j , Σy,j +R(θ)Σx,iR(θ)T + σ2

j I
]
, (3)

where σj = 1
2ρ
−1
y,j is a standard deviation that we adapt to the resolution ρy,j of

the model surfel. We set the likelihood of the uniform mixture component to a
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Fig. 4: a) photo of an outdoor scenario. b) the point-based representation of our
local environment map. c) the corresponding surfel map.

constant. This way, we do not make a hard association decision for each surfel,
but a scene surfel is associated to many model surfels.

5.4 Registration through Expectation-Maximization

The alignment pose θ is estimated through maximization of the logarithm of the
joint data-likelihood

ln p(P | θ,Q) ≈
N∑
i=1

Px,i ln

M+1∑
j=1

p(ci,j) p(xi | ci,j , θ, Y ). (4)

We optimize this objective function through expectation-maximization (EM)
[3]. In the M-step, the latest estimate q for the distribution over component
associations is held fixed to optimize for the pose θ

θ̂ = argmax
θ

const .+

N∑
i=1

Px,i

M+1∑
j=1

q(ci,j) ln p(xi | ci,j , θ, Y ). (5)

This optimization is efficiently performed using the Levenberg-Marquardt (LM)
method as in [25]. The LM method is suitable for weighted non-linear least
squares problems of the form argmaxx e

T (x)We(x), where e(x) = y − f(x) is a
vector of residuals and W is a weighting matrix. We stack the residuals µy,j −
T (θ)µx,i between associated surfels and neglect the effect of the pose on the
covariance to obtain a constant block-diagonal weighting matrix. Each block for a
surfel association is given by the inverse of the covarianceΣy,j+R(θ)Σx,iR(θ)T of
the surfel match. Additionally, according to Eq. (5), each association is weighted
by a factor w := Px,i q(ci,j) to the inverse covariance. The steps taken by LM
optimization are

∆x := (JTWJ + λI)−1JTWe(x), (6)

where J is the Jacobian stacked from individual Jacobians per surfel association,
and λ is adjusted by LM to trade between Gauss-Newton and gradient descent
steps. Note that due to the block-diagonal structure of W , this update decom-
poses into sums over individual terms per association. The covariance of the LM
estimate is readily obtained by Σ(x) := (JTWJ)−1.
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Fig. 5: A top-down view of the resulting map. The point color (green to purple)
encodes the distance from the ground. The yellow points, connected by red lines,
show the trajectory of the pose graph optimization.

The E-step obtains a new optimum q̂ for the distribution q by the conditional
likelihood of the cluster associations given the latest pose estimate θ

q̂(ci,j) =
p(ci,j) p(xi | ci,j , θ, Y )∑M+1

j′=1 p(ci,j′) p(xi | ci,j′ , θ, Y )
. (7)

In order to evaluate these soft assignments, we perform a local search in the
local multi-resolution surfel grid of the model. We first look up the grid cell with
a surfel available on the finest resolution in the model map at the transformed
mean position of the scene surfel. We consider the surfels in this cell and its
direct neighbors for soft association.

6 Simultaneous Localization and Mapping

Our map representation and registration method is able to track the pose of
the MAV in a local region, since we decrease the resolution in the map with
distance to the MAV. In order to localize the robot in a fixed frame towards
its environment and to concurrently build an allocentric map, we align local
multi-resolution maps acquired from different view poses.

We register the current local multi-resolution map towards a reference key
view to keep track of the MAV’s motion. A new key view is generated for the
current map, if the robot moved sufficiently far. The new key view is set as
the reference for further tracking. The registration result xji between a new key
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(a) (b)

Fig. 6: The resulting map of the parking garage after pose graph optimization
from different views. Points corresponding to the ceiling of the parking garage
have been cut out for visualization. Color encodes the distance from the ground.
a) vertical artifacts (red circle) are caused by a human safety pilot following the
MAV; b) after filtering for dynamic obstacles.

view vi and its reference vj is a spatial constraint that we maintain as values of
edges eij ∈ E in a graph G = (V, E) of key views.

To overcome pure time-sequential pose tracking by registration, we add spa-
tial constraints between closeby key views that are not in temporal sequence.
On-line SLAM is enabled by establishing up to one spatial constraint per 3D
scan update.

Constraint Detection On each scan update, we check for one new constraint
between the current reference vref and other key views vcmp. We determine a
probability

pchk(vcmp) = N
(
d(xref, xcmp); 0, σ2

d

)
(8)

that depends on the linear distance d(xref, xcmp) between the key view poses xref
and xcmp. We sample a key view v according to pchk(v) and determine a spatial
constraint between the key views using our registration method.

Pose Graph Optimization From the graph of spatial constraints, we infer
the probability of the trajectory estimate given all relative pose observations

p(V | E) ∝
∏
eij∈E

p(xji | xi, xj). (9)

Each spatial constraint is a normal distributed estimate with mean and co-
variance determined by our probabilistic registration method. This pose graph
optimization is efficiently solved using the g2o framework [12].
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Fig. 7: Top-down views of resulting maps. Using our surfel registration method
and and global graph optimization (a), our surfel registration method without
global graph optimization (b), and GICP registration with global graph opti-
mization (c).

Filtering Dynamic Objects After global pose graph optimization we ag-
gregate the local maps in one global grid map to filter for dynamic obstacles.
Measurements are integrated by ray-casting to determine grid cells along the
beam from the laser scanner to the end point grid cell. Spurious measurements
from dynamic objects are filtered. An example of a dynamic object is shown in
Fig. 6. Here, the human safety pilot was following the MAV.

7 Experiments

To evaluate our global registration method, we acquire data with our MAV dur-
ing flight in a parking garage. The MAV was controlled by a human operator
following it. The data sequence contains 200 3D scans and the overall trajectory
length is 73 m, covering the complete parking garage. Throughout the experi-
ments, four levels are used for the map with a cell length of 0.25 m at the finest
level, which yields a cell length of 2 m at the coarsest level.

Fig. 5 shows the resulting allocentric map and trajectory after pose graph
optimization. For this figure, we chose an orthogonal top-down perspective to
get an indication about the consistency of the aligned 3D scans by the parallel
walls. In contrast, Fig. 6 shows the resulting map from different perspectives,
which allows for a better interpretation of the scene. Here, cars and pillars in the
parking garage can be identified in the globally aligned 3D scans. Fig. 8 shows
that even lamps hanging from the ceiling are modeled by the 3D point cloud.

To assess the improvement of the map accuracy that can be attributed to
global pose graph optimization, Fig. 7 compares the resulting maps of differ-
ent registration methods. Fig. 7b) shows that without pose graph optimization,
the trajectory aggregates drift which results in inconsistencies indicated by the
misalignment of the walls.

We compare our registration method to a state-of-the-art method by aligning
the sparse 3D scans by the Generalized ICP (GICP) [22]. Note that, similar to our
pipeline, scans are assembled by visual odometry and pose graph optimization is
used to globally align the local dense 3D maps to have a fair comparison. Fig. 7c
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shows that the resulting 3D map is less accurate and smeared. In terms of run-
times our method is computationally more efficiency with 145±50 ms compared
to GICP with 1555± 613 ms. Here, mean run-times and standard deviation over
the complete dataset are reported.

In a second experiment we acquire data in an outdoor scenario mapping a
gas station during flight. The resulting global maps are shown in Fig. 9.

Fig. 8: The structure of the ceiling showing hanging lamps in a photo (left) and
the resulting 3D map (right).

8 Conclusions

We propose an approach to simultaneous localization and mapping that is based
on the measurements of a lightweight 3D laser-range finder mounted on a MAV.

Laser-range measurements are aggregated by registering sparse 3D scans with
a local multiresolution surfel map that has high resolution in the vicinity of
the MAV and coarser resolutions with increasing distance, which corresponds
well to measurement density and accuracy of our sensor. Modeling measurement
distributions within voxels by surface elements allows for efficient and accurate
registration of 3D scans with the local map. The incrementally built local dense
3D maps of nearby key poses are registered globally by graph optimization.
This yields a globally consistent dense 3D map of the environment. Continuous
registration of local maps with the global map allows for tracking the 6D MAV
pose in real time. We demonstrate accuracy and efficiency of our approach by
showing consistent allocentric 3D maps, recorded by our MAV during flight in a
parking garage and comparing them to results from a state-of-the-art registration
method.
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(a) (b)

(c) (d)

Fig. 9: (a+c) photo of the scene from different perspectives. (b+d) the resulting
global maps acquired during flight with our MAV.
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