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Abstract— Unmanned aerial vehicles (UAVs) equipped with
multiple complementary sensors have tremendous potential for
fast autonomous or remote-controlled semantic scene analysis,
e.g., for disaster examination.

In this work, we propose a UAV system for real-time
semantic inference and fusion of multiple sensor modalities.
Semantic segmentation of LiDAR scans and RGB images, as
well as object detection on RGB and thermal images, run
online onboard the UAV computer using lightweight CNN
architectures and embedded inference accelerators. We follow a
late fusion approach where semantic information from multiple
modalities augments 3D point clouds and image segmentation
masks while also generating an allocentric semantic map.

Our system provides augmented semantic images and point
clouds with ≈ 9 Hz. We evaluate the integrated system in real-
world experiments in an urban environment.

I. INTRODUCTION

Semantic scene understanding is an important prerequi-
site for solving many tasks with unmanned aerial vehicles
(UAVs) or other mobile robots, e.g., for disaster examination
in search and rescue scenarios. Modern robotic systems
employ a multitude of different sensors to perceive their en-
vironment, e.g., 3D LiDAR, RGB(-D) cameras, and thermal
cameras, that capture complementary information about the
environment. A LiDAR provides accurate range measure-
ments independent of the lighting conditions, while cameras
provide dense texture and color in the visible spectrum.
Thermal cameras are especially useful in search and rescue
missions as they detect persons or other heat sources regard-
less of lighting or visibility conditions. The combination of
all these sensor modalities enables a complete and detailed
interpretation of the environment. A semantic map aids
inspection tasks [1], perception-aware path planning [2], and
increases robustness and accuracy of simultaneous localiza-
tion and mapping (SLAM) through the exclusion of dynamic
objects during scan matching [3].

In this work, we propose a framework for online multi-
modal semantic fusion onboard a UAV combining 3D LiDAR
range data with 2D RGB and thermal images. An embedded
inference accelerator and the integrated GPU (iGPU) run
inference online, onboard the UAV for mobile, optimized
CNN architectures to obtain pixel- resp. pointwise semantic
segmentation for RGB images and LiDAR scans, as well as
object bounding box detections on RGB and thermal images.
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Fig. 1: Semantic perception with UAV (a): (b) Person detec-
tions in thermal camera, (c) fused image segmentation and
(d) point cloud segmentation.

We aggregate extracted semantics for two different output
views: A fused segmentation mask for the RGB image which
can, e.g., be streamed to the operator for direct support of
their situation awareness, and a semantically labeled point
cloud, providing a 3D semantic scene view which is further
integrated into an allocentric map. This late fusion approach
is beneficial for multi-rate systems, increasing adaptability to
changing sensor configurations and enabling pipelining for
efficient hardware usage.

In summary, our main contributions are:
• the adaptation of efficient CNN architectures for image

and point cloud semantic segmentation and object de-
tection for processing onboard a UAV using embedded
inference accelerator and iGPU,

• the fusion of point cloud, RGB, and thermal modalities
into a joint image segmentation mask and a semantically
labeled 3D point cloud,

• temporal multi-view aggregation of the semantic point
cloud and integration into an allocentric map, and

• evaluation of the proposed integrated system with real-
world UAV experiments.

II. RELATED WORK

Mobile Lightweight Vision CNNs: Lightweight CNN
architectures for computer vision tasks that are efficient
and perform well on systems with restricted computational
resources, e.g., on mobile or embedded platforms, have
become of increasing research interest in recent years. The
MobileNet architectures [4], [5] replace classical backbone
networks such as ResNets [6] in many vision models while
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decreasing the number of parameters and the computational
cost significantly, e.g., by replacing standard convolutions
with depthwise-separable convolutions—at the expense of a
slight reduction in accuracy.

In object detection, single-stage architectures such as
SSD [7] or YOLO [8] have proven to be efficient in mobile
applications through the use of predefined anchors instead of
additional region proposal networks. Zhang et al. [9] further
optimize YOLOv3 for usage onboard a UAV. However, the
authors evaluate their network, called Slim-YOLOv3, only on
a powerful discrete GPU which is not feasible for integration
onboard a typical UAV.

Recently, Xiong et al. introduced MobileDets [10] based
on the SSD architecture with MobileNet v3 backbone and
optimized for embedded inference accelerators such as the
Google EdgeTPU [11], which we employ onboard our UAV.

For semantic image segmentation, efficient architectures
for inference onboard UAVs have mostly been proposed for
specific applications, such as UAV tracking and visual in-
spection [1] or weed detection for autonomous farming [12].
The DeepLab v3+ architecture [13] shows state-of-the-art
performance on large, general datasets while including el-
ements of the MobileNet architectures such as depthwise-
separable convolutions for efficient computation. In our
work, we employ a DeepLab v3+ model with MobileNet v3
backbone for image segmentation.

For point cloud semantic segmentation, projection-based
methods [14], [15], [16] utilize the image-like 2D structure
of rotating LiDARs. This allows performing efficient 2D-
convolutions and using well-known techniques from image
segmentation. The downside of this approach is the restric-
tion to single LiDAR scans in contrast to larger aggregated
point clouds [17]. In this work, we adopt the SalsaNext
architecture [14], trained on the large-scale SemanticKITTI
dataset [18] for autonomous driving, as it shows a good
speed-accuracy trade-off.

Semantic Mapping: Many high-level robotic tasks ben-
efit from or require semantic information about the en-
vironment. For this, semantic mapping systems build an
allocentric semantic environment model, anchored in a fixed,
global coordinate frame.

Maturana et al. [19] propose to extend existing digital
elevation maps (DEM) with the detection of cars from UAVs.

SemanticFusion [20] models surfaces as surfels where a
Gaussian approximates the point distribution. For SLAM,
this approach builds on ElasticFusion [21] and requires an
RGB-D camera. A CNN generates pixel-wise class proba-
bilities from the color image. Their fusion takes a Bayesian
approach assuming that individual segmentations are inde-
pendent and stores all class probabilities per surfel.

The LiDAR surfel mapping SuMa++ by Chen et al. [3]
uses a surfel’s semantic class to further improve the regis-
tration accuracy by penalizing inter-class associations during
scan matching and surfel update. Here, the projection-based
RangeNet++ [15] provides per point class probabilities.

With Recurrent-OctoMap, Sun et al. [22] aim at long-
term mapping within changing environments. Here, each cell

within the OctoMap [23] contains an LSTM fusing point-
wise semantic features and all LSTMs share weights.

Rosu et al. [24] extract a mesh from an aggregated point
cloud. Projection of mesh faces into images enables the trans-
fer from image segmentation to a semantic texture. While
projection and fusion happen in real-time, the required mesh
generation and UV-unwrapping are done in pre-processing.
Since only the argmax class is of interest and to meet GPU
memory limitations, the sparse texture retains a small number
of classes with high probability and discards all others.

Multi-Modal Semantic Fusion: Mobile robotic systems,
such as UAVs or self-driving cars, are often equipped
with both camera and LiDAR sensors, as they provide
complementary information. A LiDAR accurately measures
ranges sparsely and independent of lighting conditions while
cameras provide dense textures and colors. Hence, research
focused on the fusion of camera and LiDAR for 3D detection
and segmentation in the context of autonomous driving.

Xu et al. propose PointFusion [25], a two-stage pipeline
for 3D bounding-box detection. It first processes a LiDAR
scan with PointNet [26] and an image with ResNet indepen-
dently, before fusing them on feature level with an MLP.

Meyer et al. [27] take a similar sequential feature-level
fusion approach, addressing both 3D object detection and
dense segmentation. The feature-level fusion requires repre-
senting the LiDAR scan as a range image. Range and color
image are cropped to the overlapping field-of-view (FoV),
reducing the 360° horizontal FoV of the LiDAR to only 90°.

Vora et al. [28] propose to in-paint point clouds with image
segmentation by projecting LiDAR points into the image and
assigning segmentation scores of the pixels. A 3D object
detection network then processes the augmented point cloud.

In our work, different networks process LiDAR scan,
RGB, and thermal images individually. We adopt a projec-
tion-based approach similar to [28] for multi-modal fusion in
a multi-rate system. When multiple modalities are available,
we use a linear combination to merge class probabilities
from different sensors. Our mapping integrates augmented
point clouds in a sparse voxel hash-map with per voxel
full class probabilities. We adapt the Bayesian fusion of
SemanticFusion to the logarithmic form for higher precision
and greater numerical stability. While being less popular
in recent work, such a late fusion approach has important
practical advantages for deployment on an integrated robotic
system. Different FoVs and data rates are easy to handle
and intermediate results, such as image segmentation or
detections, are useful as stand-alone outputs. Pipelining also
allows reducing latency of sequentially executed individual
networks during online operation. Furthermore, the smaller,
simpler standard architectures of individual networks are
easier to adapt and optimize for the embedded inference
accelerators employed in this work.

III. OUR METHOD

A. System Setup

An overview of our UAV system, based on the commer-
cially available DJI Matrice 210 v2 platform, is shown in
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Fig. 2: UAV system setup and hardware design.

Fig. 2. We use an Intel Bean Canyon NUC8i7BEH with
Core i7-8559U processor and 32 GB of RAM as the onboard
computer. A Google EdgeTPU connects to the NUC over
USB 3.0 and accelerates CNN inference together with the Iris
Plus Graphics 655 iGPU of the main processor. An Ouster
OS0-128 3D-LiDAR with 128 beams, 360° horizontal, and
90° vertical opening angles provides range measurements
for 3D perception and odometry. For visual perception, our
UAV additionally carries two Intel RealSense D455 RGB-
D cameras, mounted on top of each other to increase the
vertical field-of-view, and a FLIR ADK thermal camera for,
e.g., person detection in search and rescue scenarios.

B. Semantic Perception

An overview of the proposed architecture for multi-modal
semantic perception is given in Fig. 3. We detail individual
components in the following.

Image Segmentation: We employ the DeepLabv 3+ [13]
architecture with MobileNet v3 [5] backbone optimized for
Google EdgeTPU Accelerator [11] for semantic segmenta-
tion. We train the model on the Mapillary Vistas Dataset [29],
reducing the labels to the 15 most relevant classes for the
envisaged UAV tasks (cf. Fig. 5). We use an input image size
of 849× 481 px during inference, fitting the 16:9 aspect ratio
of our camera.

Object Detection: The recent MobileDet architecture [10]
is the basis for our object detection. We train the RGB
detector on the COCO dataset [30] for person, vehicle, and
bicycle classes with an input resolution of 848× 480 px. The
thermal object detector uses the same architecture taking one-
channel 8-bit gray-scale thermal images at the full camera
resolution of 640× 512 px as input. We enable automatic
gain correction (AGC) for the thermal camera for compat-
ibility with the FLIR ADAS dataset [31]. AGC adapts and
scales the 16-bit raw images to 8-bit exploiting the full 8-bit
value range. The network is trained on the ADAS dataset,
with annotations for persons, vehicles, and bicycles.

Point Cloud Segmentation: We adopt the projection-based
SalsaNext architecture [14], pretrained on the large-scale
SemanticKITTI [18] dataset that takes advantage of the
image-like structure of LiDAR measurements. Subsampling
of the OS0 scans by a factor of two in vertical and horizontal
directions leads to a network input resolution of 64× 512.
The input channels are range, x-, y-, z-coordinate, and
intensity, normalized with the mean and standard deviation
of the training dataset. Our LiDAR has a significantly larger
vertical field-of-view of 90°, compared to the 26.9° vertical
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Fig. 3: Perception system overview.

opening angle of the SemanticKITTI dataset. A different
laser wavelength also changes the characteristics of intensity
and reflections. Hence, we adjust the normalization parame-
ters for z-coordinate and intensity to facilitate the domain
adaptation between training and observed data according
to the statistics of the test data captured with our sensor
setup. The x- and y-coordinate normalization parameters
remain the same, as the horizontal field-of-view is identical
(360°) for both sensors. Fig. 6 highlights improvements
of the segmentation results through the adaptation of the
normalization parameters.

Inference Accelerators: We run the CNN model infer-
ence on two different accelerators onboard the UAV PC:
The Google EdgeTPU [11], attached as an external USB
device, and the integrated GPU (iGPU) included in most
modern processors which is otherwise unused in our system.
The EdgeTPU supports network inference via TensorFlow-
lite [32] and requires quantization of the network weights
and activations to 8-bit [33]. The iGPU supports inference
via the Intel OpenVINO framework [34] in 16- or 32-bit
floating-point precision.

C. Multi-Modality Fusion

We adopt a projection-based approach to fuse semantic
class scores from image and point cloud. Projection onto the
image plane requires the transformation of LiDAR points
into the respective camera coordinate frame. As LiDAR
and cameras operate with different frame rates, the motion
between the respective capture times has to be taken into
account. The full transformation chain T from LiDAR to
camera frame is:

T = camTbase
basetcTbasetl

baseTLiDAR , (1)

using the continuous-time trajectory of the UAV base frame
estimated by the LiDAR odometry. Thus, the transformation
chain models perspective changes between LiDAR and cam-
era that occur due to dynamic UAV motions.

Bilinear interpolation at the projected point location gives
the semantic class scores from image segmentation. A linear
combination of the image score and the point score yields
the fused class score:

cfused = (1− wimg)cLiDAR + wimgcimg , (2)

with wimg ∈ [0, 1] and c ∈ RC the vectors of class scores of
the CNN output after soft-max of the C = 15 classes used
in this work (cf. Fig. 5 (e)).



Furthermore, if a projected point falls inside a detection
box in either thermal or color images, the detected class is
included in the result. We base the detection weight wdet
on the detector score multiplied with a Gaussian factor with
mean at the bounding box center and standard deviation of
half the bounding box width resp. height. Again, a linear
combination fuses both estimates:

cfused_det = (1− wdet) cfused + wdetcdet . (3)

Simple projection of all points into the rectangular bound-
ing box will falsely label points in the background as the
detected class (cf. Fig. 7). To alleviate this issue, points are
clustered w.r.t. their distance in the camera frame before
detection fusion. We include only points within the 25 %
quantile of distances per cluster to focus on foreground
objects. The final segmented point cloud includes the full
class score vector and the argmax class color per point.

We proceed similarly with the initial image segmentation
and detections from RGB and thermal cameras. The RGB-
D depth enables projection from RGB to thermal image
and temporal smoothing provides a more coherent fused
segmentation. For temporal fusion, we project the previous
image at time t− 1 with its depth into the current frame at
time t and perform exponential smoothing:

csmoothed_imgt = α ◦ cimgt + (1−α) ◦ cfused_imgt−1
, (4)

cfused_imgt = (1− wdet) csmoothed_imgt + wdetcdett , (5)

with the coefficient-wise product ◦.
The smoothing weights α differ between the individual

semantic classes. For (potentially) dynamic foreground ob-
jects, such as persons and vehicles, less smoothing is applied
(i.e., larger coefficients in α) than for static structures such
as buildings and roads. This reduces temporal jitter in the
segmentation significantly w.r.t. the initial CNN output and
still permits to follow the movement of dynamic objects.

D. Semantic Mapping

MARS LiDAR Odometry [35] provides poses to integrate
all augmented point clouds within a common map. A uni-
form grid subdivides the space into cubic volume elements
(voxels). Since a dense voxel grid may require a prohibitively
large amount of memory although only sparse access occurs,
we use sparse voxel hashing. Each voxel fuses all points in
its vicinity probabilistically. Additionally, we compute the
mean position. Our fusion scheme follows the reasoning
of SemanticFusion [20] to use Bayes’ Rule assuming inde-
pendence between semantic segmentations P (li|Xk) for the
augmented point cloud Xk with label li for class i:

P (li|X1:k) =
P (li|X1:k−1)P (li|Xk)∑
i P (li|X1:k−1)P (li|Xk)

. (6)

A naive implementation, as in SemanticFusion, suffers from
numerical instability due to finite precision of the multi-
plication result. In practice, this leads to all class prob-
abilities being close to zero, e.g., when P (li|Xk) ≈ 1,
P (lj |Xk+1) ≈ 1 and P (li|Xk+1) ≈ 0, P (lj |Xk) ≈ 0
both class-wise products will be almost zero. This results

in a loss of information even after the application of the
normalization term and needs continuous reinitialization.
Hence, we implement Eq. 6 with log-probabilities:

Li,1:k−1 = log(P (li|X1:k−1)), (7)
Li,k = log(P (li|Xk) , (8)

Ci,1:k = Li,1:k−1 + Li,k, (9)
M1:k = max

i
(Ci,1:k) , (10)

N1:k = log

1 +
∑
j

expCj,1:k−M1:k

 , (11)

Li,1:k = Ci,1:k − (M1:k +N1:k) , (12)

P (li|X1:k) = expLi,1:k . (13)

Voxels now store Li,1:k instead of P (li|X1:k). Ideally, we
would directly fuse network outputs before soft-max to save
additional exp and log evaluations, but since the individual
outputs may be arbitrarily scaled, this step is necessary.

An infinite time horizon of the semantic map, fusing
all scans, may not be necessary or wanted—depending on
the use-case, e.g. for global vs. local planning. Hence, we
employ a fixed-size double-ended queue (deque) per voxel
for a shorter time horizon of n scans that merges all points
per scan. Fusion of per-scan log-probabilities yields the
voxels’ class probabilities. Older scans are either removed
completely or fused into the infinite time horizon estimate.

IV. EVALUATION

We first evaluate inference speed and computational effi-
ciency of the employed CNN models and then show results
from our outdoor UAV flights in an urban environment.

A. CNN Model Efficiency

In real-time systems with limited computational resources,
such as UAVs, efficiency is of key importance and resources
need to be distributed with care between the different sys-
tem components. Semantic perception, while important for
many high-level tasks, has less severe real-time constraints
than, e.g., flight control or odometry. It is thus important
that the CNN inference uses as few CPU resources as
possible to not interfere with the hard real-time constraints
of low-level control, localization, and state estimation. For
this, we analyze the CPU load of the employed CNNs
for object detection and segmentation, depending on the
used accelerator. Although the main computational load of
inference is distributed to a dedicated accelerator (EdgeTPU
or iGPU), the preparation of input data, data transfer, and
post-processing require CPU resources. This is handled with
differing degrees of efficiency w.r.t. CPU load and depends
on the in- and output frame rate, as shown in Fig. 4. Models
running on the EdgeTPU produce lower CPU load in all
cases while achieving higher or equivalent maximum frame
rates. Tab. I shows the average inference latency per model.
The LiDAR segmentation is only executed on the iGPU, as
the pixel-shuffle layer from SalsaNext [14] is not supported
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Fig. 4: CPU load of the CNN inference of different models
depending on the used accelerator and the output frame rate.
The iGPU (dashed lines) results in higher CPU load than the
EdgeTPU (solid lines) for all models.

TABLE I: Average inference time on the resp. accelerator.

Model EdgeTPU iGPU

RGB Segmentation 40.5 ms 50.0 ms
RGB Detection 17.5 ms 24.0 ms
Thermal Detections 12.0 ms 18.0 ms
LiDAR Segmentation - 32.0 ms

by the EdgeTPU and the model thus cannot be converted to
the required 8-bit quantized format.

For the following experiments, we choose to run the image
CNNs on the EdgeTPU, while the LiDAR segmentation runs
on the iGPU. Tab. II shows the average computational load
and output rate for different combinations of CNNs. As to be
expected, the maximum achievable output frame rate drops
and CPU load increases with a growing number of vision
models used. The computation of RGB segmentation and
detection as well as thermal detection achieves an average
frame rate of 12.6 Hz at a CPU load of about 60 %. The
inclusion of the image fusion module almost doubles the
CPU utilization while the frame rate drops to 9.9 Hz. This
is due to the transformations and projections necessary to
calculate at image resolution for temporal smoothing and to
include thermal detection into the fused image segmentation.
The total CPU usage for the fusion of both image and point
cloud semantics sums up to about 2 CPU cores with an
output rate of around 9 Hz.

Reducing the input frequency to the semantic segmenta-
tion and detection can free additional resources for other sys-
tem components if necessary while still providing semantic
image and point cloud e.g., at 1 to 5 Hz—sufficient for many
high-level tasks like planning or keyframe-based mapping.

B. Outdoor Experiments

In Fig. 5, we show results of semantic image fusion for
an exemplary scene from our test flights. Fig. 5 (b) - (d)

TABLE II: Average CPU load and output frame rate of differ-
ent model combinations. Image segmentation and detection
models run on EdgeTPU and point cloud segmentation on
iGPU.
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show the outputs of the individual CNNs. While the large
structures are well segmented, the persons are only partially
recognized. A bicycle and the person at the right image bor-
der are even missed altogether. The RGB detector recognizes
all persons and the bicycle. The thermal detector confirms
both person detections inside the thermal camera’s field-of-
view. The fused output segmentation mask (e) includes all
detections together with the initial segmentation mask. All
persons and the bicycle are clearly visible.

Fig. 6 shows the point cloud segmentation results for the
same scene. Without the adaptation of the normalization
parameters, the top half of the buildings are misclassified
as vegetation. This is likely due to differing vertical field-
of-views of our and the trained LiDAR. In the KITTI
dataset [36], the FoV is only ≈ 3° upwards and 25° down-
wards (compared to ±45° of our sensor). Furthermore, in
SemanticKITTI the top of building structures is rarely visible
while the LiDAR often measures treetops at the top end.
After normalization adaptation, SalsaNext segments the large
structures well within the LiDAR scan (Fig. 6 (b)). Fig. 6
(c) shows the fused point cloud segmentation, combining
image segmentation and detections with the initial point
cloud segmentation. Persons and small objects are well
segmented in the output scan while buildings, vegetation,
and the car exhibit less noise in the segmentation when inside
the camera FoV. Independent of the normalization, the point
cloud network does not detect persons, often misclassifying
them as either vegetation or buildings.

In Fig. 7, we show the process of fusing person detections
from the RGB or thermal image into the point cloud. The
initial segmentation, using only the points projected onto the
image segmentation mask, is incomplete and slightly mis-
aligned. The addition of points projected into the bounding
box creates many false positives in the background. Our
inclusion of only foreground points, after clustering w.r.t. the
distance to the sensor (cf. Sec. III-C), results in the entire
person being correctly labeled without adding additional
mislabeled points in the background.

Fig. 8 depicts the resulting semantic map of the longest
test flight with manually annotated semantic labels (a) and
with scans either labeled from image segmentation (b) or
from fused semantic point clouds (c). The camera-only map
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Fig. 5: Semantic interpretation of RGB and thermal images:
(a) RGB input image, (b) segmentation and (c) detections.
(d) thermal detections. (e) fused segmentation mask. Persons
and bicycle, not or only partially segmented in the initial
segmentation mask, are fully visible in the fused output.

(b) misses annotations due to the camera’s limited FoV but
depicts most classes, such as persons, cars, or vegetation,
more accurately since the noisier raw point cloud segmen-
tation is not included. The tracks of moving persons are
clearly visible in yellow in both maps. Only the track of the
operator, who always stayed behind the UAV and thus was
not visible in the camera, is not segmented (b) or mislabeled
(c). The direct segmentation of persons or small structures
in the LiDAR scans is very noisy due to domain adaptation
issues with the employed CNN. The aggregated maps from
fused semantic clouds of two further experiments, shown in
Fig. 9, underline this issue. In the first test (a) the camera
pointed away from people and in the second test (b) more
towards the persons within the scene (pointing right w.r.t. the
image). Within the camera frustum, person detection works
sufficiently well, while they are misclassified as barrier or
vegetation elsewhere.

To quantitatively evaluate the coherence of different point
cloud segmentations, we calculate the intersection-over-
union (IoU):

IoUc =
TPc

TPc + FPc + FNc
(14)

where TP, FP, and FN are the true positives, false positives,
and false negatives, respectively. We compare for each seg-
mented point its argmax class against the corresponding
aggregated voxel label and average per class over the whole
dataset. Tab. III shows the results for all classes that occur
for a significant number of points in our recorded data. We
use the manually annotated aggregated semantic map with a
voxel size of 25 cm as ground-truth (cf. Fig. 8 (a)). Applying

TABLE III: Average IoU per class (in %) and mean IoU
for different point cloud segmentation approaches measured
against the manually annotated semantic map.

Segmentation Method Build. Road Veg. Pers. Bike Car Obj. Mean

point cloud segmentation
w/o adapted normalization

40.4 73.3 3.1 0.2 0.0 2.7 2.2 17.4

point cloud segmentation
w. adapted normalization

81.5 73.8 5.9 0.1 0.0 3.6 1.9 23.8

fused semantic cloud 82.9 76.0 20.2 5.8 1.6 6.4 4.9 28.3

fused semantic cloud
(reduced to camera FoV)

93.4 66.2 59.9 34.0 16.6 37.6 34.9 48.9

semantic cloud from image
overlay (camera FoV)

92.5 76.5 76.7 33.5 17.1 43.5 39.7 54.2

the proposed adaptation of the normalization parameters
significantly improves the segmentation of the building class,
as the top half of the buildings are correctly labeled (cf.
Fig. 6). The fused semantic cloud improves the segmentation
coherence for all classes, especially for persons and vegeta-
tion. Persons and small objects, such as bicycles, however,
are only correctly labeled within the camera FoV. The track
of the operator, who always stayed behind the UAV and
was not visible in the camera, is misclassified, significantly
impacting the mIOU of the person class. Results for the
semantic cloud from the projected image segmentation and
the fused semantic cloud evaluated for the reduced FoV of
the camera show significantly improved mIOU values also
for persons, cars, and other foreground objects.

The proposed semantic fusion thus successfully creates a
coherently labeled 3D semantic interpretation for the global
structure in the full 360° LiDAR FoV and for both global
structure and small dynamic objects inside the camera FoV.
To improve the accuracy for the difficult semantic classes in
the entire FoV, label propagation could further be used for
retraining the LiDAR segmentation.

V. CONCLUSION

In this work, we presented a UAV system for semantic
image and point cloud analysis as well as multi-modal se-
mantic fusion. The inference of the lightweight CNN models
runs onboard the UAV computer, employing an inference
accelerator and the integrated GPU of the main processor
for computation. The EdgeTPU performs inference in 8-
bit quantized mode and showed more efficient CPU usage.
The iGPU is more flexible, e.g., to directly run pre-trained
models, as it uses 16- or 32-bit floating-point precision and
does not require model quantization. We evaluated the system
in real-world experiments in an urban environment. The
semantic scene analysis provides a 2D image segmentation
overlay and a 3D semantically labeled point cloud which is
further aggregated into an allocentric semantic map.

The current point cloud segmentation suffers from domain
adaptation issues since available large-scale training datasets
stem from autonomous driving scenarios with different view-
points and sensors more focused towards the ground. Thus,
future work includes fine-tuning the laser segmentation with



(a)

(b) (c)

Fig. 6: LiDAR point cloud segmentation: (a) Initial segmentation without adaptation of z and intensity normalization
parameters and (b) after adaptation to our dataset mean and std. (c) fused point cloud segmentation. After normalization
adaptation, the CNN segments the large structures well within the LiDAR scan but misses small objects. Persons and small
structures are well segmented in the fused output scan and buildings, vegetation, and the car exhibit less noise.

(a) (b) (c)

Fig. 7: Person segmentation included into point cloud us-
ing (a) image segmentation only, (b) additionally detection
bounding boxes, and (c) clustering foreground points within
the detections bounding boxes. After clustering, the person
is completely segmented without adding additional misclas-
sified points in the background.

simulated data of the employed LiDAR scanner or on data
recorded with the UAV and using label propagation to retrain
networks with the aggregated semantic map.
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