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Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks

Fine-grained visual explanation method (FGVis):

Contributions:

• A method (FGVis) to generate fine-grained explanations in the image space. 

• A novel technique for defending against adversarial evidence, which does 

not depend on human-tuned parameters.

• Interpretable and class discriminative explanations, visualizing detailed

evidence.
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+ Novel technique to defend against adversarial evidence

Model Target  class

FGVis highlights in detail the 

evidence on which a model 

bases its decisions

Fine-grained explanation

FGVis can provide a first indication for 

the importance of different colors

Color bias of VGG16 trained on ImageNet:

Explanations of class minivan focus on 

edges, not consistently preserving the color

Yellow is dominant in most explanations of the 

class school bus

Faithfulness of explanations: How accurate does an explanation represent the 

true evidence on which a model bases its decision?

An explanation     is computed by perturbing the input image   

Preserving explanation:

Class discriminative / fine-grained

Deleting explanation:

Probability of target class   for explanation    

FGVis generates the most fine-grained explanation maskPerturbation based explanations represent valid model inputs and are thus testable

Drawback of perturbation based methods: Adversarial evidence, i.e. faulty 

evidence due to artefacts introduced in the optimization of the explanation.

Novel adversarial defense:

• Idea: The features in an explanation should be a subset of the image features.

• Corresponding optimization constraint: 

• Implemented via gradient clipping: 

Our defense does not depend on human-tuned parameters and enables an 

explanation which is both fine-grained and preserves the characteristics of the image

Without defense the optimization introduces adversarial evidence

Our defense prevents the hallucination of adversarial evidence

Qualitative comparison with other methods
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FGVis produces class discriminative explanations even when objects partially overlap

True class Adversarial class

True class Adversarial class

• : Activation of the i-th neuron in the l-th layer.

• The constraint is applied after each nonlinearity-

layer (e.g.: ReLU-Layer).

Updated error-signal back-propagated through the l-th layer 
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Explanation masks for images with multiple objects computed for two different target classes.
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Deletion metric [7]

Use explanation to 

gradually remove

important pixels and 

monitor prediction

Pixels removed
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Avg. AUC over

ImageNet val. data
AUC=0.104
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: Target class of the explanationMask  based perturbation:

Indicator function

Quantitative verification: Ratio 

of maintained true classifications 

after swapping the color channels

Accuracy of adversarial expl. on 1000 random images

Accuracy of adversarial expl. on 1000 random images


