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Abstract. Random forests are popular classi�ers for computer vision tasks such
as image labeling or object detection. Learning random forests on large datasets,
however, is computationally demanding. Slow learning impedes model selection
and scienti�c research on image features. We present an open-source implementa-
tion that signi�cantly accelerates both random forest learning and prediction for
image labeling of RGB-D and RGB images on GPU when compared to an opti-
mized multi-core CPU implementation. We further use the fast training to conduct
hyperparameter searches, which signi�cantly improves on earlier results on the
NYU depth v2 dataset. Our �exible implementation allows to experiment with
novel features, such as height above ground, which further increases classi�cation
accuracy.CURFIL prediction runs in real time at VGA resolution on a mobile GPU
and has been used as data term in multiple applications.
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1 Introduction

Random forests are ensemble classi�ers that are popular in the computer vision commu-
nity. Random decision trees are used when the hypothesis space at every node is huge, so
that only a random subset can be explored during learning. This restriction is countered
by constructing an ensemble of independently learned trees� the random forest.

Variants of random forests were used in computer vision to improve e.g. object
detection or image segmentation. One of the most prominent examples is the work
of Shotton et al. (2011), who use random forests in Microsoft’s Kinect system for the
estimation of human pose from single depth images. Here, we are interested in the more
general task of image labeling, i.e. determining a label for every pixel in anRGB or
RGB-D image.

The real-time applications such as the ones presented by Lepetit et al. (2005) and
Shotton et al. (2011) require fast prediction in few milliseconds per image. This is
possible with parallel architectures such asGPUs, since every pixel can be processed
independently. Random forest training for image labeling, however, is not as regular� it
is a time consuming process. To evaluate a randomly generated feature candidate in a
single node of a single tree, a potentially large number of images must be accessed. With
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Fig. 1: Overview of image labeling with random forests: Every pixel (RGB and depth) is classi�ed
independently based on its context by the trees of a random forest. The leaf distributions of the
trees determine the predicted label.

increasing depth, the number of pixels in an image arriving in the current node can be
very small. It is therefore essential for the practitioner to optimize memory ef�ciency in
various regimes, or to resort to large clusters for the computation. Furthermore, changing
the visual features and other hyper-parameters requires a re-training of the random forest,
which is costly and impedes ef�cient scienti�c research.

This work describes the architecture of our open-sourceGPU implementation of
random forests for image labeling (CURFIL). CURFIL provides optimizedCPUandGPU
implementations for the training and prediction of random forests. Our library trains
random forests up to 26 times faster onGPU than our optimized multi-coreCPU imple-
mentation. Prediction is possible in real-time speed on a single mobileGPU.

In short, our contributions are as follows:

1. we describe how to ef�ciently implement random forests for image labeling onGPU,
2. we describe a method which allows to train on horizontally �ipped images at

signi�cantly reduced cost,
3. we show that ourGPU implementation is up to 26 times faster for training (up to 48

times for prediction) than an optimized multi-coreCPU implementation,
4. we show that simply by the now feasible optimization of hyper-parameters, we can

improve performance in two image labeling tasks, and
5. we make our documented, unit-tested, andMIT-licensed source code publicly avail-

able1.

The remainder of this paper is organized as follows. After discussing related work,
we introduce random forests and our node tests in Sections 3 and 4, respectively. We

1 https://github.com/deeplearningais/curfil/

https://github.com/deeplearningais/curfil/
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describe our optimizations in Section 5. Section 6 analyzes speed and accuracy attained
with our implementation.

2 Related Work

Random forests were popularized in computer vision by Lepetit et al. (2005). Their
task was to classify patches at pre-selected keypoint locations, not� as in this work�
all pixels in an image. Random forests proved to be very ef�cient predictors, while
training ef�ciency was not discussed. Later work focused on improving the technique
and applying it to novel tasks.

Lepetit and Fua (2006) use random forests to classify keypoints for object detection
and pose estimation. They evaluate various node tests and show that while training is
increasingly costly, prediction can be very fast.

The �rst GPU implementation for our task was presented by Sharp (2008), who
implements random forest training and prediction for Microsoft’s Kinect system that
achieves a prediction speed-up of 100 and training speed-up factor of eight on aGPU,
compared to aCPU. This implementation is not publicly available and usesDirect3D
which is only supported on the Microsoft Windows platform.

An important real-world application of image labeling with random forests is pre-
sented by Shotton et al. (2011). Human pose estimation is formulated as a problem
of determining pixel labels corresponding to body parts. The authors use a distributed
CPU implementation to reduce the training time, which is nevertheless one day for train-
ing three trees from one million synthetic images on a 1,000CPU core cluster. Their
implementation is also not publicly available.

Several fast implementations for general-purpose random forests are available, no-
tably in thescikit-learnmachine learning library (Pedregosa et al., 2011) forCPUand
CudaTree(Liao et al., 2013) forGPU. General random forests cannot make use of tex-
ture caches optimized for images though, i.e., they treat all samples separately.GPU
implementations of general-purpose random forests also exist, but due to the irregular
access patterns when compared to image labeling problems, their solutions were found
to be inferior toCPU (Slat and Lapajne, 2010) or focused on prediction (Van Essen et al.,
2012).

The prediction speed and accuracy of random forests facilitates applications interfac-
ing computer vision with robotics, such as semantic prediction in combination with self
localization and mapping (Stückler et al., 2012) or 6D pose estimation (Rodrigues et al.,
2012) for bin picking.

CURFIL was successfully used by Stückler et al. (2013) to predict and accumulate
semantic classes of indoor sequences in real-time, and by Müller and Behnke (2014) to
signi�cantly improve image labeling accuracy on a benchmark dataset.

Since this library was developed, convolutional neural networks (CNN) have been
shown to outperform random forests in terms of accuracy. Similar to random forests,CNN
can also pro�t from height above ground and depth normalization (Schulz et al., 2015),
but even more from transfer learning (e.g. Eigen and Fergus, 2014; Gupta et al., 2014)
using the ImageNet dataset. The purpose ofCURFIL, however, is to provide a library for
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fast training and prediction. This allows us to conduct hyper-parameter searches and to
employ the trained model on mobileGPUs in realtime.

3 Random Forests

Random forests� also known as random decision trees or random decision forests�
were independently introduced by Ho (1995) and Amit and Geman (1997). Breiman
(2001) coined the term �random forest�. Random decision forests are ensemble classi�ers
that consist of multiple decision trees� simple, commonly used models in data mining
and machine learning. A decision tree consists of a hierarchy of questions that are used
to map a multi-dimensional input value to an output which can be either a real value
(regression) or a class label (classi�cation). Our implementation focuses on classi�cation
but can be extended to support regression.

To classify inputx, we traverse each of theK decision treesTk of the random forest
F , starting at the root node. Each inner node de�nes a test with a binary outcome (i.e.
true or false). We traverse to the left child if the test is positive and continue with the
right child otherwise. Classi�cation is �nished when a leaf nodelk(x) is reached, where
either a single class label or a distributionp(cj lk(x)) over class labelsc 2 C is stored.

TheK decision trees in a random forest are trained independently. The class distri-
butions for the inputx are collected from all leaves reached in the decision trees and
combined to generate a single classi�cation. Various combination functions are possible.
We implement majority voting and the average of all probability distributions as de�ned
by

p(cj F ;x) =
1
K

K

å
k= 1

p(cj lk (x)) : (1)

A key difference between a decision tree and a random decision tree is the training
phase. The idea of random forests is to train multiple trees on different random subsets of
the dataset and random subsets of features. In contrast to normal decision trees, random
decision trees are not pruned after training, as they are less likely to over�t (Breiman,
2001). Breiman’s random forests useCART as tree growing algorithm and are restricted
to binary trees for simplicity. The best split criterion in a decision node is selected
according to a score function measuring the separation of training examples.CURFIL
supports information gain and normalized information gain (Wehenkel and Pavella,
1991) as score functions.

A special case of random forests are random ferns, which use the same feature in
all nodes of a hierarchy level. While our library also supports ferns, we do not discuss
them further in this paper, as they are neither faster to train nor did they produce superior
results.

4 Visual Features for Node Tests

Our selection of features was inspired by Lepetit et al. (2005)� the method for visual
object detection proposed by Viola and Jones (2001). We implement two types ofRGB-D
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Fig. 2: Sample visual feature at three different query pixels. Feature response is calculated from
difference of average values in two offset regions. Relative offset locationsoi and region extents
wi , hi are normalized with the depthd(q) at the query pixelq.

image features as introduced by Stückler et al. (2012). They resemble the features of
Sharp (2008); Shotton et al. (2011)� but use depth-normalization and region averages
instead of single pixel values. Shotton et al. (2011) avoid the use of region averages
to keep computational complexity low. ForRGB-only datasets, we employ the same
features but assume constant depth. The features are visualized in Fig. 2.

For a given query pixelq, the image featurefq is calculated as the difference of
the average value of the image channelf i in two rectangular regionsR1;R2 in the
neighborhood ofq. Sizewi ;hi and 2D offsetoi of the regions are normalized by the
depthd(q):

fq(q) :=
1

jR1(q)j å
p2R1

f 1(p) �
1

jR2(q)j å
p2R2

f 2(p)

Ri(q) :=
�

q+
oi

d(q)
;

wi

d(q)
;

hi

d(q)

�
: (2)

CURFIL optionally �lls in missing depth measurements. We use integral images to
ef�ciently compute region sums. The large space of eleven feature parameters� region
sizes, offsets, channels, and thresholds� requires to calculate feature responses on-the-
�y since pre-computing all possible values in advance is not feasible.

5 CURFIL Software Package

CURFIL’s speed is the result of careful optimization ofGPUmemory throughput. This
is a non-linear process to �nd fast combinations of memory layouts, algorithms and
exploitable hardware capabilities. In the following, we describe the most relevant aspects
of our implementation.
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Algorithm 1 Training of random decision tree
Require: D training instances
Require: F number of feature candidates to generate
Require: P number of feature parameters
Require: T number of thresholds to generate
Require: stopping criterion (e.g. maximal depth)
1: D  randomly sampled subset ofD (D � D)
2: Nroot  create root node
3: C  f (Nroot;D)g . initialize candidate nodes
4: while C 6= /0 do
5: C0  /0 . initialize new set of candidate nodes
6: for all (N;D) 2 C do
7:

�
Dleft;Dright

�
 EVAL BESTSPLIT(D)

8: if : STOP(N;Dleft) then
9: Nleft  create left child for nodeN

10: C0  C0[ f (Nleft;Dleft)g

11: if : STOP(N;Dright) then
12: Nright  create right child for nodeN
13: C0  C0[

��
Nright;Dright

�	

14: C  C0 . continue with new set of nodes

User API TheCURFIL software package includes command line tools as well as a library
for random forest training and prediction. Inputs consist of images forRGB, depth, and
label information. Outputs are forests inJSONformat for training and label-images for
prediction. Datasets with varying aspect ratios are supported.

Our source code is organized such that it is easy to improve and change the existing
visual feature implementation. It is developed in a test-driven process. Unit tests cover
major parts of our implementation.

CPU ImplementationOur CPU implementation is based on a refactored, parallelized
and heavily optimized version of theTuwo Computer Vision Library2 by Nowozin. Our
optimizations make better use ofCPU cache by looping over feature candidates and
thresholds in the innermost loop, and by sorting the dataset according to image ID
before learning. Since feature candidate evaluations do not depend on each other, we can
parallelize over the training set and make use of allCPUcores even when training only a
single tree.

GPU ImplementationEvaluation of the optimized random forest training onCPU (Al-
gorithm 1) shows that the vast majority of time is spent in the evaluation of the best
split feature. This is to our bene�t when accelerating random forest training onGPU. We
restrict theGPU implementation efforts to the relatively short feature evaluation algo-
rithm (Algorithm 2) as a drop-in replacement and leave the rest of theCPUcomputation
unchanged. We use theCPU implementation as a reference for theGPUand ensure that
results are the same in both implementations.

2 http://www.nowozin.net/sebastian/tuwo/

http://www.nowozin.net/sebastian/tuwo/
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Fig. 3:(a) Two-dimensional grid layout of the feature response kernel forD samples andF features.
Each block containsn threads. The number of blocks in a row,X, depends on the number of
features.X = dF=ne. Feature responses for a given sample are calculated by the threads in one
block row. The arrow (red dashes) indicates the scheduling order of blocks.(b) Thread block
layout of the histogram aggregation kernel forF features andT thresholds. One thread block
per feature and per threshold.X threads in block aggregate histogram counters forD samples in
parallel. Every thread iterates over at mostdD=Xesamples.

Split evaluation can be divided into the following four phases that are executed in
sequential order:

1. random feature and threshold candidate generation,
2. feature response calculation,
3. histogram aggregation for all features and threshold candidates, and
4. impurity score (information gain) calculation.

Each phase depends on results of the previous phase. As a consequence, we cannot
execute two or more phases in parallel. TheCPUcan prepare data for the launch of the
next phase, though, while theGPU is busy executing the current phase.

5.1 GPU Kernels

Random Feature and Threshold Candidate GenerationA signi�cant amount of train-
ing time is used for generating random feature candidates. The total time for feature
generation increases per tree level since the number of nodes increases as trees are
grown.

The �rst step in the feature candidate generation is to randomly select feature
parameter values. These are stored in aF� 11matrix forF feature candidates and eleven
feature parameters of Eq.(2). The second step is the selection of one or more thresholds
for every feature candidate. Random threshold candidates can either be obtained by
randomly sampling from a distribution or by sampling feature responses of training
instances. We implement the latter approach, which allows for greater �exibility if
features or image channels are changed. For every feature candidate generation, one
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Algorithm 2 CPU-optimized feature evaluation
Require: D samples
Require: F 2 RF� Prandom feature candidates
Require: T 2 RF� T random threshold candidates
1: initialize histograms for every feature/threshold
2: for all d 2 D do
3: for all f 2 1: : :F do
4: calculate feature response
5: for all q 2 T f do
6: update according histogram
7: calculate impurity scores for all histograms
8: return histogram with best score

class 0

…0 1 2 3 C

shared
memory

…

global
memory

left counter

right counter

class
thread 0 1 2 3 4 5 6 7 2C

…

…

class 1 class C

…

Fig. 4: Reduction of histogram counters. Every thread sums to a dedicated left and right counter
(indicated by different colors) for each class (�rst row). Counters are reduced in a subsequent
phase. The last reduction step stores counters in shared memory, such that no bank con�icts occur
when copying to global memory.

thread on theGPU is used and allT thresholds for a given feature are sampled by the
same thread.

In addition to sorting samples according to the image they belong to, feature candi-
dates are sorted by the feature type, channels used, and region offsets. Sorting reduces
branch divergence and improves spatial locality, thereby increasing the cache hit rate.

Feature Response CalculationThe GPU implementation uses a similar optimization
technique to the one used on theCPU, where loops in the feature generation step are
rearranged in order to improve caching.

We used one thread to calculate the feature response for a given feature and a given
training sample. Figure 3(a) shows the thread block layout for the feature response
calculation. A row of blocks calculates all feature responses for a given sample. A
column of blocks calculates the feature responses for a given feature over all samples.
The dotted red arrow indicates the order of thread block scheduling. The execution order
of thread blocks is determined by calculating the Block IDbid. In the two-dimensional
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case, it is de�ned as

bid = blockIdx:x+ gridDim:x
| {z }
blocks in row

�blockIdx:y
| {z }

sample ID

: (3)

The number of features can exceed the maximum number of threads in a block; therefore,
the feature response calculation is split into several thread blocks. We use thex coordinate
in the grid for the feature block to ensure that all features are evaluated before theGPU
continues with the next sample. They coordinate in the grid assigns training samples to
thread blocks. Threads reconstruct their feature IDf using block size, thread and block
ID by calculating

f = threadIdx:x+ blockDim:x| {z }
threads in block row

� blockIdx:x| {z }
block index in grid row

: (4)

After sample data and feature parameters are loaded, the kernel calculates a single
feature response for a depth or color feature by querying four pixels in an integral image
and carrying out simple arithmetic operations to calculate the two regions sums and their
difference.

Histogram AggregationFeature responses are aggregated into class histograms. Counters
for histograms are maintained in a four-dimensional matrix of sizeF� T� C� 2 for F
features,T thresholds,C classes, and the two left and right children of a split.

To compute histograms, the iteration over features and thresholds is implemented
as thread blocks in a two-dimensional grid onGPU; one thread block per feature and
threshold. This is depicted in Fig. 3(b). Each thread block slices samples into partitions
such that all threads in the block can aggregate histogram counters in parallel.

Histogram counters for one feature and threshold are kept in the shared memory,
and every thread gets a distinct region in the memory. ForX threads andC classes,2XC
counters are allocated. An additional reduction phase is then required to reduce the
counters to a �nal sum matrix of sizeC� 2 for every feature and threshold.

Figure 4 shows histogram aggregation and sum reduction. Every thread increments
a dedicated counter for each class in the �rst phase. In the next phase, we iterate over
all C classes and reduce the counters of every thread inO(logX) steps, whereX is the
number of threads in a block. In a single step, every thread calculates the sum of two
counters. The loop over all classes can be executed in parallel by2C threads that copy
the left and right counters ofC classes.

The binary reduction of counters (Fig. 4) has a constant runtime overhead per class.
The reduction of counters for classes without samples can be skipped, as all counters are
zero in this case.

Impurity Score CalculationComputing impurity scores from the four-dimensional
counter matrix is the last of the four training phases that are executed onGPU.

In the score kernel computation, 128 threads per block are used. A single thread
computes the score for a different pair of features and thresholds. It loads2C counters
from the four-dimensional counter matrix in global memory, calculates the impurity
score and writes back the resulting score to global memory.
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The calculated scores are stored in aT� F matrix for T thresholds andF features.
The matrix is then �nally transferred from device to host memory space.

Unde�ned ValuesImage borders and missing depth values (e.g. due to material properties
or camera disparity) are represented as NaN, which automatically propagates and causes
comparisons to producefalse. This is advantageous, since no further checks are required
and the random forest automatically learns to deal with missing values.

5.2 Global Memory Limitations

Slicing of SamplesTraining arbitrarily large datasets with many samples can exceed
the storage capacity of global memory. The feature response matrix of sizeD� F scales
linearly in the number of samplesD and the number of feature candidatesF . We cannot
keep the entire matrix in global memory ifD or F is too large. For example, training a
dataset with 500 images, 2000 samples per image, 2000 feature candidates and double
precision feature responses (64 bit) would require500� 2000� 2000� 64bit � 15GBof
global memory for the feature response matrix in the root node split evaluation.

To overcome this limitation, we split samples into partitions, sequentially compute
feature responses, and aggregate histograms for every partition. The maximum possible
partition size depends on the available global memory of theGPU.

Image CacheGiven a large dataset, we might not be able to keep all images in theGPU
global memory. We implement an image cache with a last recently used (LRU) strategy
that keeps a �xed number of images in memory. Slicing samples ensures that a partition
does not require more images than can be �t into the cache.

Memory PoolingTo avoid frequent memory allocations, we reuse memory that is already
allocated but no longer in use. Due to the structure of random decision trees, evaluation
of the root node split criterion is guaranteed to require the largest amount of memory,
since child nodes always contain less or equal samples than the root node. Therefore, all
data structures have at most the size of the structures used for calculating the root node
split. With this knowledge, we are able to train a tree with no memory reallocation.

5.3 Extensions

Hyper-Parameter OptimizationCross-validating all the hyper-parameters is a require-
ment for model comparison, and random forests have quite a few hyper-parameters, such
as stopping criteria for splitting, number of features and thresholds generated, and the
feature distribution parameters.

To facilitate model comparison,CURFIL includes support for cross-validation and a
client for an informed search of the best parameter setting using Hyperopt (Bergstra et al.,
2011). This allows to leverage the improved training speed to run many experiments
serially and in parallel.
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Table 1: Comparison of random foresttraining time on a quadcoreCPUand two non-mobileGPUs.
Random forest parameters were chosen for best accuracy.

NYU MSRC

Device time [min] speed-up[� ] time [min] speed-up[� ]

i7�4770K 369 1:0 93:2 1:0
Tesla K20c 55 6:7 5:1 18:4
GTX Titan 24 15:4 3:4 25:9

Table 2: Random forestpredictiontime in milliseconds, onRGB-D images at original resolution,
comparing speed on a recent quadcoreCPUand variousGPUs. Random forest parameters are are
chosen for best accuracy.

NYU MSRC-21

Device time [min] speed-up[� ] time [min] speed-up[� ]

i7-440K 477 1 409 1
GTX 675M 28 17 37 11
Tesla K20c 14 34 10 41
GTX Titan 12 39 9 48

Image FlippingTo avoid over�tting, the dataset can be augmented using transformations
of the training dataset. One possibility is to add horizontally �ipped images, since most
tasks are invariant to this transformation.CURFIL supports training horizontally �ipped
images with reduced overhead.

Instead of augmenting the dataset with �ipped images and doubling the number of
pixels used for training, we horizontally �ip each of the two rectangular regions used as
features for a sampled pixel. This is equivalent to computing the feature response of the
same feature for the same pixel on an actual �ipped image. Histogram counters are then
incremented following the binary test of both feature responses. The implicit assumption
here is that the samples generated through �ipping are independent.

The paired sample is propagated down a tree until the outcome of a node binary
test is different for the two feature responses, indicating that a sample and its �ipped
counterpart should split into different directions. A copy of the sample is then created
and added to the samples list of the other node child.

This technique reduces training time since choosing independent samples from
actually �ipped images requires loading more images in memory during the best split
evaluation step. Since our performance is largely bounded by memory throughput,
dependent sampling allows for higher throughput at no cost in accuracy.

6 Experimental Results

We evaluate our library on two common image labeling tasks, theNYU Depth v2 dataset
and theMSRC-21 dataset. We focus on the processing speed, but also discuss the predic-
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Table 3: Segmentation accuracies onNYU Depth v2 dataset of our random forest compared to state-
of-the-art methods trained only on this dataset. We used the same forest as in the training/prediction
time comparisons of Tables 1 and 2.

Accuracy [%]

Method pixel class

Silberman et al. (2012) 59:6 58:6
Couprie et al. (2013) 63:5 64:5
Our random forest� 68:1 65:1
Our random forest� (with height, cf. Section 6.5) 69:6 66:5
Stückler et al. (2013)�� 70:6 66:8
Hermans et al. (2014) 68:1 69:0
Müller and Behnke (2014)�� 72:3 71:9

� see main text for hyperparameters used
�� based on our random forest prediction (without
height)

tion accuracies attained. Note that the speed between datasets is not comparable, since
dataset sizes differ and the forest parameters were chosen separately for best accuracy.

6.1 Datasets

TheNYU Depth v2 dataset by Silberman et al. (2012) contains 1,449 densely labeled
pairs of alignedRGB-D images from 464 indoor scenes. We focus on the semantic classes
ground, furniture, structure, andpropsde�ned by Silberman et al..

To evaluate our performance without depth, we use theMSRC-21 dataset3. Here, we
follow the literature in treating rarely occuring classeshorseandmountainasvoid and
train/predict the remaining 21 classes on the standard split of 335 training and 256 test
images.

6.2 Training and Prediction Time

Tables 1 and 2 show random forest training and prediction times, respectively, on an
Intel Core i7-4770K (3:9 GHz) quadcoreCPUand variousNVidia GPUs. Note that the
CPUversion is using all cores.

For theRGB-D dataset, training speed is improved from369 minto 24 min, which
amounts to a speed-up factor of 15. Dense prediction improves by factor of 39 from
477 ms to 12 ms.

Training on theRGB dataset is �nished after3:4 min on aGTX Titan, which is26
times faster thanCPU (93 min). For prediction, we achieve a speed-up of 48 on the same
device (9 ms vs. 409 ms).

Prediction is fast enough to run in real time even on a mobileGPU (GTX 675M, on a
laptop computer �tted with a quadcore i7-3610QMCPU), with 28 ms(RGB-D) and37 ms
(RGB).

3 http://jamie.shotton.org/work/data.html

http://jamie.shotton.org/work/data.html


CURFIL: A GPU library for Image Labeling with Random Forests 13

Fig. 5: Image labeling examples onNYU Depth v2 dataset. Left to right:RGB image, depth
visualization, ground truth, random forest segmentation.

6.3 Classi�cation Accuracy

Our implementation is fast enough to train hundreds of random decision trees per
day on a singleGPU. This fast training enabled us to conduct an extensive parameter
search with �ve-fold cross-validation to optimize segmentation accuracy of a random
forest trained on theNYU Depth v2 dataset (Silberman et al., 2012). Table 3 shows
that we outperform other state-of-the art methods simply by using a random forest with
optimized parameters. The resulting model and the fastCURFIL prediction were used in
two publications which improved the results further by 3D accumulation of predictions
in real time (Stückler et al., 2013) and superpixelCRFs (Müller and Behnke, 2014). This
shows that ef�cient hyper-parameter search is crucial for model selection. Example
segmentations are displayed in Figs. 5 and 6.

Methods on the establishedRGB-only MSRC-21 benchmark are so advanced that their
accuracy cannot simply be improved by a random forest with better hyperparameters.
Our pixel and class accuracies forMSRC-21 are59:2%and47:0%, respectively. This is
still higher than other published work using random forests as the baseline method, such
as49:7 %and34:5 %by Shotton et al. (2008). However, as Shotton et al. and the above
works show, random forest predictions are fast and constitute a good initialization for
other methods such as conditional random �elds.

6.4 Image Mirroring Training Speed and Accuracy

Finally, we trained theMSRC-21 dataset by augmenting the dataset with horizontally
�ipped images using the naïve approch and our proposed method. The naïve approach
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Fig. 6: Image labeling examples on theMSRC-21 dataset. In groups of three: input image, ground
truth, random forest segmentation. Last row shows typical failure cases

doubles both the total number of samples and the number of images, which quadruples
the training time to14:4 min. Accuracy increases to60:6 % and48:6 % for pixel and
class accuracy, respectively. With paired samples (introduced in Section 5.3), we reduce
the runtime by a factor of two (to now7:48 min) at no cost in accuracy (60:9 % and
49:0 %). The remaining difference in speed is mainly explained by the increased number
of samples, thus the training on �ipped images has very little overhead.

6.5 Incorporating Novel Features

With few changes in code,CURFIL allows to incorporate novel features. To demonstrate
this, we chose height above ground, which is an important cue for indoor scene classi�ca-
tion, and has been used in multiple other studies (Gupta et al., 2014; Müller and Behnke,
2014; Schulz et al., 2015). On a robot with known camera pose, height above ground
can be inferred directly. To generate this information for theNYU Depth v2 dataset�
where camera poses are not available� we proceed as suggested by Müller and Behnke
(2014). We extract normals in the depth images, �nd ten clusters in normal space with
k-means and determine the cluster that is most vertical. We then project all points to this
normal and subtract the height of the lowest point.

We add the height image as an additional depth channel. Instead of computing region
differences as in Eq.(2), we determine the average height above ground inR1, such that

fheight;q(q) :=
1

jR1(q)j å
p2R1

f height(p): (5)

Using the same hyperparameters as without height, the classi�cation accuracy improves
signi�cantly by 1.5 and 1.3 percentage points for class and pixel accuracy, respectively.
Analysis of the learned forest shows that overall, height above ground is used in roughly
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12 %of the split nodes, followed by depth differences (38 %) and color (50 %). These
numbers re�ect the statistics of the feature proposal distribution.

6.6 Random Forest Parameters

The hyper-parameter con�gurations for which we report our timing and accuracy results
were found with global parameter search and cross-validation on the training set. The
cross-validation outcome varies between datasets.

For theNYU Depth v2 dataset, we used three trees with 4537 samples / image, 5729
feature candidates / node, 20 threshold candidates, a box radius of111 px, a region size
of 3, tree depth 18 levels, and minimum samples in leaf nodes 204.

For MSRC-21 we found 10 trees, 4527 samples / image, 500 feature candidates / node,
20 threshold candidates, a box radius of95 px, a region size of 12, tree depth 25 levels,
and minimum samples in leaf nodes 38 to yield best results.

7 Conclusion

We provide an accelerated random forest implementation for image labeling research and
applications. Our implementation achieves dense pixel-wise classi�cation ofVGA images
in real-time on aGPU. Training is accelerated onGPUby a factor of up to 26 compared
to an optimizedCPUversion. The experimental results show that our fast implementation
enables effective parameter searches that �nd solutions which outperform state-of-the
art methods.CURFIL prepares the ground for scienti�c progress with random forests, e.g.
through research on improved visual features.
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