
Online Trajectory Generation
for Omnidirectional Biped Walking

Sven Behnke
University of Freiburg, Germany, Computer Science Institute

behnke@informatik.uni-freiburg.de

Abstract— This paper describes the online generation of tra-
jectories for omnidirectional walking on two legs. The gait
can be parameterized using walking direction, walking speed,
and rotational speed. Our approach has a low computational
complexity and can be implemented on small onboard computers.

We tested the proposed approach using our humanoid robot
Jupp. The competitions in the RoboCup soccer domain showed
that omnidirectional walking has advantages when acting in
dynamic environments.

I. INTRODUCTION

Omnidirectional locomotion is a concept that has proven to
be advantageous in dynamic environments and in restricted
spaces. Wheeled omnidirectional vehicles, for instance, pro-
vide superior maneuvering capability compared to the more
common car-like vehicles. The ability to move into any
direction, irrespective of the orientation of the vehicle, and to
control the rotational speed at the same time has advantages
in many domains. One such domain is robotic soccer. Since
omnidirectional drives have been introduced in 2000 by the
team Big Read (Cornell) [1] in the RoboCup SmallSize
league [2], most teams in the wheeled leagues adopted this
approach. It is much easier to position robots for kicking and to
outmaneuver opponents when using an omnidirectional drive.

Omnidirectional locomotion is not restricted to wheeled
vehicles, though. Spenneberg and Kirchner, for example, im-
plemented omnidirectional walking in a biomimetric robot
with eight legs [3]. Porta and Celaya [4] describe an approach
to body and leg coordination of a hexapod robot for omnidi-
rectional walking in rough terrain. Omnidirectional walking is
also heavily used in the RoboCup Four-legged League. As one
of the first, Hengst et al. [5] describe an approach to generate
omnidirectional walking for the Sony ERS-110 Aibo dogs.

The above examples motivated us to implement omni-
directional walking for bipedal robots as well. Our robots
compete in the RoboCup Humanoid League, a new league
added in 2002. Here, bipedal locomotion, balance, and ball
manipulation are some of the main research issues.

This paper describes an approach for online trajectory
generation that produces fully parameterizable omnidirectional
walking for biped robots. Our approach has a low compu-
tational complexity. We implemented it on the Pocket PC
of our humanoid robot Jupp and tested it in the RoboCup
soccer domain. Jupp’s design is based on its predecessor
Toni [6]. Compared to Toni, Jupp has an additional rotational
joint in each thigh, an additional joint in the trunk, extended

joint limits, and stronger arms. These new features simplified
rotation of the robot on the spot while walking and allowed us
to implement getting-up behaviors. We also added a compass
module in order to make self-localization easier.

In the next section, we review some of the related work.
Section III describes Jupp’s mechanical and Section IV its
electrical design in detail. Section V describes how Jupp
is controlled to achieve omnidirectional walking. Section VI
summarizes experimental results obtained with this gait.

II. RELATED WORK

During the past 30 years, many different schemes to control
walking bipeds have been implemented, with varying degree
of success. Among the most common approaches are trajectory
tracking methods [7], [8], [9]. Trajectories for individual joints
or for the zero moment point (ZMP) are generated offline,
e.g. by solving the dynamic equations of motion. High gain
position controllers are used during walking to follow the
predefined trajectory.

The ZMP is defined as the point on the ground about which
the sum of the moments of all the active forces equals zero.
If the ZMP is within the convex hull (support polygon) of
all contact points between the feet and the ground, a bipedal
robot is dynamically stable [10]. The use of the ZMP to
judge stability was a major advance over the center-of-mass
projection criterion, which describes static stability.

Trajectory tracking requires precise knowledge of dynamic
parameters of the robot to prepare walking. It also relies on
a good environment model. Trajectory controlled robots are
not robust to disturbances or changes in the environment. Fur-
thermore, trajectory tracking is computationally intensive. The
dynamic equations for a robot with many degrees-of-freedom
(DOF) can be very difficult to solve, even numerically.

To make online feedback possible, simplified models, such
as the inverted pendulum method [11] are used. When a biped
robot is supporting its body on one leg its dominant dynamics
can be represented by its center of mass, which is connected
by a massless telescopic leg to the supporting foot. Other
feedback strategies rely on virtual model control [12]. Virtual
springs and dampers are placed at strategic locations to control
the robot’s pitch, height, and speed.

Another approach to incorporate feedback into walking is
to entrain so called central pattern generators (CPGs) with
the robot-environment dynamics. Neurophysiological studies
showed that such neural oscillators drive the walking rhythm

behnke
Text-Box
In Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA), Orlando, Florida, pp. 1597-1603, May 2006.

in vertebrates [13]. They also participate in the control of
human walking [14]. No dynamic model of the robot or the
environment is needed for this method. It is, though, not
straightforward to determine the appropriate parameter settings
for the oscillator networks to generate a suitable pattern for
walking control.

All the above approaches are used to control a given
robot. Frequently, constraints, such as a constant height of
the robot’s center-of-mass (COM) are imposed on the robot
motion when generating trajectories. Due to limited knee speed
and singularities, this leads to unnatural walking styles, like
the walking with bent knees. The problems, like high torques
and high energy consumption, associated with bent knees have
only recently been addressed by lowering the COM in the
double-support phase, making a gait with mostly stretched
knees possible [15]. A larger variety walking styles has been
realized for planar bipeds [16].

A completely different approach to walking is to utilize the
robot dynamics. McGeer showed that planar walking down a
slope is possible without actuators and control [17]. Based on
his ideas of passive dynamic walking, actuated machines have
been built recently [18]. They are able to walk on level ground.
Because their actuators only support the inherent machine
dynamics, they are very energy-efficient. They are easy to
control, e.g. by relying on foot-contact sensors. It has also
been shown that similar bipeds can walk in a stable manner by
relying on feed-forward control only [19]. Other recent robots
also demonstrate that a suitable robot morphology can simplify
control [20]. Examples for robots utilizing springs to store
energy and to generate dynamics are the robots constructed
by Iida and Pfeifer [21] and by Tilden [22].

To our knowledge, omnidirectional walking has not been
implemented for bipedal robots. Even the most advanced
humanoids, like Sony Qrio [23] and Honda Asimo [24], do not
possess the ability to fully parameterize their walking motion.

The gait of most bipedal robots is controlled by precom-
puted trajectories that describe ZMP-stable motion primitives,
such as walking straight in forward direction, turning on the
spot, and making a step to the side. These macros are usually
chained to create more complex trajectories. However, because
macros frequently cannot be combined, the robots must make
brief stops when changing their walking direction.

In the new Asimo research model, walking patterns are
created online. The robot can parameterize foot placement and
turning angle according to the current situation. As a result, it
can walk smoothly in many, but not all, directions. It can also
change its step frequency.

The lack of fully parameterizable biped gaits might be due
to the missing pressure from the application side. Most bipeds
walk only in research labs and do not have to adapt their
walking direction, speed, and rotation to changes in a dynamic
environment.

In addition to the expensive larger humanoid robots, which
are usually driven by DC-motors and harmonic drive gears,
some smaller servo-driven humanoid robots have been de-
veloped recently [25], [26], [27]. Servo motors are used for

humanoid robots because of their low cost and because of their
good weight-to-torque ratio. The servo-driven robots have up
to 22DOFs and a size of 30-40cm. We follow this approach
in the design of our humanoid robot Jupp, but increase robot
size without adding much extra weight.

III. MECHANICAL DESIGN

Fig. 1 shows our humanoid robot Jupp. It has been designed
for the 2005 RoboCup Humanoid League competitions in the
KidSize class. As can be seen, Jupp has human-like propor-
tions. Its mechanical design focused on weight reduction. Jupp
is 60cm tall and has a total weight of only 2.3kg.

The robot is driven by 19 servo motors: 6 per leg, 3 in each
arm, and one in the trunk. The six leg-servos allow for flexible
leg movements. Three orthogonal servos constitute the 3DOF
hip joint. Two orthogonal servos form the 2DOF ankle joint.
One servo drives the knee joint.

Fig. 1. Frontal view of the humanoid robot Jupp.

We selected the S9152 servos from Futaba to drive the
roll and yaw joints of the hips, the knees, and the ankles.
These digital servos are rated for a torque of 200Ncm and
have a weight of only 85g. The hip yaw joints need less
torque. They are powered by DS 8811 servos (190Ncm, 66g).
We augmented all servos by adding a ball bearing on their
back, opposite to the driven axis. This made a stiff hinge joint
construction possible. Jupp’s arms do not need to be as strong
as the legs. They are powered by SES640 servos (64Ncm,
28g). Two orthogonal servos constitute the shoulder joint and
one servo drives the elbow joint.

The robot’s skeleton is constructed from aluminum extru-
sions with rectangular tube cross section. In order to reduce

weight, we removed all material not necessary for stability.
Jupp’s feet and its forearms are made from sheets of carbon
composite material. The elasticity of the feet and the carpet,
the robot walks on, helps to maintain non-degenerate foot-
ground contact, even when the supporting foot is not parallel
to the ground. Jupp’s head is made of lightweight foam.

IV. ELECTRONICS

Jupp is fully autonomous. It is powered by high-current
Lithium-polymer rechargeable batteries, which are located in
its lower back. Two Kokam 2000H cells last for about 30
minutes of operation. They can be discharged with 30A and
have a weight of only 110g.

The servos are interfaced to three tiny ChipS12 microcon-
troller boards, shown in Fig. 2(a). One of these boards is
located in each shank and one board is hidden in the chest.
These boards feature the Motorola MC9S12C32 chip, a 16-bit
controller belonging to the popular HCS12 family. We clock
it with 24MHz. It has 2kB RAM, 32kB flash, a RS232 serial
interface, CAN bus, 8 timers, 5 PWM channels, and 8 A/D
converters. We use the timer module to generate pulses of
1...2ms duration at a rate of 180Hz in hardware. These pulses
encode the target positions for the servos. Up to eight servos
can be controlled with one board. In order to keep track of the
actual servo movements, we interfaced their potentiometers to
the A/D converters of the HCS12. By analyzing the temporal
fine structure of these signals, we estimate not only the current
servo positions, but also the PWM duty cycles of their motors.

In addition to these joint sensors, Jupp is equipped with
an attitude sensor and a compass. The attitude sensor, shown
in Fig. 2(b), is located in the trunk. It consists of a dual-
axis accelerometer (ADXL203, ±1.5g) and two gyroscopes
(ADXRS 150/300, ±150/300 deg/s). The four analog sensor
signals are digitized with A/D converters of the HCS12 and
are preprocessed by the microcontroller. The compass module,
shown in Fig. 2(c), is located in the head of the robot. It is
interfaced to the timer module of the HCS12. Using pulse-
width modulation, it indicates the robot’s heading direction,
relative to the earth’s magnetic field.

The microcontrollers communicate with each other via a
CAN bus at 1MBaud and with a main computer via a RS232
serial line at 115KBaud. Every 12ms, target positions for
the servos are sent from the main computer to the HCS12
boards, which generate intermediate targets at 180Hz. This
yields smooth joint movements. It is also possible to relax
the digital servos. The microcontrollers send the preprocessed
sensor readings back. This allows keeping track of the robot’s
state in the main computer. We use a Pocket PC as main com-

(a) (b) (c)

Fig. 2. Electronics: (a) Microcontroller; (b) Attitude sensor; (c) Compass.

puter [28], which is located in Jupp’s chest (see Fig. 1). The
FSC Pocket Loox 720 has a weight of only 170g, including
the battery. It features a 520MHz XScale processor PXA-272,
128MB RAM, 64MB flash memory, a touch-sensitive display
with VGA resolution, Bluetooth, wireless LAN, a RS232 serial
interface, and an integrated 1.3 MPixel camera.

This computer runs behavior control, computer vision, and
wireless communication. It is equipped with a Lifeview Fly-
CAM CF 1.3M that has been fitted to an ultra-wide-angle lens.
The lens is located at the position of the larynx. The wide field
of view of this camera (about 112◦×150◦) allows Jupp to see
at the same time its own feet and objects above the horizon.

V. BEHAVIOR CONTROL

We control Jupp using a framework that supports a hierarchy
of reactive behaviors [29]. This framework allows for struc-
tured behavior engineering. Multiple layers that run on differ-
ent time scales contain behaviors of different complexity. This
framework forces the behavior engineers to define abstract
sensors that are aggregated from faster, more basic sensors.
One example for such an abstract sensor is the robot attitude
that is based on the readings of accelerometers and gyros.
Abstract actuators give higher-level behaviors the possibility
to configure lower layers in order to eventually influence the
state of the world. One such abstract actuator would be the
desired walking direction, which configures the gait engine,
described below, implemented in the lower control layers.

The framework also supports an agent hierarchy. For Jupp,
we use three levels of this hierarchy: individual joint, body
part, and entire robot. This structure restricts interactions
between the system variables and thus reduces the complexity
of behavior engineering. The lowest level of this hierarchy,
the control loop within the servo, has been implemented by
the servo manufacturer. It runs at about 300Hz for the digital
servos. We monitor targets, actual positions, and motor duties.

At the next layer, we generate target positions for the
individual joints of a body part at a rate of 83.3Hz. We make
sure that the joint angles vary smoothly. This layer implements
an interface that describes the behavior of body parts. As an
example, we detail the interface of a leg below.

A. Leg Interface

The entire leg can be positioned relative to the trunk using
leg extension (the distance from the hip joint to the ankle
joint), leg angle (angle between the pelvis plate and the line
from hip to ankle), and foot angle (angle between foot plate
and pelvis plate).

Let θLeg = (θrLeg, θ
p
Leg, θ

y
Leg) denote the desired leg angle

with the convention that the leg pitch angle θp
Leg = 0 if the

leg is parallel to the trunk and θp
Leg > 0 if the leg is in front

of the trunk. Similarly, the leg roll angle θrLeg = 0 if the leg is
parallel to the trunk, and θrLeg > 0 if the leg is moved outwards
in the lateral plane. The leg yaw angle θy

Leg = 0 if the foot
points in forward direction. θy

Leg > twists the leg, such that
the foot points outwards. Furthermore, θFoot = (θrFoot, θ

p
Foot)

denotes the desired foot angle, θFoot = (0, 0) if the foot is

parallel to the pelvis plate. Finally, −1 ≤ γ ≤ 0 denotes
the desired leg extension, with the convention γ = 0 if the
leg is fully extended and γ = −1 if the leg is shortened to
ηmin = 0.875 of its original length. The target relative leg
length η can be computed as η = 1 + (1 − ηmin)γ. The knee
angle θKnee = −2 · acos(η) shortens the leg, but would also
change the leg and foot angles. Because the thigh and shank
of the robot have the same length, if the leg is not twisted
(θyLeg = 0), we can subtract 0.5 · θKnee from θpHip and from
θpAnkle to compensate this effect. The leg is twisted using the
thigh joint: θThigh = θyLeg. For twisted legs, (θThigh �= 0), the
knee angle must be rotated, before subtracting it from the hip.
With the rotation matrix

RθThigh =
(

cos(θThigh) sin(θThigh)
−sin(θThigh) cos(θThigh)

)

the hip-update becomes(
∆θrHip

∆θpHip

)
= RθThigh

(
0

−0.5 · θKnee

)
.

The roll and pitch components of the leg angle (θr
Leg, θ

p
Leg)

are added to θHip. For untwisted legs, they must be subtracted
from θAnkle to keep the foot angle unchanged. For (θThigh �=
0), the ankle-update must be rotated against θThigh:

∆θAnkle = −R−1
θThigh

(
θr
Leg

θp
Leg

)
.

Finally, the foot angle θFoot is rotated against θThigh and
added to θAnkle. This yields:

θHip =
(
θr
Leg

θp
Leg

)
+RθThigh

(
0

−0.5 · θKnee

)
, (1)

θAnkle =
(

0
−0.5 · θKnee

)
+R−1

θThigh
(θFoot−

(
θr
Leg

θp
Leg

)
). (2)

The leg interface represented by θLeg, θFoot, and γ is a
more abstract actuator space than the space spanned by the
individual joint angles θHip = (θrHip, θ

p
Hip), θThigh, θKnee, and

θAnkle = (θrAnkle, θ
p
Ankle). It simplifies the implementation of

dynamic walking, because its dimensions are less dependent
than the individual joints angles. By changing only one target,
e.g. the target leg extension γ, multiple joints are actuated in
a coordinated way.

B. Central Clock

A central clock −π ≤ φTrunk < π running in the trunk
determines the step frequency ψ. Both legs derive their own
gait phase −π ≤ φLeg < π by shifting the trunk phase by
±π/2. Based on its gait phase, each leg generates trajectories
for its leg extension, leg angle, and foot angle.

C. Omnidirectional Walking

The target walking direction, speed, and rotation is specified
by the vector vRobot = (vx

Robot, v
y
Robot, v

θ
Robot), where

vy
Robot denotes the speed in forward direction, vx

Robot is
the lateral speed, and vθ

Robot determines the robot’s rotation
around the vertical axis.

The three key ingredients for generating omnidirectional
walking are lateral shifting of the robot’s center of mass,

shortening of the leg which is not needed for support and
movement of the legs in walking direction. The shortened leg
is moved quickly into the walking direction. At the same time,
the supporting leg has maximal extension and is moved slowly
against the walking direction.

The swing amplitudes aRobot = (ar
Robot, a

p
Robot, a

y
Robot)

for the leg motion in target direction are derived from the
target speed vector as follows:

(ar
Robot, a

p
Robot) = (asin(

vx
Robot

ψ · l), asin(
vy
Robot

ψ · l)), (3)

ay
Robot =

vθ
Robot

ψ
, (4)

where l denotes the leg length.
In the following, we describe the generation of the individ-

ual components of omnidirectional walking. The design of the
trajectories was based on kinematics and dynamic constraints.
All curves are as smooth as possible to limit accelerations.
The parameters have been determined using feedback from
the real robot by first walking with zero speed, next walking
into each of the three directions with increasing speeds, and
finally observing combinations of walking directions.
• Shifting: Because a sinusoid moves between two extreme
points with the smallest accelerations, the lateral shifting of
the robot’s center of mass is done in a sinusoidal way:

θShift = aShift · sin(φLeg), (5)

where aShift = 0.12+0.08 · ||(ar
Robot, a

p
Robot)||+0.7 · |ar

Robot|
is the shifting amplitude. The shifting amplitude increases with
the gait speed as well as with the lateral speed. Both, the leg
and foot roll angles are used to shift the robot:

θLegShift = θShift (6)

θFootShift = −0.5 · θShift. (7)

This keeps the upper body upright in the lateral plane.
• Shortening: As the robot shifts to a side, the opposite leg
is not needed to support the weight. It can be shortened. The
time course of the shortening is determined by the shortening
phase:

φShort = vShort(φLeg + π/2 + oShort), (8)

where vShort = 3.0 determines the duration of the shortening
and oShort = −0.05 determines the phase shift of the short-
ening relative to the lateral weight shifting. A cosine now
produces smooth transitions between the fully extended leg
and the shortened leg:

γShort=
{−aShort0.5(cos(φShort) + 1) if − π ≤ φShort < π

0 otherwise,

where the shortening amplitude aShort = 0.2 + 2 ·
||(ar

Robot, a
p
Robot)|| increases with the gait speed. To lift the

foot at the end pointing into the walking direction, a similar
term is used:

θFootShort=
{ −ap

Robot.125(cos(φShort)+1) if −π≤φShort<π
0 otherwise.

This avoids accidental contact between the leading part of the
foot and the ground during swing.
• Loading: Immediately after the leg is fully extended and the
heel landed, it is shortened a second time, in order to facilitate
loading of this leg:

φLoad = vLoad·piCut(φLeg+π/2−π/vShort+oShort)−π, (9)

where vLoad = 3 determines the duration of the second
sortening. The function piCut(.) maps its argument to the
range [−π, π) by adding multiples of 2π. The amplitude of
the second shortening depends on the sagittal amplitude:

aLoad = 0.025 + 0.5 · (1 − cos(|ap
Robot|)). (10)

The shortening is also computed using a cosine:

γLoad =
{ −0.5(cos(φLoad) + 1) if − π ≤ φLoad < π

0 otherwise
.

(11)
• Swinging: After the leg has been unloaded and shortened,
it is moved quickly into the walking direction. This swing is
reversed slowly during the rest of the gait cycle. The time
couse of the swing is described by the swing phase:

φSwing = vSwing(φLeg + π/2 + oSwing), (12)

where vSwing = 2.0 is the swing speed and oSwing = −0.15
is the phase shift of the swinging. While the swinging is
sinusiodal, the reverse motion is linear:

θSwing =

sin(φSwing) if − π/2 ≤ φSwing < π/2
b(φSwing − π/2) − 1) if π/2 ≤ φSwing

b(φSwing + π/2) + 1) otherwise.
(13)

The speed of the reverse motion is:

b = −(2/(2 · π · vSwing − π).

The swing is done with the leg angle and balanced partially
with the foot angle:

θrLegSwing = ls · ar
Robot · θSwing, (14)

θpLegSwing = ap
Robot · θSwing, (15)

θyLegSwing = ls · ay
Robot · θSwing, (16)

θrFootSwing = 0.25 · ar
Robot · θSwing (17)

θpFootSwing = ls · 0.25 · ap
Robot · θSwing, (18)

where the leg sign is ls=-1 for the left leg and ls=1 for the
right leg.
• Balance: The robot is balanced by tilting it with every step
in the sagittal and lateral plane and by adding offsets to the
leg and foot angles:

θrFootBal = 0.5 · ls · ar
Robot · cos(φLeg + 0.35), (19)

θpFootBal = 0.02 + 0.08 · ap
Robot (20)

−0.04 · ap
Robot · cos(2 · φLeg + 0.7), (21)

θrLegBal = .01 + ls · ar
Robot + |ar

Robot| + .1 · ay
Robot. (22)

The leg roll angle makes sure that the legs do not collide while
walking to the side or while rotating.

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

-Pi/2PiPi/20-Pi/2-PiPi/20

Leg Roll Angle

-0.25
-0.2

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25

-Pi/2PiPi/20-Pi/2-PiPi/20

Leg Pitch Angle

-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

-Pi/2PiPi/20-Pi/2-PiPi/20

Foot Roll Angle

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

-Pi/2PiPi/20-Pi/2-PiPi/20

Foot Pitch Angle

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0

-Pi/2PiPi/20-Pi/2-PiPi/20

Leg Phase

Leg Extension

Fig. 3. Trajectories generating forward walking. See text for details.

• Output: The individual components of the walking motion
are combined as follows:

θrLeg = θrLegSwing + θLegShift + θrLegBal, (23)

θpLeg = θpLegSwing, (24)

θyLeg = θyLegSwing, (25)

θrFoot = θrFootSwing + θFootShift + θrFootBal, (26)

θpFoot = θpFootSwing + θFootShort + θpFootBal, (27)

γ = γShort + γLoad. (28)

The resulting trajectories are depicted in Fig. 3, Fig. 4, and
Fig. 5 for the cases of forward walking (aRobot = (0, 0.25, 0)),
walking to the side (aRobot = (0.0625, 0, 0)), and turning on
the spot (aRobot = (0, 0, 0.25)), respectively.

The arms of the robot are moved in a similar way as its
legs. An arm moves synchronously with its contralateral leg.

VI. RESULTS

Fig. 6, Fig. 7, and Fig. 8 show image sequences of the
robot walking in forward direction, to the side, and turning on
the spot, respectively. A video showing the smooth transition
between and combination of these walking directions can be
downloaded from www.NimbRo.net.

It can be observed that Jupp walks dynamically with rela-
tively large steps. The upper body of the robot swings laterally,
but tilts only little in the lateral and sagittal planes. Jupp keeps
the knee of the stance leg straight. When walking forward with

Fig. 6. Image sequence extracted from video of forward walking robot (every second frame).

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

-Pi/2PiPi/20-Pi/2-PiPi/20

Leg Roll Angle

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

-Pi/2PiPi/20-Pi/2-PiPi/20

Foot Roll Angle

-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
 0

-Pi/2PiPi/20-Pi/2-PiPi/20

Leg Phase

Leg Extension

Fig. 4. Trajectories generating walking to the side. See text for details.

-0.1
-0.05

 0
 0.05
 0.1

 0.15
 0.2

-Pi/2PiPi/20-Pi/2-PiPi/20

Leg Roll Angle

-0.25
-0.2

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25

-Pi/2PiPi/20-Pi/2-PiPi/20

Leg Yaw Angle

-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06

-Pi/2PiPi/20-Pi/2-PiPi/20

Foot Roll Angle

-0.2
-0.18
-0.16
-0.14
-0.12
-0.1

-0.08
-0.06
-0.04
-0.02

 0

-Pi/2PiPi/20-Pi/2-PiPi/20

Leg Phase

Leg Extension

Fig. 5. Trajectories generating turning on the spot. See text for details.

Fig. 7. Image sequence extracted from video of robot walking to the side
(every fourth frame).

Fig. 8. Image sequence extracted from video of robot turning on the spot
(every fourth frame).

ap
Robot = 0.25, an average step size of 9.14cm was measured.

With the step frequency of 1.573Hz this results in a speed of
14.4cm/s. When walking to the side with ar

Robot = 0.0625,
an average step size of 2.41cm was measured, yielding a
lateral speed of 3.8cm/s. The rotation while turning with
ay
Robot = 0.25 is 15◦/step, resulting in a turning speed of

23.6◦/s. Energy consumption in the joints can be estimated
from the servo temperatures after walking longer distances.
While the hip-servos had the highest temperature, the knee
servos were cool and the ankle servos had an intermediate
temperature. This indicates that the straight stance leg relieves
the knee joint from high torques.

VII. CONCLUSIONS

This paper described the online generation of trajectories for
omnidirectional walking on two legs. The presented approach
has a low computational complexity. We implemented it on the
Pocket PC of our 19DOF humanoid robot Jupp. The resulting
walking speed in forward direction was 14,4cm/s, which is
quite high, given Jupp’s size of 60cm.

The omnidirectional gait was not optimized for speed, but
for stability and parameterizability. Because the gait is fully
parameterizable, higher-level behaviors needed for playing
soccer, such as approaching the ball, can smoothly vary

walking direction, walking speed, and rotational speed. This
allows precise positioning of the robot for kicking, while
rotating the robot towards the target for kicking.

In contrast to the chaining of predefined motion macros,
our approach generates smooth robot trajectories, without the
need to stop walking when changing direction or turning. It is
also possible to continuously compensate for deviations from
the desired walking direction using visual feedback. These
features make our omnidirectional gait suitable for the use
in the RoboCup soccer domain.

In addition to omnidirectional walking, we imple-
mented kicking, getting-up behaviors, visual perception, self-
localization, communication, and basic soccer skills for Jupp,
which will be detailed elsewhere.

At RoboCup 2005 in Osaka, Japan, Jupp, its twin Sepp, and
its larger sibling Max faced the world’s best humanoid soccer
robots. Both 60cm robots used the same omnidirectional gait.
The parameters of the gait engine were adapted to the 70cm
robot Max within few minutes. As team NimbRo our robots
performed very well. Our robots were walking faster than
almost all competitors, could maneuver around obstacles, walk
around the ball while looking at it, and position themselves
precisely for kicking. Consequently, they scored many goals.
Our robots walked very stable when not disturbed. After
collisions with other robots, some falls occurred, but our robots
got up [30] and continued play. In the technical challenge, they
came in 2nd and 3rd. Max won the penalty kick competition
in the MediumSize class. The KidSize robots Jupp and Sepp
reached the final in the 2 vs. 2 soccer games. Team Osaka won
this exciting game 2:1. In the overall Best Humanoid ranking,
our robots came in 2nd (KidSize) and 3rd (MediumSize), next
only to the titleholder, Team Osaka.

It is not hard to transfer the described gait to other bipeds.
We used slightly adapted versions of the described gait with
success for robots ranging from 35cm to 120cm in size.

Our future work will go into two directions: preventing falls
and automatic parameter optimization. To prevent falls, we
use attitude feedback to detect external disturbances. Slowing
down, tilting the robot against the disturbance, and lunge steps
are possible postural responses to improve stability. The gait
engine has been designed with few meaningful parameters.
While we manually adjusted these parameters so far, based
on systematic walking experiments, it should be possible to
devise an automatic framework for parameter adjustment, e.g.
by using evolutionary or reinforcement learning techniques.

ACKNOWLEDGMENT

The author would like to thank Michael Schreiber, who
constructed Jupp’s mechanics, Jörg Stückler who implemented
the compass interface and designed getting-up behaviors,
Johannes Schwenk, who designed getting-up behaviors, and
Hauke Strasdat, who implemented computer vision algorithms.
This work was supported by grant BE 2556/2-1 of Deutsche
Forschungsgemeinschaft (DFG).

REFERENCES

[1] R. D’Andrea, “The Cornell RoboCup robot soccer team: 1999-2003,” in
Handbook of Networked and Embedded Control Systems, ser. Control
Engineering. A Birkhäuser book, 2005.

[2] T. Kalmar-Nagy, R. D’Andrea, and P. Ganguly, “Near-optimal dy-
namic trajectory generation and control of an omnidirectional vehicle,”
Robotics and Autonomous Systems, vol. 46, pp. 47–64, 2004.

[3] D. Spenneberg and F. Kirchner, “Omnidirectional walking in an eight
legged robot,” in Proc. Symp. on Robotics and Automation (ISRA), 2000.

[4] J. M. Porta and E. Celaya, “Body and leg coordination for omnidirec-
tional walking in rough terrain,” in Proc. of CLAWAR, 2000.

[5] B. Hengst, D. Ibbotson, S. B. Pham, and C. Sammut, “Omnidirectional
locomotion for quadruped robots,” in RoboCup 2001: Robot Soccer
World Cup V. Springer, 2002, pp. 368–373.

[6] S. Behnke, J. Müller, and M. Schreiber, “Toni: A soccer playing
humanoid robot,” in Proc. of 9th RoboCup Int. Symp., Osaka, 2005.

[7] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and
K. Tanie, “Planning walking patterns for a biped robot,” IEEE Tr. on
Robotics and Automation, vol. 17, no. 3, pp. 280–289, 2001.

[8] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development
of Honda humanoid robot,” in Proc. of ICRA, 1998, pp. 1321–1326.

[9] F. Pfeiffer, K. Löffler, and M. Gienger, “The concept of jogging johnnie,”
in Proc. of ICRA, vol. 3, 2002, pp. 3129–3135.

[10] M. Vukobratovic and B. Borovac, “Zero-moment point – thirty five years
of its life,” Int. J. of Humanoid Robotics, vol. 1(1), pp. 157–173, 2004.

[11] S. Kajita, F. Kanehiro, K. Kaneko, et al., “Biped walking pattern
generation by a simple three-dimensional inverted pendulum model,”
Advanced Robotics, vol. 17(2), pp. 131–147, 2003.

[12] J. Pratt, C.-M. Chew, A. Torres, et al., “Virtual model control: An
intuitive approach for bipedal locomotion,” Int. J. of Robotics Research,
vol. 20(2), pp. 129–143, 2001.

[13] S. Grillner, “Neurobiological bases of rhythmic motor acts in verte-
brates,” Science, vol. 228, no. 4696, pp. 143–149, 1985.

[14] J. B. Nielsen, “How we walk: Central control of muscle activity during
human walking,” Neuroscientist, vol. 9, no. 3, pp. 195–204, 2003.

[15] M. Morisawa, S. Kajita, K. Kaneko, et al., “Pattern generation of biped
walking constrained on parametric surface,” in Proc. of ICRA, 2005.

[16] D. Sharon and M. van de Panne, “Synthesis of controllers for stylized
planar bipedal walking,” in Proc. of ICRA, 2005.

[17] T. McGeer, “Passive dynamic walking,” International Journal of
Robotics Research, vol. 9, no. 2, pp. 68–82, 1990.

[18] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots
based on passive-dynamic walkers,” Science 307, pp. 1082–1085, 2005.

[19] K. D. Mombaur, Stability Optimization of Open-loop Controlled Walking
Robots, ser. Fortschritt-Bericht. VDI, 2001.

[20] K. Matsushita, M. Lungarella, C. Paul, and H. Yokoi, “Locomoting with
less computation but more morphology,” in Proc. of ICRA, 2005.

[21] F. Iida and R. Pfeifer, “Self-stabilization and behavioral diversity of
embodied adaptive locomotion,” in Embodied Artificial Intelligence, ser.
LNCS, vol. 3139, 2004, pp. 119–129.

[22] M. W. Tilden, “Neuromorphic robot humanoid to step into the market,”
The Neuromorphic Engineer, vol. 1, no. 1, p. 12, 2004.

[23] Sony, “Dream Robot QRIO. http://www.sony.net/qrio.”
[24] Honda, “ASIMO. http://world.honda.com/asimo.”
[25] Kondo Kagaku Co., Ltd., “KHR-1. http://www.kondo-robot.com.”
[26] Vstone Co., Ltd., “http://www.vstone.co.jp.”
[27] C. Zhou and P. K. Yue, “Robo-Erectus: a low-cost autonomous hu-

manoid soccer robot,” Advanced Robotics 18(7), pp. 717–720, 2004.
[28] S. Behnke, J. Müller, and M. Schreiber, “Using handheld computers to

control humanoid robots,” in Proc. of DARH, Yverdon, 2005.
[29] S. Behnke and R. Rojas, “A hierarchy of reactive behaviors handles

complexity,” in Balancing Reactivity and Social Deliberation in Multi-
Agent Systems. Springer, 2001, pp. 125–136.

[30] J. Stückler, J. Schwenk, and S. Behnke, “Getting back on two feet:
Reliable standing-up routines for a humanoid robot,” in Proc. of The
9th Int. Conf. on Intelligent Autonomous Systems (IAS-9), Tokyo, 2006.

