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ABSTRACT
In this paper, we present an algorithm for robustly estimating

the fundamental frequency in speech signals. Our approach is

based on pitch-scaled harmonic filtering (PSHF). Following

PSHF, we perform a filtering in the frequency domain using

the short-time Fourier transform in order to separate the har-

monic and non-harmonic parts of the processed signal. We

enhance the standard PSHF approach by using a range of win-

dow lengths and a cost function that is applied to each win-

dow size. This cost function takes into account the energy at

the harmonic and non-harmonic frequency coefficients to esti-

mate harmonic energy for a frame. By using energy peaks and

applying a cost function that considers the change in pitch in

subsequent frames, we then determine the final pitch contour.

We evaluated our approach on the Keele database. As the

experimental results demonstrate, our methods performs ro-

bustly for noisy speech and has a good performance for clean

speech in comparison with state-of-the-art algorithms.

Index Terms— Speech processing, pitch estimation.

1. INTRODUCTION

The human brain performs a kind of feature extraction and

pattern recognition from the original speech signals at the

level of the harmonic complexes. Thus, a human being is able

to direct its attention to any desired speech source, despite no

ideal acoustic conditions. The fundamental frequency (F0)

or pitch of the human voice plays a central role in both the

production and perception of speech [1]. In clean and cor-

rupted speech, pitch is generally perceived with high accuracy

at the fundamental frequency characterizing the vibration of

the speaker’s vocal chords [2].

The problem of pitch estimation has been addressed for

a long time. Many different approaches have been proposed

and there is large availability of literature on machine algo-

rithms for pitch tracking [3]. Recently, techniques like statis-

tical learning for feature extraction [4, 5], time domain prob-

abilistic approaches for waveform analysis [6], and optimiza-

tion techniques [7, 8] have been presented. However, most
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of these methods lack robustness, especially for corrupted

speech.

In this paper, we present a technique to robustly estimate

pitch in speech signals. Our approach is based on pitch-scaled

harmonic filtering (PSHF). PSHF has been designed to sep-

arate the periodic and aperiodic components of speech sig-

nals [9]. PSHF uses the short-time Fourier transform and dif-

ferent window sizes to evaluate the periodicity of the signal,

expecting to match a given window length to a multiple of the

pitch period. In contrast to the original PSHF that uses win-

dow sizes scaled to a given multiple of pitch periods and ap-

plies an optimization technique to find the optimum window

size for each section of speech, we apply a range of window

lengths according to a range of multiples of pitch periods at

equidistant points in time and then we use a cost function and

a dynamic programming method to track a pitch contour. This

resulted in an accurate pitch estimation and a good compro-

mise between time and frequency resolution. To estimate the

presence of a range of F0-frequencies at each frame, we use a

cost function called harmonic template function (HTF). The

HTF takes into account the energy at the harmonic and non-

harmonic frequency coefficients to estimate harmonic energy

for a frame. As a result, we get a vector corresponding to

the range of window sizes that contains energy peaks which

can be used for pitch tracking. To find the final pitch contour,

we integrate the harmonic energies found for each time step

of processing by applying a cost function that considers the

change in pitch in subsequent HTF vectors.

This article is organized as follows. In the following Sec-

tion, we introduce PSHF. In Section 3, we present the Har-

monic Template Function and in Section 4 we explain how

to find pitch contours. Finally, in Section 5 we present ex-

periments on the Keele database showing the robustness of

our technique for noisy speech and the good performance for

clean speech in comparison with state-of-the-art algorithms.

2. PITCH-SCALED HARMONIC FILTERING

Using spectrograms is common to compute features that rep-

resent the spectral envelope [3]. This approach has two draw-
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backs in the context of pitch estimation. First, the smooth

windows have a frequency response themselves, leading to

smearing of the harmonic energy over multiple neighboring

frequency coefficients (bins). This phenomenon is called spec-

tral leakage. Second, since the length of the analysis window

is predetermined, the multiples of the fundamental usually

fall between frequency bins. Hence, the estimation of peak

heights is made difficult. One possibility is to use a rectangu-

lar window whose length is exactly one pitch period, which

is called pitch-synchronous analysis. A smooth window can

also be used, but it must cover exactly two pitch periods. The

difficulty in computing pitch-synchronous analysis is that we

need to know the local pitch period [3]. To avoid the prob-

lems induced by analysis windows, Jackson and Shadle [9]

proposed a method called pitch-scaled harmonic filter. The

algorithm presented here is based on this procedure.

The PSHF uses the spectral properties of an analysis frame

scaled to the pitch period in order to distinguish harmonic and

non-harmonic parts of the spectrum and hence to arrive to a

pitch period estimate. The term pitch-scaled refers to an anal-

ysis frame that contains a small integer multiple of pitch pe-

riods. The advantage of this property is that the harmonics

of the fundamental frequency F0 will be aligned with certain

bins of the short-time Fourier transform (assuming we know

F0). For example, if the analysis frame contains b pitch pe-

riods, then the frequency of the ibth Fourier coefficient will

correspond to iF0. More specifically, a window function w
centered at time m of length N is applied to the speech signal

x(n) to form xw(n) = w(n)x
(
n + m− N

2

)
. The discrete

Fourier transform (DFT) is used to compute the spectrum

Xw(k, m) =
∑N−1

n=0 xw(n)e−j 2π
N kn by using a value of N =

bP where b is the number of pitch periods of length P (in sam-

ples) [9]. Hence, the periodic part of xw is concentrated into

the set of harmonic bins B, where B = {b, 2b, 3b, . . . , (N −
1)b}. If the length of the analysis window is matched to a

multiple of the pitch cycle, the harmonic energy is centered

at these frequency bins. Since the signal is now aligned, one

can apply a rectangular window, instead of a smooth window.

The intermediate bins will therefore contain energy that is ei-

ther non-harmonic or has a different fundamental frequency.

Hence, we can assume that these bins correspond to the local

noise level. In [9], Hanning windows and four-pitch period

windows were used. For each section of speech, an optimiza-

tion procedure was implemented which estimates the calcu-

lated and measured smearing by using specific window sizes

and then minimizes the difference between both quantities us-

ing a given cost function. This way, the optimum window

size is found and can be used to estimate harmonic and non-

harmonic spectra. In contrast, in this work a range of window

lengths and pitch periods were used to estimate F0.

As an example for PSHF, Figure 1 shows the spectrum

for a vowel /a/ spoken by a male with F0 = 110 Hz (pitch pe-

riod 9.1 ms), and corresponding harmonic and non-harmonic

spectra, computed using a four-pitch period window.
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Fig. 1. Pitch-scaled harmonic filtering.

3. THE HARMONIC TEMPLATE FUNCTION

We use different window lengths applied at equidistant points

in time as a local indicator of the existence of pitch and in

such a case, as an estimator of the fundamental. We can es-

timate the harmonic energy by maximizing the difference be-

tween the energy at harmonic bins and the level of noise at

the remaining bins, according to a cost function. We call this

cost function a harmonic template function (HTF) and use it

for pitch estimation. If the energy concentrated at harmonic

bins is high enough relative to its neighboring bins, the mag-

nitudes of DFT peaks provide a good estimate of the current

pitch. For a DFT of length N , we are interested in using the

first non-redundant Nh ≈ N+1
2 bins. The total number of

expected harmonic bins is H ≈ Nh−1
b . Let us define X−d

h

and X+d
h as the energy of the surrounding bins for a given

window at each harmonic h ∈ {1, 2, . . . , H} and at a bin-

distance d = 1, . . . , b−1. For a four-pitch period window the

estimated noise is concentrated at three surrounding lower-

frequency bins and three higher-frequency bins.

The function that maps the window length to its corre-

sponding estimated fundamental frequency is nonlinear. As a

consequence, higher errors in the estimated F0 for high fre-

quencies are expected when the pitch tracking algorithm is

applied. In order to reduce the repercussion of scaling and to

attain an improved F0 estimation, we designed a cost function

HTF that combines different values b of pitch periods. The

most convenient design of the HTF is an open question. We

use the binomial coefficients to automatically generate appro-

priate HTFs. Thus, the goal is to apply a positive weight for

the estimated harmonic bin and a negative weight for the es-

timated non-harmonic bins, which should be proportional to

the positive one. Hence, for b = 2, . . . , 10, the cost function

for the surrounding bins of a given harmonic h is defined in

general as

Sb
h(N,m) =

b−1∑
d=1

1
K

(
2(b− 1)
d− 1

)(|Xd
h|+ |X−d

h |) (1)
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Fig. 2. (a) Harmonic template function for pitch estimation using 2 to 10-pitch period windows of length 400 to 800 for the

utterance “The north” (male). (b) Final HTF after applying feature extraction operations. The circles show the path found by

the pitch tracking algorithm.

and the HTF as

Jb(N,m) =
H∑

h=1

U b
h(N,m) =

H∑
h=1

|Xw(bh + 1)| − Sb
h, (2)

where K is a normalization constant for generating relative

values for all HTFs. Each HTF maximizes the accumulated

energy found at the harmonic bins and serves as an estimate of

the pitch. If Jb(N,m) < 0, we set Jb(N,m) = 0. This oc-

curs when the window length does not match the correct pitch

period. Note that the frequency ranges mostly overlap for two

or more different values of b. Therefore, a suitable interpola-

tion of the values obtained from each HTF Jb is required. To

avoid inconvenient nonlinearities in the interpolation, we use

a logarithmic scale for the range of F0 frequencies, starting

from 50 Hz to 500 Hz. 1536 interpolation indices were gener-

ated. Thus, the values returned by the HTFs were interpolated

and normalized, by using a linear interpolation. Additionally,

a mean filter was applied to reduce improper discontinuities

at the borders of the overlapping areas. We analyze speech

segments sampled at Fs = 20 kHz. Each signal is processed

every 5 ms. For b = 2, . . . , 10, window lengths ranging from

400 to 800 samples were used, allowing us to span the range

of frequencies from 50 Hz to 500 Hz. The result can be ob-

served in Figure 2(a).

As expected, for certain frequencies being factors or mul-

tiples of the fundamental, energy peaks are also found. These

frequencies correspond to pitch intervals, like octaves (2 : 1)

or fifths (3 : 2). These peaks have a significant impact on the

performance of a pitch tracking algorithm. To deal with these

issues, we apply two different operations. The first problem

appears in the case in which window lengths correspond to

half of the fundamental, where peaks of energy are immedi-

ately followed by valleys. Given a function U b
h, we apply the

following linear operation to eliminate these peaks, by using

the adjacent values U b
h+1 and U b

h−1:

U b
h(N,m) = min

{
U b

h+1 + U b
h−1, U

b
h

}
(3)

for h = 2, . . . , H − 1. After interpolating the results of all

HTFs, we apply the second operation. Assuming that the

highest peaks are located on the estimated fundamental, we

subtract half of the energy contained at F0 from the energy

at its multiples. The final HTF, defined as J(i,m), where

i = 1, . . . , 1536 and m is the current time frame, results from

such operations. Figure 2(b) shows the final HTF resulting

from the feature extraction process applied to the male speech

signal of Figure 2(a). The energy was erased up to a given F0

at multiples 2F0 and 3F0.

4. PITCH TRACKING

We use the fact that the pitch does not change abruptly to

design a pitch tracking algorithm that uses dynamic program-

ming techniques. The algorithm finds a compromise between

maximizing the energy at the frame m and optimizing the

shift from a contiguous frame. Let us define J = {J(1),
. . . ,J(M)} a sequence of HTF vectors which track the pitch

for M consecutive frames. The maximum a posteriori (MAP)

estimate of the pitch track is JMAP = max f(J). The func-

tion f(J) constitutes a priori statistics for the pitch and can

help disambiguate the pitch, by avoiding pitch doubling or

halving given knowledge of the speaker’s average pitch, and

by avoiding rapid transitions given a model of how pitch chan-

ges over time. One possible approximation is given by assum-

ing that the probability of the pitch period at frame m depends

only on the pitch period for the previous frame [3]:

f(J) = f(J(M)|J(M − 1)) · · · f(J(2)|J(1)). (4)

This cost function f penalizes the current pitch estimation by

using the distance to an accumulated maximum μ(j) along

the sequence of HTF vectors, for a given index j (relative to

some F0). Moreover, the penalty considers the fact that the

pitch does not change strongly, by defining a maximum shift

constant δ. This way, we can follow the optimal path be-

tween J(m) and J(m + 1) by identifying the optimal shift as

we move forward. Finally, the pitch tracking algorithm has

to decide if a frame is voiced or unvoiced. This is done by

measuring the average HTF energy at a frame and its neigh-

borhood and by measuring the average HTF pitch energy at

the position given by the path and its neighboring path lo-
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Fig. 3. Results obtained by using the Keele database signals mixed with cocktail party noise and white noise at different SNRs.

cations. If the ratio (pitch confidence) between the average

pitch energy and the average energy exceeds a given thresh-

old, the algorithm reports a voiced frame. In Figure 2(b) the

estimated path is shown, where pitch reference values of un-

voiced sections were set conventionally to 0, so as to use them

as a reference to detect voiced frames.

5. EXPERIMENTAL RESULTS

We used the Keele pitch reference database [10] to evaluate

the performance of the algorithm. It consists of speech sig-

nals of five male and five female English speakers, recorded

with a sampling rate of 20 kHz and a resolution of 16 bit.

For evaluation we used the pitch reference provided by Flego

[11], who reanalyzed the original laryngograph signal to ob-

tain improved pitch estimates every 1 ms. Common perfor-

mance measures for comparing pitch estimation algorithms

were used: The voiced error (VE) denotes the percentage of

voiced time frames misclassified as unvoiced, the unvoiced

error (UE) is defined as the inverse case, the gross pitch error

(GPE) denotes the percentage of time frames at which the es-

timation and the reference pitch differ by more than 20%, and

the root mean square error (RMSE) is computed as RMS dif-

ference in Hertz of the reference pitch and the estimation for

all time frames that are not GPEs. The results for clean speech

are shown in Tab. 1. The table also presents some comparative

results obtained by Nonnegative Matrix Factorization (NMF)

and RAPT algorithms [5]. To test the robustness of our ap-

proach, we added white noise and cocktail party noise (see

Fig. 3) with different signal-to-noise ratios to the clean speech

signals. For clean speech and moderated SNRs the results are

reliable.

Table 1. Evaluation results obtained on the Keele pitch refer-

ence database for clean speech.

VE (%) UE (%) GPE (%) RMSE (Hz)

PSHF Based 4.51 5.06 0.61 2.46
NMF 7.7 4.6 0.9 4.3
RAPT 3.2 6.8 2.2 4.4

6. CONCLUSION

In this paper, we presented a PSHF-based approach for pitch

determination. We enhanced PSHF by exhaustively using

a range of window lengths and a cost function that allows

to estimate the pitch for each frame. We track the pitch in

subsequent frames using a cost function that penalizes larger

changes in pitch. We evaluated our method for clean speech

as well as for demanding acoustic conditions. The experimen-

tal results show the robustness of our method for noisy speech

and the competitiveness with state-of-the-art algorithms for

clean speech.
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