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Abstract. In this paper, we detail the contributions of our team NimbRo
to the RoboCup @Home league in 2011. We explain design and rationale
of our domestic service robot Cosero that we used for the first time in
a competition in 2011. We demonstrated novel capabilities in the league
such as real-time table-top segmentation, flexible grasp planning, and
real-time tracking of objects. We also describe our approaches to human-
robot cooperative manipulation and 3D navigation. Finally, we report on
the use of our approaches and the performance of our robots at RoboCup
2011.

1 Introduction

The RoboCup @Home league has been established in 2006 to research and bench-
mark autonomous service robots in everyday scenarios. In the first years of the
league, basic capabilities of the robots have been tested. The robots had to show
object recognition and grasping, safe indoor navigation, and basic human-robot
interaction (HRI) skills such as speech recognition and synthesis. Progress in the
league allowed to introduce more complex test procedures in 2010.

Our team NimbRo participates in the @Home league since 2009. In the first
year, we could demonstrate basic mobile manipulation and HRI skills with our
self-constructed robots Dynamaid and Robotinho. We could reach the third place
in the competition and received the Innovation Award for innovative robot body
design, empathic behaviors, and robot-robot cooperation. In the second year,
we participated with a mechanically improved version of Dynamaid. We tackled
the more complex tests and showed many new mobile manipulation and human-
robot interaction skills such as gesture recognition. We also demonstrated as the
first team the opening and closing of a refrigerator at RoboCup. Overall, we
could reach the second place in 2010.
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Fig. 1. The cognitive service robot Cosero cooperatively carries a table with a user
and bakes omelett at the RoboCup@Home finals 2011 in Istanbul.

In this year’s competition, we participated with Dynamaid and its successor,
Cosero. While Cosero still retains the light-weight design of Dynamaid, we im-
proved its construction and appearance significantly and made it more precise
and stronger actuated. In the tests, the robots showed their human-robot inter-
action and mobile manipulation capabilities. We introduced many new develop-
ments, like grasp planning to extend the range of graspable objects, real-time
scene segmentation and object tracking, and human-robot cooperative manipu-
lation of a table. Our performance was well received and has been awarded the
first place in 2011. In this paper, we summarize our main novel contributions
to the RoboCup@Home league. We detail the construction of Cosero, and the
algorithms we developed in the context of the league.

2 Design of Cognitive Service Robot Cosero

Our everyday environments are adapted to the specific capabilities and con-
straints of the human body. When robots perform similar tasks like humans
in such environments, it is a natural design rationale to equip the robots with
human-like motion and perception abilities. A further advantage of a human-like
body is that the robot’s behavior is predictable and can easily be interpreted
by humans. In everyday scenarios, robots also may interact physically with hu-
mans. This imposes requirements on the safety of such a robot. A light-weight
design makes a household robot inherently less dangerous than a heavy-weight
industrial-grade robot.

We focused the design of our robots Dynamaid and Cosero (s. Fig. 1) on
such requirements. Cosero’s mobile base has a small footprint of 59 × 44 cm and
drives omnidirectionally. This allows Cosero to maneuver through the narrow
passages found in household environments. Its two anthropomorphic arms re-
semble average human body proportions and reaching capabilities. A yaw joint
in the torso enlarges the workspace of the arms. In order to compensate for the
missing torso pitch joint and legs, a linear actuator in the trunk can move the
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upper body vertically by approx. 0.9 m. This allows the robot to manipulate on
similar heights like humans – even on the floor.

Cosero has been constructed from light-weight aluminum parts. All joints in
the robot are driven by Robotis Dynamixel actuators. These design choices allow
for a light-weight and inexpensive construction, compared to other domestic
service robots. While each arm has a maximum payload of 1.5 kg and the drive
has a maximum speed of 0.6 m/sec, the low weight (in total ca. 32 kg) requires
only moderate actuator power. The robot’s main computer is a HP Pavillion
dv6 notebook with an Intel i7-Q720 processor.

Cosero perceives its environment with a variety of complementary sensors.
The robot senses the volume in front of it in 3D with a Microsoft Kinect RGB-
D camera in its head that is attached to the torso with a pan-tilt unit in the
neck. For obstacle avoidance and tracking in farther ranges and larger field-of-
views than the Kinect, the robot is equipped with multiple laser-range scanners.
One Hokuyo URG-04LX is placed on a roll actuator in the lower torso. Aligned
horizontally, it detects objects on horizontal surfaces such as tables or shelves. In
vertical alignment, it measures distance and height of these objects. A further
Hokuyo URG-04LX measures objects in a height of ca. 4 cm above the floor.
The main sensor for 2D localization and mapping is a SICK S300 sensor in the
mobile base which perceives the environment in the horizontal plane at a height
of approx. 27 cm. In the upper torso, we mounted a Hokuyo UTM-30LX laser-
range scanner on a tilt actuator to acquire precise range measurements in up
to 30 m for 3D obstacle avoidance, mapping, and localization. The laser-range
scanners are also useful to track persons in the robot’s surroundings.

To improve the robustness of manipulation, the robot can measure the dis-
tance to obstacles directly from the grippers. We attached infrared distance
sensors to each gripper that point downward and forward in the finger tips.
Another sensor in the palm measures distance to objects within the gripper.

Finally, the sensor head also contains a shotgun microphone for speech recog-
nition. By this, the robot points the microphone towards human users and at
the same time directs its visual attention to the user. We attached a human face
mask to support the interpretation of the robot’s gaze by the human.

3 Mobile Manipulation

One significant part of the competition in the @Home league tests the mobile
manipulation capabilities of the robots. The robots shall be able to fetch objects
from various locations in the environment. To this end, the robot must navigate
through the environment, recognize objects, and grasp them.

3.1 Perception

Real-Time Table-Top Segmentation: In household environments, objects
are usually located on planar surfaces such as tables. We therefore base our
object detection pipeline on fast horizontal plane segmentation of the depth
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Fig. 2. Object detection. Left: example table top setting. Center: raw point cloud from
the Kinect with RGB information. Right: each detected object is marked with a distinct
color.

Fig. 3. Grasp planning. Left: object shape properties. The arrows mark the principal
axes of the object. Center: we rank feasible, collision-free grasps (red, size prop. to
score) and select the most appropriate one (large, RGB-coded). Right: example grasps.

images of the Kinect [14]. Fig. 2 shows an exemplary result of our approach
in a table-top scene. Our method processes depth images with a resolution of
160×120 at frame rates of approx. 16 Hz on the robot’s main computer. This
enables our system to extract information about the objects in a scene with
a very low latency for further decision-making and planning stages. For object
identification, we utilize texture and color information [9].

In order to process the depth images efficiently, we combine rapid normal
estimation [7] with fast segmentation techniques. The normal estimation method
exploits the principle of integral images to estimate surface normals in a fixed
image neighborhood in constant time. Overall, the runtime complexity is linear
in the number of pixels for which normals are calculated. Since we search for
horizontal support planes, we find all points with vertical normals. We segment
these points into planes using RANSAC [5] and find the objects by clustering
the points above the convex hull of the support plane.

Grasp Planning: We investigate grasp planning to enlarge the set of graspable
objects and to allow for obstructions by obstacles [14]. In our approach, we
assume that the object is rigid and symmetric along the planes spanned by the
principal axes of the object, e. g., cylindrical or box-shaped. We found that our
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Fig. 4. Learning of object models. Left: during training the user selects points (red
dots) to form a convex hull around the object. Center: color and shape distribution
modeled at 5 cm resolution. Lines indicate surface normals (color-coded by orientation).
Right: color and shape distribution modeled at 2.5 cm resolution.

approach also may yield stable grasps when an object violates these assumptions.
Fig. 3 illustrates the main steps in our grasp planning pipeline and shows example
grasps.

We consider two kinds of grasps: A side-grasp that approaches the object
horizontally and grasps the object along the vertical axis in a power grip. The
complementary top-grasp approaches the object from the top and grasps it with
the finger tips along horizontal orientations. Our approach extracts the object’s
principle axes in the horizontal plane and its height. We sample pre-grasp pos-
tures for top- and side-grasps and evaluate the grasps for feasibility under kine-
matic and collision constraints. The remaining grasps are ranked according to
efficiency and robustness criteria. The best grasp is selected and finally exe-
cuted with a parametrized motion primitive. For collision detection, we take a
conservative but efficient approach that checks simplified geometric constraints.

Real-Time Object Tracking: When a robot interacts with objects, it has to
estimate its pose with respect to the objects. Frequently, localization in a map is
not precise enough for this purpose. For example, the place of many household
objects such as tables or chairs is subject to change. The robot must then be
able to detect the object in its current sensor view and estimate the relative pose
of the object.

We develop methods for real-time tracking of objects with RGB-D cam-
eras [12]. In our approach, we train a multi-resolution surfel map of the object
(s. Fig. 4). The map is represented in an octree where each node stores a normal
distribution of the volume it represents. In addition to shape information, we
also model the color distribution in each node.

For fast object teach-in, we use checkerboard patterns laid out around the
object. In the images, the user selects points on a convex hull around the object
in the common plane of the checkerboards. The visual markers yield a precise
map reference frame, in which various views on the object can be merged.
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Fig. 5. Left: panorama image of an office. Center: 3D surfel map learned with our
approach (surfel orientation coded by color). Right: 2D navigation map extracted from
the 3D surfel map (gray: unknown, white: traversable, black: untraversable).

Once the map has been obtained, we build multi-resolution surfel maps with
color information from new RGB-D images [13]. Then, we register this map to
the object map with an efficient multi-resolution strategy. We associate each
node in the image map to its corresponding node in the object map using fast
nearest-neighbor look-ups. We optimize the matching likelihood to find the most
likely pose. Our efficient implementation supports real-time registration of RGB-
D images on the robot’s main computer.

3D Perception for Navigation: Reliable obstacle avoidance is a prerequisite
for safe navigation of a robot in indoor environments. We implemented means
to incorporate 3D measurements from laser scanners and depth cameras [3]. We
maintain the measurements in a 3D point cloud in the close surrounding of up
to 10 m. In order to handle dynamic objects, a temporal unlearning strategy
discards measurements that are older than a fixed amount of time. When a
sensor sweeps a map region with its field-of-view, the points in this volume are
removed after shorter duration.

Many approaches to indoor localization and mapping use 2D laser scanners
to acquire 2D footprints of the environment. Occupancy grid maps are used
to represent the map, because they provide dense information about free and
occupied space for localization and path planning. One problem of such 2D maps
occurs in path planning, if untraversable obstacles cannot be perceived on the
laser scanners height. Localization with 2D lasers imposes further restrictions
if dynamic objects occur, or the environment changes in the scan plane of the
laser. Then, localization may fail since large parts of the measurements are not
explained by the map.

We address these problems by building 3D maps of the environment [8].
Fig. 5 demonstrates example maps generated with our approach. We choose to
represent the map in a 3D surfel grid. The robot acquires full 3D scans at several
locations in the environment. Given the location w.r.t. the environment, we
perform mapping in known poses to generate the surfel map from several scans.
We obtain the trajectory estimate using a 2D SLAM approach (GMapping, [6])
and refine it by registering the 3D scans with ICP [1].



Towards Robust Mobility, Flexible Manipulation, and Intuitive Interaction 7

Fig. 6. Localization in dynamic environments. Left: examplary result of the tracking
performance of 2D localization (2D Grid) and our 3D localization approach (Surfel).
Center: localization accuracy for pose tracking. Right: global localization accuracy.

Once the map has been obtained, we extract a 2D navigation map. First, we
find the traversable cells in the 2D map by region growing in the 3D map with
the robot’s scan poses as seed points. The region growing algorithm expands to
cells when the gap between the surfels at the cell borders is small enough to
traverse it. Additionally, we check if all cells are free within the robot’s height
range.

For localization, we developed a Monte Carlo method that can incorporate
full 3D scans as well as 2D scans. When used with 3D scans, we extract surfels
from the scans and evaluate the observation likelihood. From 2D scans, we ex-
tract line segments and associate them with surfels in the map. In both cases, we
use a nearest-neighbor look-up grid to efficiently associate measurements with
surfels.

Localization in 3D maps is specifically useful in crowded environments. The
robot can then leverage measurements above the height of people to localize
at the static parts of the environment. More general, by representing planar
surface elements in the map, we can also concentrate the localization on planar
structures, as they more likely occur in static environment parts.

Fig. 6 shows experimental results for pose tracking and global localization. In
the experiments, we compare the reliability of standard Monte Carlo localization
in 2D occupancy maps and our localization method which prefers measurements
above the persons’ heights. Eight persons were randomly walking in the test
environment. We quantify, how often and how accurate the localization methods
estimate the final position of the trajectory. We use the SICK S300 laser scanner
on the mobile base for 2D localization. For 3D localization, the laser scanner
in the chest is continuously tilted. When the robot stands during a full sweep,
the complete 3D scan is integrated. Otherwise, we use the immediate 2D scans.
In pose tracking, we initialize the localization at the correct position. It can be
seen that our approach localizes the robot more accurately. For global localiza-
tion, we initialize the methods with a uniform distribution of 5000 particles. We
evaluated global localization at 45 starting points in various trajectories. Global
localization in the 2D map only succeeds in ca. 30% of the runs, whereas our
approach achieves 97.5% success rate at a distance threshold of 0.5 m. While our
approach yields superior results, it still retains the efficiency of 2D localization.
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3.2 Behavior Control

Motion Control: The design of the mobile bases of our robots supports om-
nidirectional driving [9]. The linear and angular driving velocities can be set
independently and can be changed to speeds within a continuous range. The
drive consists of four differential drives each located at the corners of the rect-
angular base. We determine their steering direction and the individual wheel
velocities from an analytical solution to the drive’s inverse kinematics.

The anthropomorphic arms support control in Cartesian coordinates. For
this, we implemented differential inverse kinematics with redundancy resolu-
tion [9]. We also developed compliance control for the arms [11]. For our method,
we exploit that the servo actuators are back-drivable and that the torque which
the servo applies for position control can be limited. Compliance can be set for
each direction in task-space separately. For example, the end-effector can be kept
loose in both lateral directions while it keeps the other directions at their targets.

We implemented several motion primitives like grasping with one or two
arms, pointing or waving gestures, and object placement. Motion primitives such
as side- and top-grasps or pointing gestures can be parametrized in the target.

Mobile Manipulation Control: For mobile manipulation, we developed con-
trollers that combine control of the drive and the arms with perception capabil-
ities. Cosero can grasp objects on horizontal surfaces on tables and in shelves in
a height range from ca. 0.3 m to 1 m [9]. It also carries the object and hands it
to human users. We further developed solutions to pour-out containers, to place
objects on horizontal surfaces, to dispose objects in containers, to grasp objects
from the floor, and to receive objects from users. When handing an object over,
the arms are compliant in upward direction so that the human can pull the
object, the arm complies, and the object is released.

The robots can also open and close doors, if the door leaf can be moved with-
out the handling of an unlocking mechanism. For example, fridges or cabinets
are commonly equipped with magnetically locked doors that can be pulled open
without special manipulation of the handle. To open a door, the robot drives
in front of the door, detects the door handle with its torso laser, approaches
the handle, and grasps it. The drive moves backward while the gripper moves
to a position to the side of the robot in which the opening angle of the door is
sufficiently large to approach the open fridge or cabinet. The gripper follows the
motion of the door handle through compliance in the lateral and the yaw direc-
tions. The robot moves backward until the gripper reaches its target position.
For closing a door, the robot has to grasp the handle and moves forward while
it holds the handle at its relative initial grasping pose. The arm deviates from
this pose by the constraining motion of the door leaf, and the robot drives to
keep the handle at its initial pose, relative to the robot. The closing of the door
can be detected when the arm is pushed back towards the robot.
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4 Human-Robot Interaction

A service robot in everyday environments not only needs mobile manipula-
tion abilities. It closely interacts with humans, even physically. This interaction
should be natural and intuitive such that laymen can operate the robot and
understand its actions.

4.1 Person Awareness

A key prerequisite for human-robot interaction is the robot’s awareness of the
persons that sourround it. Our robots maintain a belief on the location and iden-
tity of persons [10]. We implemented a multi-hypothesis tracker that initializes
new person believes, when faces or upper bodies are detected at reasonable lo-
cations in the environment. Using laser scanners, the position and moving speed
of the persons is then tracked at high frame rates.

4.2 Speech Recognition and Synthesis

Speech is the primary modality for the communication of complex statements
between humans. We therefore support speech in our robots employing the Lo-
quendo SDK. Its speech recognition is speaker-independent and uses a small-
vocabulary grammar which we change with the dialog state. The grammar def-
inition of the Loquendo speech recognition system allows to tag rules with se-
mantic attributes. When speech is recognized, a semantic parse tree is provided
that we process further. We use the parsed semantics to interpret sentences for
complex commands and to generate appropriate behavior.

4.3 Gesture Recognition and Synthesis

An important non-verbal communication cue is the recognition and performance
of gestures. We equipped our robots with several gestures. For example, the
robot can draw a user’s attention to certain locations in the environment by
simply pointing at it. Our robots can also perceive gestures such as pointing,
showing of objects, or stop gestures [4]. The robots sense these gestures using
the RGB-D camera. For pointing gestures, we accurately estimate the pointing
direction from body features such as the position of the head, hand, shoulder,
and elbow. We also investigated the use of Gaussian Process regression to learn
an interpretation of the pointing direction [2] using the body features.

4.4 Human-Robot Cooperative Manipulation

We study physical interaction between a human user and a robot in a cooperative
manipulation task [12]. In our scenario, the human and the robot cooperatively
carry a large object, i. e., a table. For the successful performance of this task,
the robot must keep track of the human actions.
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In order to approach the table, the robot tracks its 6D pose with our real-
time object tracking approach. The robot waits then until the human lifts the
table. As soon as the human lifts the table, the robot measures a significant pitch
of the table. Then, the robot also lifts the table and begins to hold the table
compliant in the horizontal plane. The human user pulls and pushes the table
into the desired directions, and the robot compensates for the displacement of
its end-effectors by driving accordingly with its mobile base. When the target
location of the table is reached, the user can simply put the table down which
is detected by the robot.

5 Experiments at RoboCup 2011

With Dynamaid and Cosero, we competed in the RoboCup@Home 2011 com-
petition in Istanbul. Our robots participated in all tests of stage I and II, and
performed very well. We accumulated the highest score of all 19 teams in both
stages. Our final demonstration was also awarded the best score such that we
achieved the first place in the competition.

In the Robot Inspection and Poster Session test in Stage I, Cosero and Dy-
namaid registered themselves. Meanwhile, we presented our work to leaders of
other teams in a poster session. Overall, we have been awarded the highest score
in this test. In the Follow Me test, Cosero met a previously unknown person
and followed him reliably through an unknown environment. Cosero showed
that it can distinguish the person from others and that it recognizes stop ges-
tures. In Who Is Who, two previously unknown persons introduced themselves
to Cosero. Later in the test, our robot found one of the previously unknown per-
sons, two team members, and one unknown person and recognized their identity
correctly. The Open Challenge allows the teams to show their research in self-
defined demonstrations. In this challenge, Cosero fetched a bottle of milk, opened
it, and poured it into a cereal bowl. Then, Cosero grasped a spoon using our
approach to grasp planning and placed it next to the bowl. Cosero understood a
complex command partially and went to a correct place in the General Purpose
Service Robot I test. In the Go Get It! test, Cosero found a correct object and
delivered it. After stage I, we were leading the competition.

In stage II, Cosero participated in the Shopping Mall test. It learned a map
of a previously unknown shopping mall and navigated to a shown location. In
the General Purpose Service Robot II test, Cosero first understood a partially
specified command and asked questions to obtain missing information about the
object to grasp and about the location of the object. After successful execution,
it worked on a task with erroneous information. It detected that the ordered
object is not at the specified location, and went back to the user to report the
error. In the Demo Challenge, we demonstrated pointing gestures by showing the
robot in which baskets to put colored and white laundry. The robot then cleaned
the appartment, picked white laundry from the floor, and put it into the correct
basket. It then picked carrots and teaboxes from a table. The objects could be
chosen and placed by a jury member. The technical commitee awarded us the
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(a) Reached scores (b) Achievable scores

Fig. 7. Reached (a) and achievable (b) scores in the predefined test procedures per
functionality.

highest score. We reached the finals with 8,462 points followed by WrightEagles
from China with 6,625 points.

In the finals, we demonstrated the cooperative carrying of a table by Cosero
and a human user. Then, a user showed Cosero where it finds a bottle of dough
to make an omelett. Our robot then went to the cooking plate to switch it on. It
succeeded partially in turning the plate on. Then, Cosero drove to the location
of the dough and grasped it. At the cooking plate, it opened the bottle and
poured it into the pan. We applied our real-time object tracking method in order
to approach the cooking plate. Meanwhile, Dynamaid opened a refrigerator,
grasped a bottle of orange juice out of it, and placed the bottle on the breakfast
table. Our performance received the best score by the jury consisting of members
of the executive committee and external judges from science and the media.

Fig. 7 summarizes the scores achieved for individual functionalities as pro-
posed in [15]. Note that due to the sequential nature of the predefined test pro-
cedures, in some tests our robots did not reach specific sub-tasks. For instance,
in Enhanced Who Is Who or Shopping Mall, our system had difficulties to under-
stand the orders by the human user and, hence, did not have the chance to gain
score for object manipulation. The results demonstrate that we improved most
functionalities compared to 2010 and achieved well in developing a balanced
domestic service robot system.

6 Conclusion

In this paper, we presented our developments for the RoboCup@Home league
in 2011. We detailed our approaches to real-time scene segmentation, object
tracking, 3D navigation, and human-robot cooperative manipulation. We use
the RoboCup@Home competitions to evaluate our methods in a realistic setting.
With our domestic service robots, we won the competitions in 2011.

In future work, we aim to further advance the versatility of the mobile manip-
ulation and human-robot interaction skills of our robots. The learning of models
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of arbitrary objects and the real-time tracking of these models is one step in
this direction. Equally important, we are working to improve the perception of
persons and the interpretation of their actions. We also plan to remove the ne-
cessities to adapt the tools of the robot to its current end-effectors. In order
to improve the manipulation skills of our robots, we will improve the design of
the grippers. We plan to construct thinner fingers with touch sensors. Then, we
could devise new methods to grasp smaller objects or to use smaller tools.
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