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INTRODUCTION

This talk: Focus on Lessons Learned from APC 2016 and ARC 2017

More details also in interactive presentation / paper:

Fast Object Learning and Dual-arm Coordination for Cluttered Stowing, Picking, and Packing

Max Schwarz, Christian Lenz, German Martin Garcia, Seongyong Koo, Arul Selvam Periyasamy, Michael Schreiber,
and Sven Behnke

ICRA 2018, session WeA@L.6



WHAT DID WE LEARN FROM APC 20167

NimbRo Picking APC 2016:
stow: 2nd place
pick: 3rd place

- Hybrid grasping strategies work well: Suction +
Pinch grasping (Delft, MIT, PFN)

- Complex grasping actions can be performed
using keyframe interpolation techniques
(NimbRo)

- Stationary sensor setups are faster (Delft, ...)

- Measuring weight is valuable

- Speed! If you fail, just retry.




RULE CHANGES FOR ARC 2017

- Unknown objects
— need fast semi-automatic capture & training

| 20g°}
am robotics - Pack three boxes in parallel
CA\,\-ENGE — multiple arms

- No deep shelf bins
— linear actuator not required



System Design




SYSTEM DESIGN

Stow setup
Sensor setup — | with tote
Vacuum cleaner —
6 DOF UR5 arm
3 DOF endeffector —
Storage system PI‘Ck setup

with boxes

Industrial scales




ENDEFFECTOR DESIGN - SUCTION

Belt drive Suction hose
/
Bendable finger 2 DOF
pinch finger
R —
Suction cup
L

This endeffector design allows us to grasp items using suction...



ENDEFFECTOR DESIGN - PINCH GRASP

Belt drive Suction hose
/
Bendable finger 2 DOF
pinch finger
B —
Suction cup
L

.. and perform pinch grasps with both fingers.



SENSOR SETUP

Photoneo PhoXi®
3D-Scanner XL

LED panels

NikonD3400 ___—

photo camera



Object Perception




SEMANTIC SEGMENTATION

A state-of-the-art semantic segmentation method is used to perceive objects.
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Guosheng Lin, Anton Milan, Chunhua Shen, lan Reid
CVPR 2017



DATA CAPTURE, SCENE SYNTHESIS & TRAINING

We capture new objects using a turntable and generate synthetic scenes on top of
annotated dataset frames. Training is performed in &~ 30 min on four Titan X cards.



SEGMENTATION RESULTS
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Figure 1: Segmentation experiments. Left: Training image throughput depending on the number of

GPUs. Right: Test set loU during training.
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GRASP GENERATION

bronze_wire_cup
conf: 0.749401

mouse_traps

conf: 0.921731 - Object contours are extracted

irish_spring_soap windex from Segmentat]on_
conf: 0.811500 conf: 0.861246
playing_cards q—tips_500

conf: 0.813761 conf: 0.475015

fiskars_scissors
conf: 0.831069

w_aquarium_gravel
conf: 0.891001

crayons
conf: 0.422604

ice_cube_tray
conf: 0.976856

reynolds_wrap
conf: 0.836467

paper_towels
conf: 0.903645

white_facecloth
conf: 0.895212

hand_weight
conf: 0.928119

robots_everywhere
conf: 0.930464™




GRASP GENERATION

bronze_wire_cup
conf: 0.749401

mouse_traps

conf: 0.921731 - Object contours are extracted

irish_spring_soap windex from Segmentation_
conf: 0.811500 conf: 0.861246
playing_cards q-tips-500 - 2D grasp points with maximum
conf: 0.813761 conf: 0.475015 .
w_aquarium_gravel fiskars_scissors dIStance to the contour are
conf: 0.891001 conf: 0.831069
found.
crayons ice_cube_tray c d

conf: 0.422604 conf: 0.976856

- 6D grasp poses are calculated
from depth and local surface
normals.

reynolds_wrap
conf: 0.836467

paper_towels
conf: 0.903645

white_facecloth
conf: 0.895212

hand_weight
conf: 0.928119

robots_everywhere
conf: 0.930464™




Motion Generation and Dual-arm
Coordination




NULLSPACE-OPTIMIZING IK

- Secondary objective optimized during
IK: Keep wrist as high as possible and
away from the robot base

- For suction grasps, consider only 5D
poses

= Reach any visible suction pose in the bin
without arm<sbin collisions.



DUAL-ARM COORDINATION

- Manipulation tasks are defined by line
segments between endeffector
waypoints.

«

Green & purple: Arm activities. Yellow: Next tasks.
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DUAL-ARM COORDINATION

- Manipulation tasks are defined by line
segments between endeffector
waypoints.

- Line segments are projected in 2D for
collision checking.
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DUAL-ARM COORDINATION

- Manipulation tasks are defined by line
segments between endeffector
waypoints.

- Line segments are projected in 2D for
collision checking.

- Next tasks are assigned to a free arm if
the minimum distance between all pairs
of line segments is large enough.

Y

Green & purple: Arm activities. Yellow: Next tasks.
14



DUAL-ARM COORDI NATION

3

Collision-free task assignment:

Green & purple: Arm activities.
Yellow: unassigned task generated from
latest perception result.

Timeline of system activities.
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Experiences from ARC 2017




FINAL RUN

Highly successful: Stowed 14 out of 16 objects, picked 8 out of 9 objects = 235 points.

Failure 1: Could not pick last two objects Failure 2: Could not pick last object during
from tote pick phase
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FINAL RUN: STOWING PHASE

- Items correctly segmented

- Control module always selected the
kitchen_masher

- Computed pregrasp pose collided with
the bin

- No randomness involved




FINAL RUN: PICKING PHASE

Failure mode a):

- Item undersegmented due to very sparse annotation
- Control module starts moving other objects to other bin



FINAL RUN: PICKING PHASE

- Item grasped, but fails weight check:
weight diff=0.059g, expected weight=0.086g

- Noise problems with scales 19



LESSONS LEARNED

- Motion generation

- Full motion planning is not really necessary.

- If using keyframe-based approach, make keyframe generation as robust as possible.
- Object perception

- Deep Learning techniques are applicable in this setting.

- Make sure you are training the correct objective!
- High-level control

- Don't get stuck in loops!
- Separate verification method (weight) relaxes demands on segmentation accuracy and
grasp precision.
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RESULTS

- Robust and fast item perception

i clutEred seemnEs. Amazon Robotics Challenge

. - . Final
- Perception pipeline can be quickly adapted to ( )
novel items.
i Rank Team Score
- Robust grasp generation
for a large variety of items. 1 ACRV 272
- Planning & Coordination for dual-armed 2 NimbRo 235
3 Nanyang 225

manipulation in shared workspace.
- 2nd place in the ARC 2017 Finals!
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THANK YOU

Michael Schreiber Sven Behnke Arul Selvam Periyasamy German Martin Garcia
Seongyong Koo Christian Lenz  Max Schwarz
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