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Introduction

This talk: Focus on Lessons Learned from 4PC ࠃ߾߽߿ and 4RC ࠄ߾߽߿

More details also in interactive presentation / paper:
Fast Object Learning and Dual-arm Coordination for Cluttered Stowing, Picking, and Packing
Max Schwarz, Christian Lenz, Germán Martín García, Seongyong Koo, 4rul Selvam Periyasamy, Michael Schreiber,
and Sven Behnke
ICR4 ,ࠅ߾߽߿ session WeA@L.6
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What did we learn from APC ?6߾߽߿

NimbRo Picking 4PC :ࠃ߾߽߿
stow: nd߿ place
pick: rdࠀ place • Hybrid grasping strategies work well: Suction +

Pinch grasping (Delft, MIT, PFN)
• Complex grasping actions can be performed
using keyframe interpolation techniques
(NimbRo)

• Stationary sensor setups are faster (Delft, ...)
• Measuring weight is valuable
• Speed! If you fail, just retry.
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Rule changes for ARC 7߾߽߿

• Unknown objects
→ need fast semi-automatic capture & training

• Pack three boxes in parallel
→ multiple arms

• No deep shelf bins
→ linear actuator not required
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System Design



System Design

Sensor setup

Vacuum cleaner

DOFࠃ URࠂ arm

DOFࠀ endeffector

Storage system

Industrial scales

Stow setup
with tote

Pick setup
with boxes
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Endeffector Design - Suction

Bendable finger

Suction cup

߿ DOF
pinch finger

Suction hoseBelt drive

 

 

This endeffector design allows us to grasp items using suction...
ࠃ



Endeffector Design - Pinch Grasp

Bendable finger

Suction cup

߿ DOF
pinch finger

Suction hoseBelt drive

 

 

... and perform pinch grasps with both fingers.
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Sensor Setup

Photoneo PhoXi®
D-Scannerࠀ XL

Nikon D߽߽ࠁࠀ
photo camera

LED panels
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Object Perception



Semantic Segmentation

4 state-of-the-art semantic segmentation method is used to perceive objects.

RefineNet: Multi-Path Refinement Networks
for High-Resolution Semantic Segmentation

Guosheng Lin, 4nton Milan, Chunhua Shen, Ian Reid
CVPR 7ࠒࠑࠓ
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Data Capture, Scene Synthesis & Training

 

 

We capture new objects using a turntable and generate synthetic scenes on top of
annotated dataset frames. Training is performed in ≈ min߽ࠀ on four Titan X cards.
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Segmentation results
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Figure :߾ Segmentation experiments. Left: Training image throughput depending on the number of
GPUs. Right: Test set IoU during training.
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Grasp Generation

• Object contours are extracted
from segmentation.

• D߿ grasp points with maximum
distance to the contour are
found.

• Dࠃ grasp poses are calculated
from depth and local surface
normals.
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Grasp Generation

• Object contours are extracted
from segmentation.

• D߿ grasp points with maximum
distance to the contour are
found.

• Dࠃ grasp poses are calculated
from depth and local surface
normals.
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Motion Generation and Dual-arm
Coordination



Nullspace-optimizing IK

• Secondary objective optimized during
IK: Keep wrist as high as possible and
away from the robot base

• For suction grasps, consider only Dࠂ
poses

⇒ Reach any visible suction pose in the bin
without arm↔bin collisions.
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Dual-arm Coordination

• Manipulation tasks are defined by line
segments between endeffector
waypoints.

• Line segments are projected in D߿ for
collision checking.

• Next tasks are assigned to a free arm if
the minimum distance between all pairs
of line segments is large enough.

Green & purple: 4rm activities. Yellow: Next tasks.
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Dual-arm Coordination

• Manipulation tasks are defined by line
segments between endeffector
waypoints.

• Line segments are projected in D߿ for
collision checking.

• Next tasks are assigned to a free arm if
the minimum distance between all pairs
of line segments is large enough.

Green & purple: 4rm activities. Yellow: Next tasks.
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Dual-arm Coordination

 

 

Collision-free task assignment:

Green & purple: 4rm activities.
Yellow: unassigned task generated from
latest perception result.

Timeline of system activities.
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Experiences from ARC 7߾߽߿



Final run

Highly successful: Stowed ࠁ߾ out of ࠃ߾ objects, picked ࠅ out of ࠆ objects⇒ ࠂࠀ߿ points.

Failure :߾ Could not pick last two objects
from tote

Failure :߿ Could not pick last object during
pick phase
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Final run: Stowing Phase

• Items correctly segmented
• Control module always selected the
kitchen_masher

• Computed pregrasp pose collided with
the bin

• No randomness involved

ࠄ߾



Final run: Picking Phase

Failure mode a):

• Item undersegmented due to very sparse annotation
• Control module starts moving other objects to other bin
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Final run: Picking Phase

 

 

Failure mode b):

• Item grasped, but fails weight check:
weight diff=0.059g, expected weight=0.086g

• Noise problems with scales ࠆ߾



Lessons Learned

• Motion generation
• Full motion planning is not really necessary.
• If using keyframe-based approach, make keyframe generation as robust as possible.

• Object perception
• Deep Learning techniques are applicable in this setting.
• Make sure you are training the correct objective!

• High-level control
• Don’t get stuck in loops!
• Separate verification method (weight) relaxes demands on segmentation accuracy and
grasp precision.
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Results

• Robust and fast item perception
in cluttered scenes.

• Perception pipeline can be quickly adapted to
novel items.

• Robust grasp generation
for a large variety of items.

• Planning & Coordination for dual-armed
manipulation in shared workspace.

• nd߿ place in the 4RC ࠄ߾߽߿ Finals!

4mazon Robotics Challenge
(Final)

Rank Team Score

ࠒ 4CRV ࠓ7ࠓ
ࠓ NimbRo 5ࠔࠓ
ࠔ Nanyang 5ࠓࠓ
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Thank you

Michael Schreiber Sven Behnke 4rul Selvam Periyasamy Germán Martín García
Seongyong Koo Christian Lenz Max Schwarz
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