Perception, Planning, and Learning for Cognitive Robots

Sven Behnke

University of Bonn Computer Science Institute VI Autonomous Intelligent Systems

Many New Application Areas for Robots

- Self-driving cars
- Logistics
- Agriculture, mining
- Collaborative production
- Personal assistance
- Space, search & rescue
- Healthcare
- Toys

Need more cognitive abilities!

Some of our Cognitive Robots

- Equipped with numerous sensors and actuators
- Complex demonstration scenarios

Soccer

Domestic service

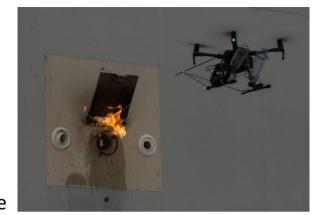
Mobile manipulation

Bin picking

Aerial inspection

Some more of our Cognitive Robots

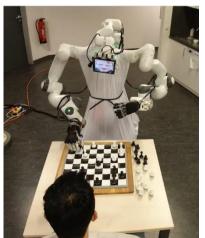
- Equipped with numerous sensors and actuators
- Complex demonstration scenarios



Rescue

Phenotyping

Human-robot collaboration



Telepresence

Deep Learning

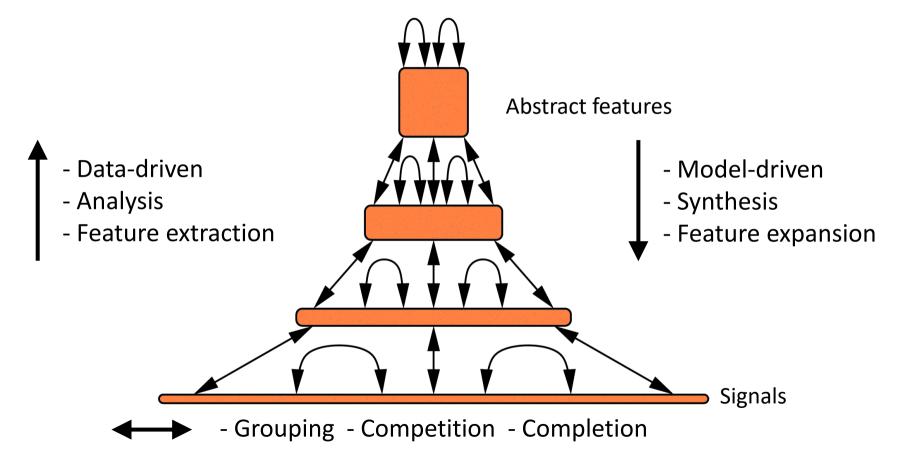
Learning layered representations

Compositionality

Elephant Kangaroo Penguin labels arning arning singly e increa D complex 0 O upervis O supervis inputs

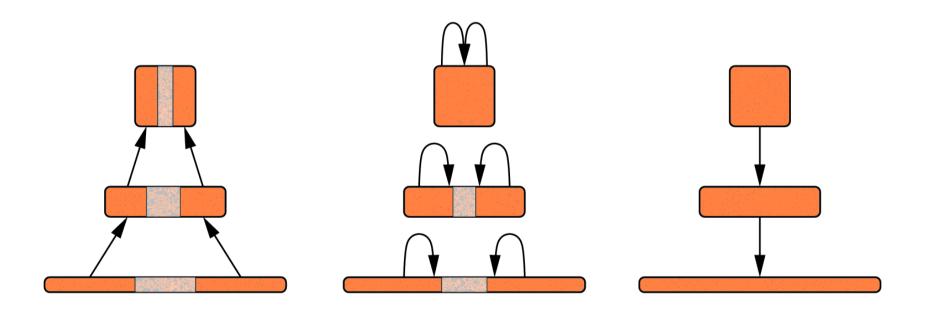
[Schulz; Behnke, KI 2012]

Neural Abstraction Pyramid



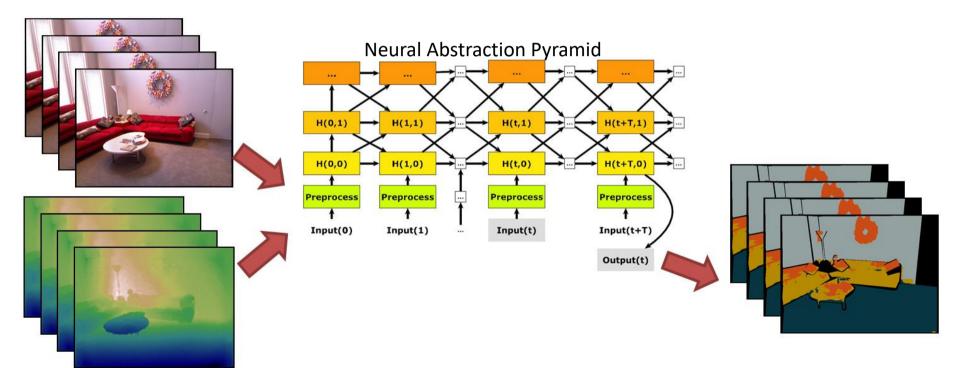
Iterative Image Interpretation

- Interpret most obvious parts first
- Use partial interpretation as context to iteratively resolve local ambiguities



Neural Abstraction Pyramid for Semantic Segmentation of RGB-D Video

Recursive computation is efficient for temporal integration



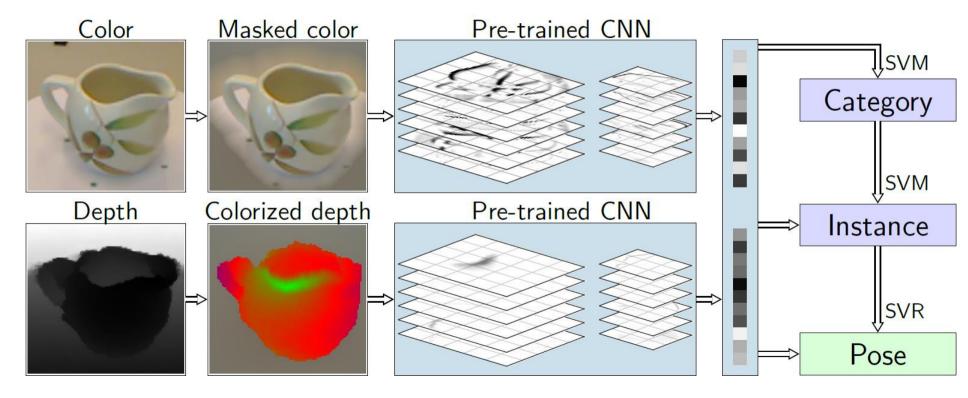
The Data Problem

- Deep Learning in robotics (still) suffers from shortage of available examples
- We address this problem in three ways:
- Transfer learning:
 Pre-training on large related data,
 self-supervised learning
- Generating data:
 Online mesh databases,
 scene synthesis
- 3. Inductive biases:

 3D projective geometry,
 camera motion, canonical frames,
 object relations, compositionality, ...

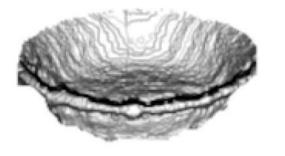
RGB-D Object Recognition and Pose Estimation

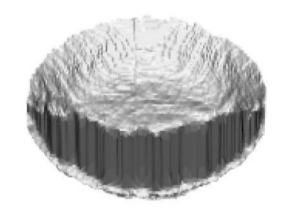
Transfer learning from large-scale data sets



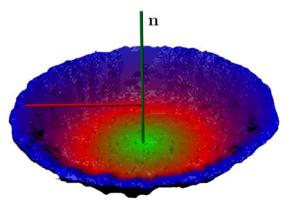
Canonical View, Colorization

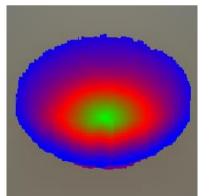
- Objects viewed from different elevation
- Render canonical view





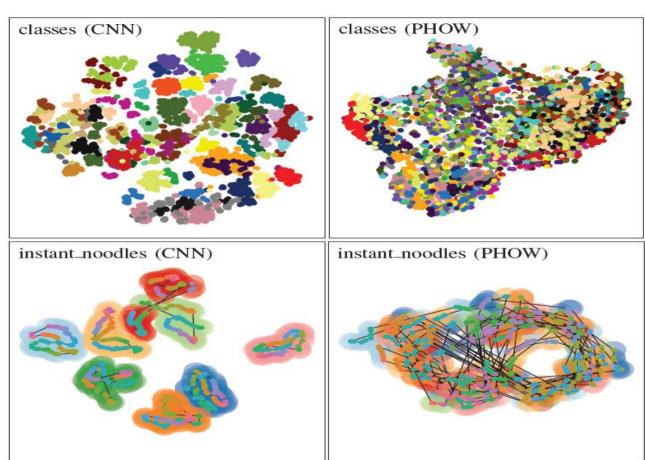
Colorization based on distance from center vertical





Pretrained Features Disentangle Data

t-SNE embedding



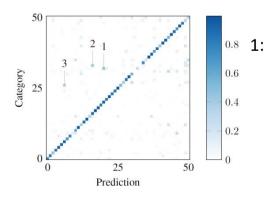
[Schwarz, Schulz, Behnke ICRA2015]

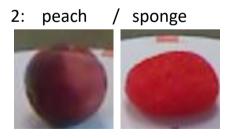
Recognition Accuracy

Improved both category and instance recognition

	Category Accuracy (%)		Instance Accuracy (%)	
Method	RGB	RGB-D	RGB	RGB-D
Lai <i>et al.</i> [1]	74.3 ± 3.3	81.9 ± 2.8	59.3	73.9
Bo <i>et al.</i> [2]	82.4 ± 3.1	87.5 ± 2.9	92.1	92.8
PHOW[3]	80.2 ± 1.8		62.8	
Ours	83.1 ± 2.0	88.3 ± 1.5	92.0	94.1
Ours	$\textbf{83.1} \pm \textbf{2.0}$	89.4 ± 1.3	92.0	94.1

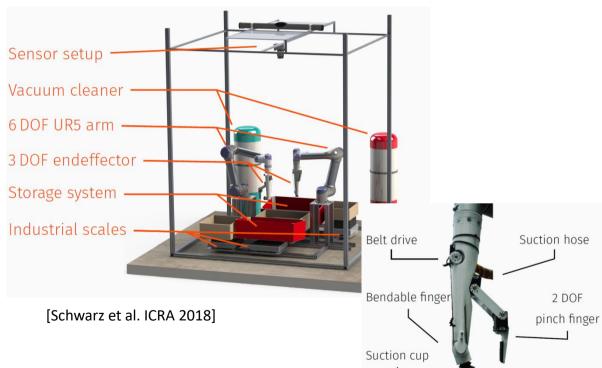
Confusion:





Amazon Robotics Challenge

- Storing and picking of items
- Dual-arm robotic system



[Amazon]

Object Capture and Scene Rendering

Turntable + DLSR camera

Semantic Segmentation and Grasp Pose Estimation

- Semantic segmentation using RefineNet [Lin et al. CVPR 2017]
- Grasp positions in segment centers

mouse_traps conf: 0.921731

windex

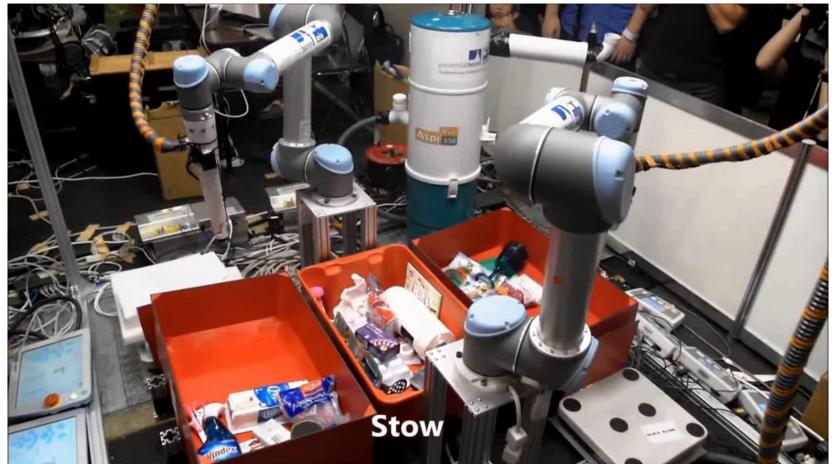
conf: 0.861246

q-tips_500 conf: 0.475015

fiskars_scissors conf: 0.831069

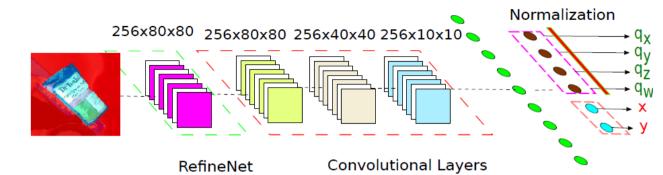
ice_cube_tray conf: 0.976856

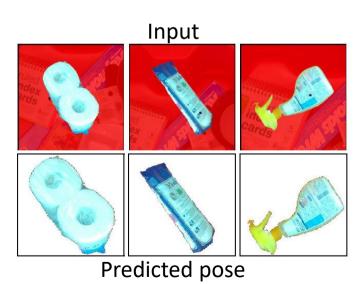
Amazon Robotics Challenge 2017



Object Pose Estimation

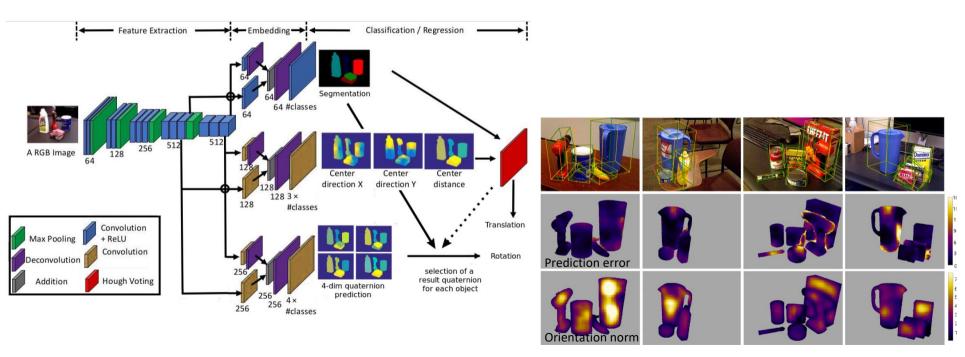
- Cut out individual segments
- Use upper layer of RefineNet as input
- Predict pose coordinates





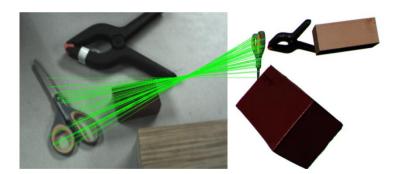
Dense Convolutional 6D Object Pose Estimation

- Extension of PoseCNN [Xiang et al. RSS 2018]
- Dense prediction of object center and orientation, without cutting out

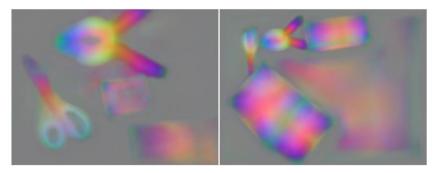


Self-Supervised Surface Descriptor Learning

- Feature descriptor should be constant under different transformations, viewing angles, and environmental effects such as lighting changes
- Descriptor should be unique to facilitate matching across different frames or representations
- Learn dense features using a contrastive loss



Known correspondences



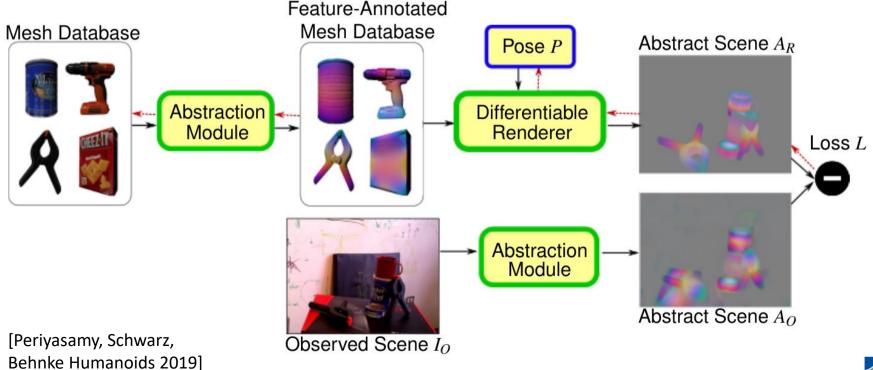
Learned features

Descriptors as Texture on Object Surfaces

- Learned feature channels used as textures for 3D object models
- Used for 6D object pose estimation

Abstract Object Registration

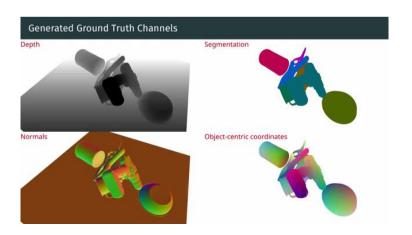
- Compare rendered and actual scene in feature space
- Adapt model pose by gradient descent

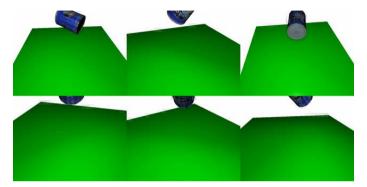


Registration Examples

Stillleben: Learning from Synthetic Scenes

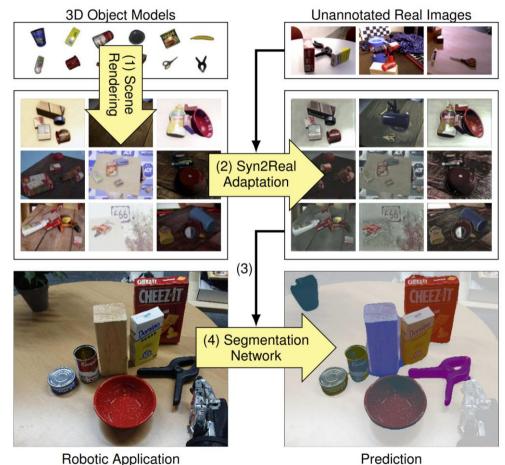
- Cluttered arrangements from 3D meshes
- Photorealistic scenes with randomized material and lighting including ground truth
- For online learning & render-and-compare
- Semantic segmentation on YCB Video Dataset
 - Close to real-data accuracy
 - Improves segmentation of real data





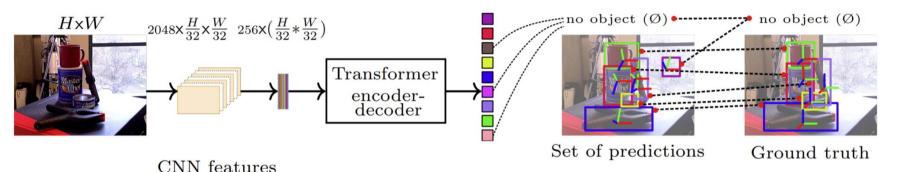
Synthetic-to-Real Domain Adaptation

- Generate images from 3D object meshes
- Adapt the synthetic images to the real domain using unannotated real images (GAN loss)
- Train downstream task using adapted images
- Semantic segmentation results almost as good as trained with real images
- Improved results in combination with real annotations

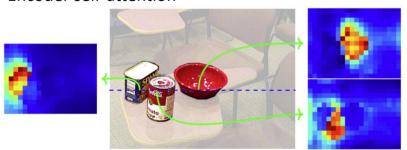


T6D-Direct: Transformers for Multi-Object 6D Pose Direct Regression

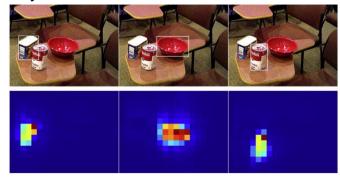
- Extends DETR: End-to-end object detection with transformers [Carion et al. ECCV 2020]
- End-to-end differentiable pipeline for 6D object pose estimation



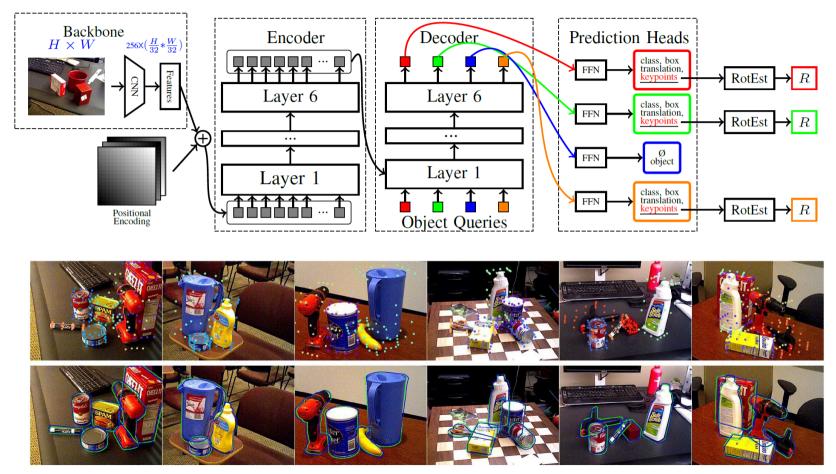
Encoder self-attention



Object detections and decoder attention

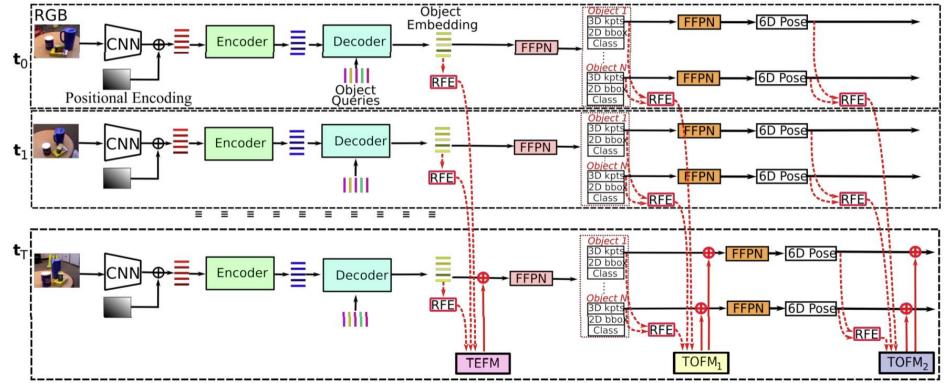


Multi-Object 6D Pose Estimation using Keypoint Regression



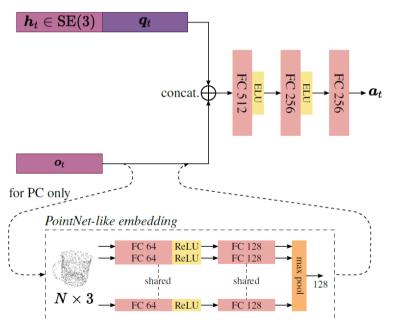
MOTPose: Attention-based Temporal Fusion for Multi-object 6D Pose Estimation

Transformer-based temporal embedding and object fusion modules



Learning Interactive Grasping

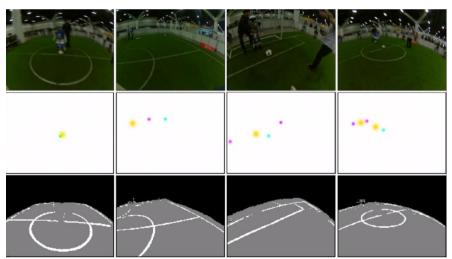
- Deep RL-based interactive policy
- Input: object parameters or point cloud + hand pose
- Output: increments of hand DoF:

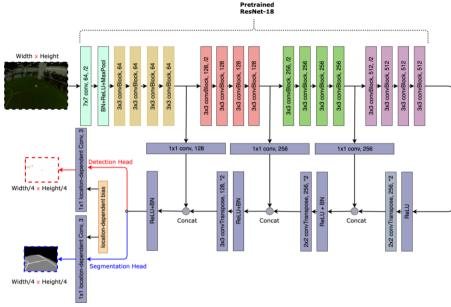


Humanoid AdultSize Soccer: RoboCup 2022 in Bangkok

Transfer Learning for Visual Perception

- Encoder-decoder network
- Two outputs
 - Object detection
 - Semantic segmentation
- Location-dependent bias

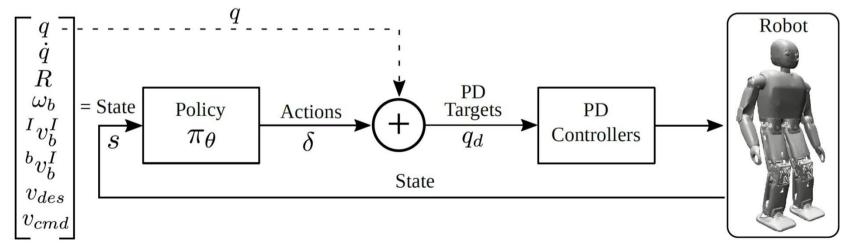




- Detects objects that are hard to recognize for humans
- Robust to lighting changes

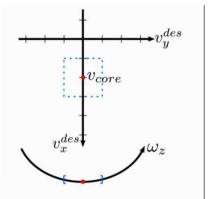
Learning Omnidirectional Gait from Scratch

- State includes joint positions and velocities, robot orientation, robot speed
- Actions are increments of joint positions
- Simple reward structure
 - Velocity tracking
 - Pose regularization
 - Not falling



Learning Curriculum

- Start with small velocities
- Increase range of sampled velocities



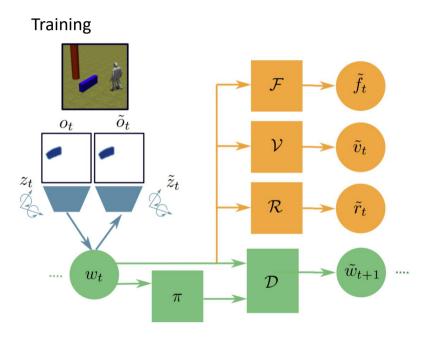
Learned Omnidirectional Gait

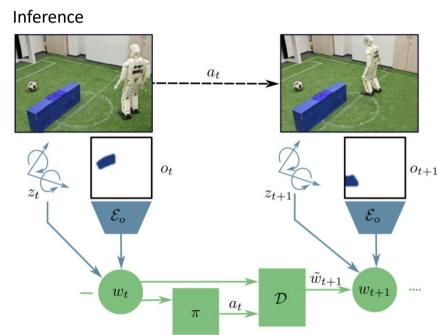
Target velocity can be changed continuously

 $v_x = 0.6 \, {\rm m/s}$ $v_y = 0.0 \, \mathrm{m/s}$ $\omega_z = 0.0 \, \mathrm{rad/s}$ Our locomotion controller is able to: Walk Forward $\omega_z=$ 0.0 rad/s

Learning Mapless Humanoid Navigation

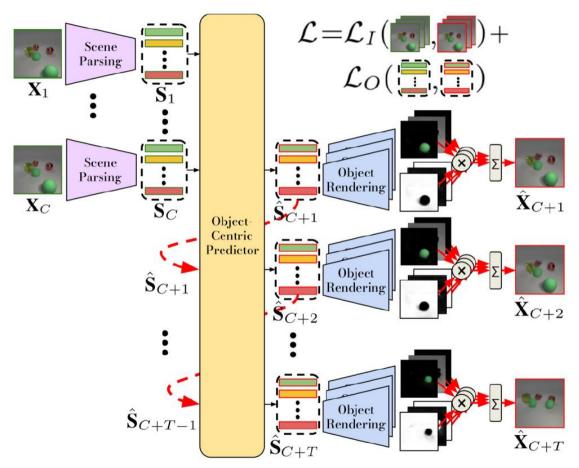
- Visual (RGB images) and nonvisual observations to learn a control policy and an environment dynamics model
- Anticipate terminal states of success and failure



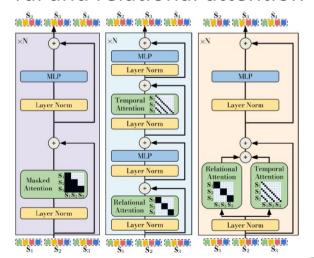


Learning Mapless Humanoid Navigation

Object-centric Video Prediction Decoupling Dynamics and Interaction



- Scene parsing into object slots
- Video synthesis from objects and masks
- Predictor decouples temporal and relational attention

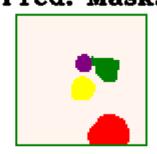


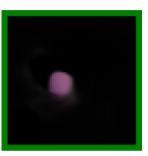
Object-centric Video Prediction Decoupling Dynamics and Interaction

GT

Pred. RGB

Pred. Masks



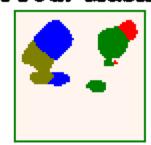


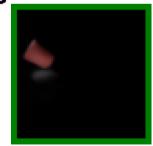


GT

Pred. RGB

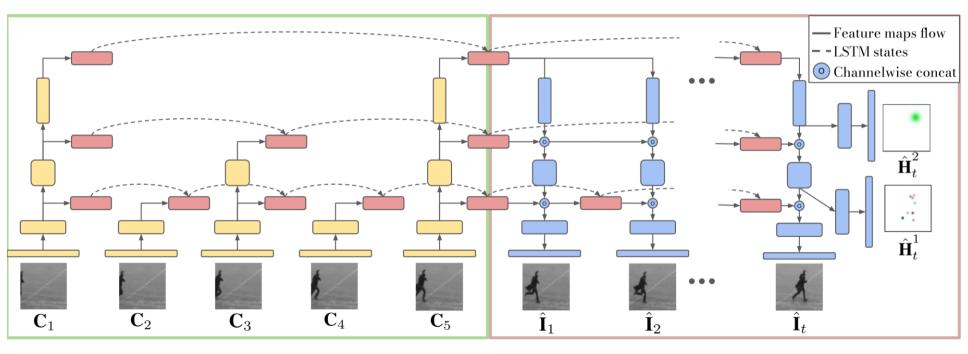
Pred. Masks





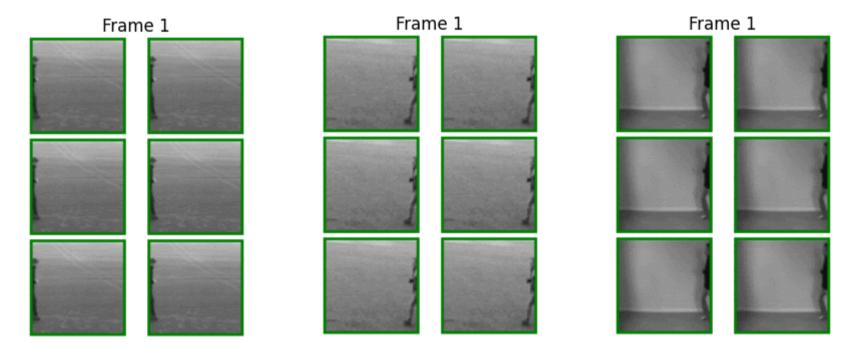
MSPred: Video Prediction at Multiple Spatio-Temporal Scales

- Coarser, more abstract predictions for longer time horizons in higher layers
- Predict image itself, human pose joint keypoints, and human body position



MSPred: Video Prediction at Multiple Spatio-Temporal Scales

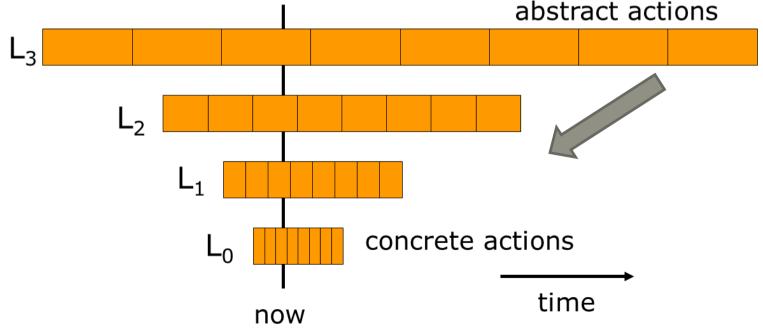
- Coarser, more abstract predictions for longer time horizons in higher layers
- Predict image itself, human pose joint keypoints, and human body position



Hierarchical Planning in the Now

- Use predicted state on different layers of abstraction for planning
- Coarse-to-fine planning makes actions more concrete as they come closer to execution

Plan consists of few steps on each layer



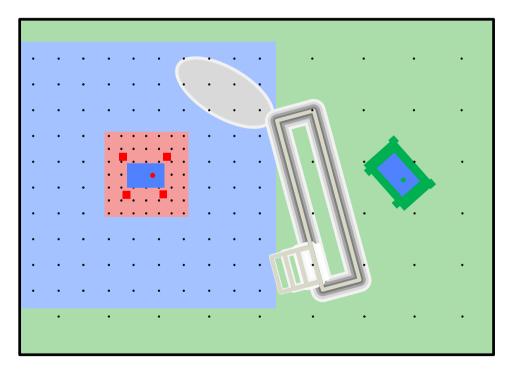
Centauro Robot

- Serial elastic actuators
- 42 main DoFs
- Schunk hand
- 3D laser
- RGB-D camera
- Color cameras
- Two GPU PCs

[Tsagarakis et al., IIT 2017]

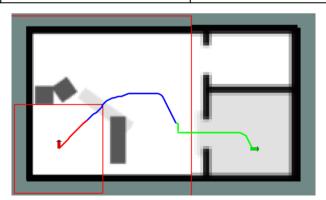
Hybrid Driving-Stepping Locomotion Planning: Abstraction

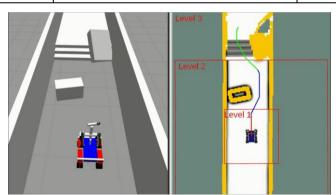
- Planning in the here and now
- Far-away details are abstracted away



Hybrid Driving-Stepping Locomotion Planning: Abstraction

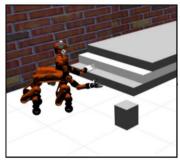
L	_evel	Map Resolution		Map Features		Robot Representation			Action Semantics		
	1		• 2.5 cm • 64 orient.	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	• Height					\bigwedge	• Individual Foot Actions
	2		• 5.0 cm • 32 orient.		Height Height Difference			+ + + + + + + + + + + + + + + + + + + 		$/\setminus$	• Foot Pair Actions
	3		• 10 cm • 16 orient.		HeightHeight DifferenceTerrain Class		\bigvee				Whole Robot Actions





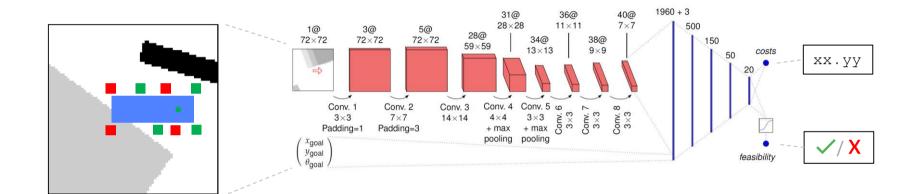
Learning Cost Functions of Abstract Representations

Planning problem



Abstraction CNN

Predict feasibility and costs of local detailed planning



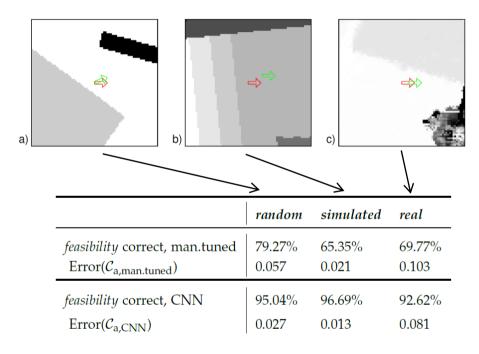
Training data

- generated with random obstacles, walls, staircases
- costs and feasibility from detailed A*-planner
- ~250.000 tasks

Learned Cost Function: Abstraction Quality

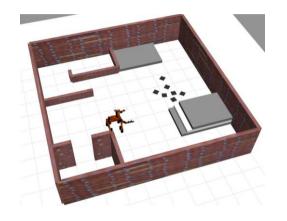
CNN predicts feasibility and costs better than manually tuned geometric

heuristics

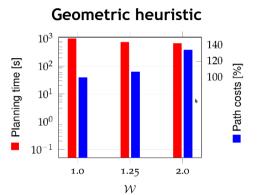


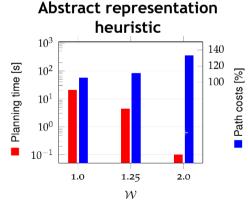
Experiments – Planning Performance

Learned heuristics accelerates planning,
 without increasing path costs much



Heuristic preprocessing: 239 sec



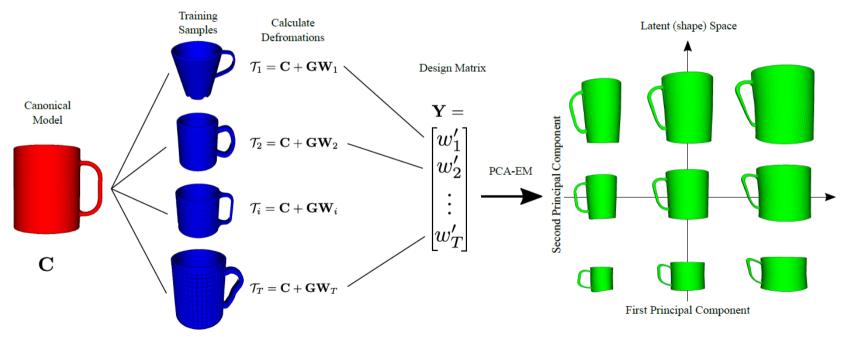


CENTAURO Evaluation @ KHG: Locomotion Tasks

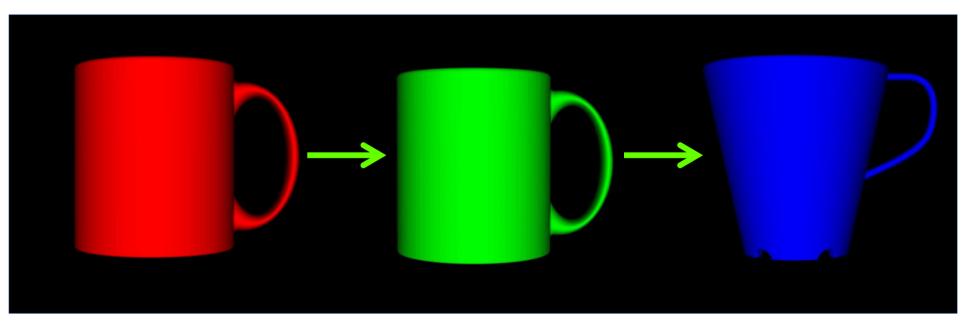
Transfer of Manipulation Skills

Learning a Latent Shape Space

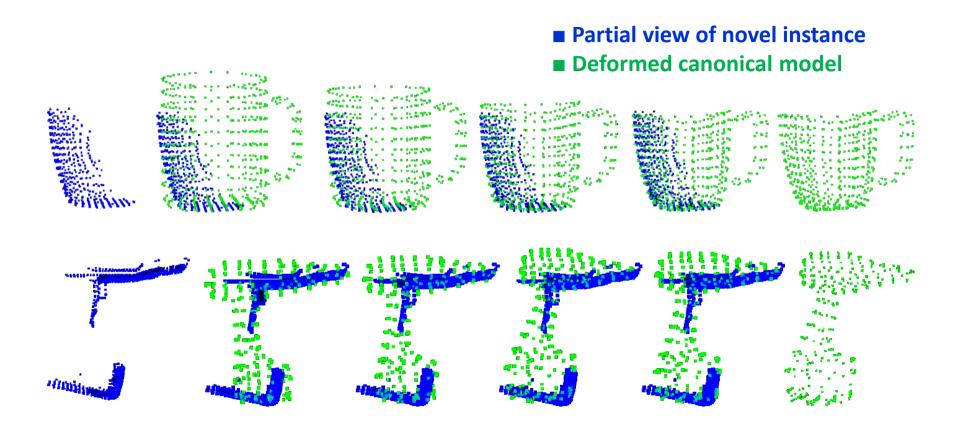
- Non-rigid registration of instances and canonical model
- Principal component analysis of deformations



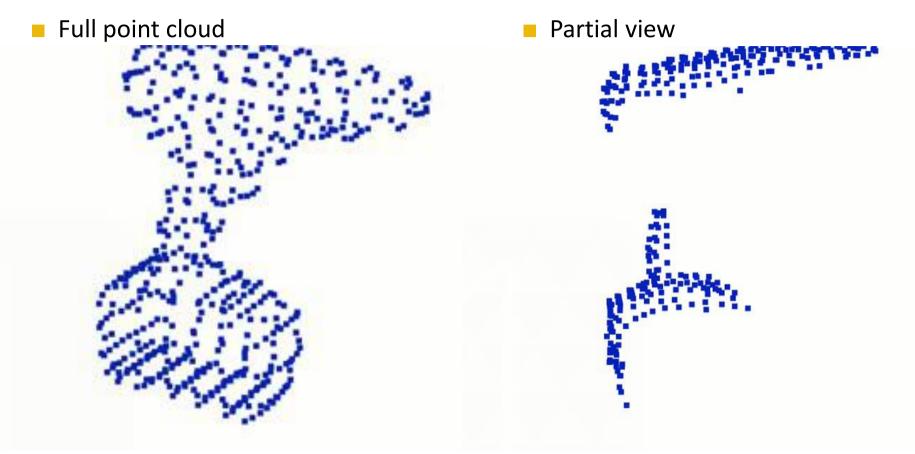
Interpolation in Shape Space



Shape-aware Non-rigid Registration



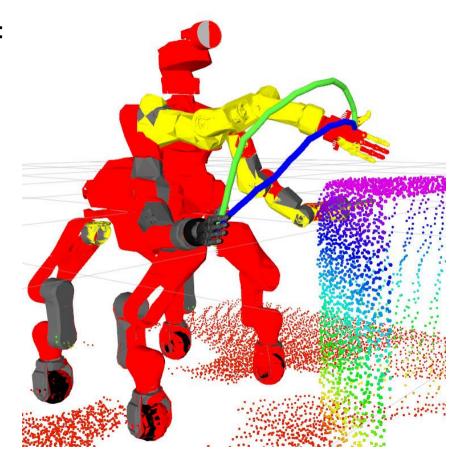
Shape-aware Registration for Grasp Transfer



Collision-aware Motion Generation

Constrained Trajectory Optimization:

- Collision avoidance
- Joint limits
- Time minimization
- Torque optimization

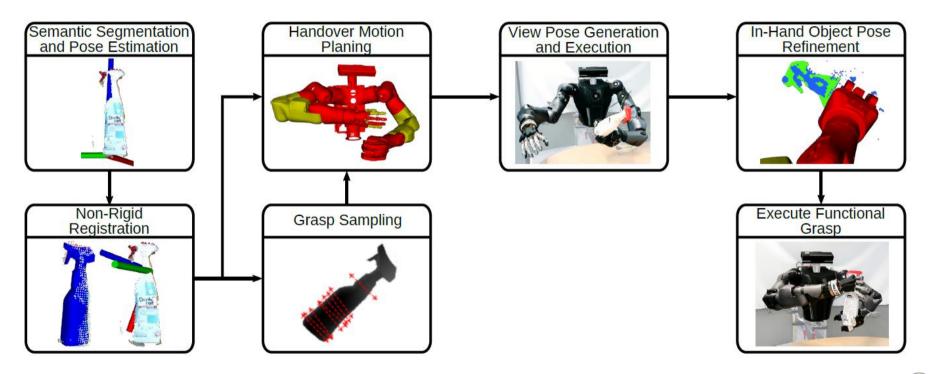


Grasping an Unknown Power Drill and Fastening Screws

CENTAURO: Complex Manipulation Tasks

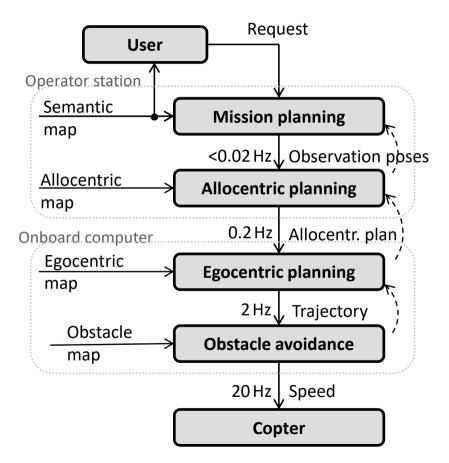
Regrasping for Functional Grasp

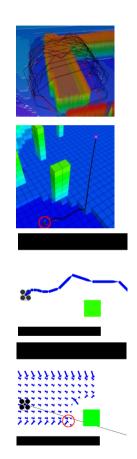
- Direct functional grasps not always feasible
- Pick up object with support hand, such that it can be grasped in a functional way



Regrasping Experiments

Micro Aerial Vehicles: Hierarchical Navigation





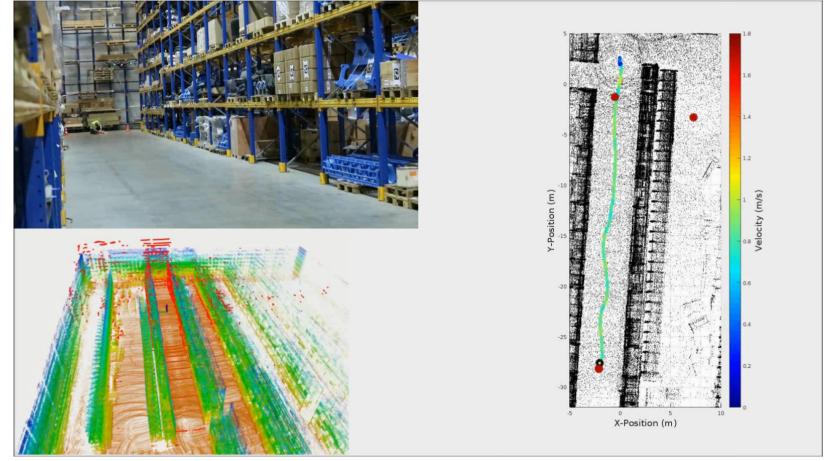
Mission plan

Allocentric planning

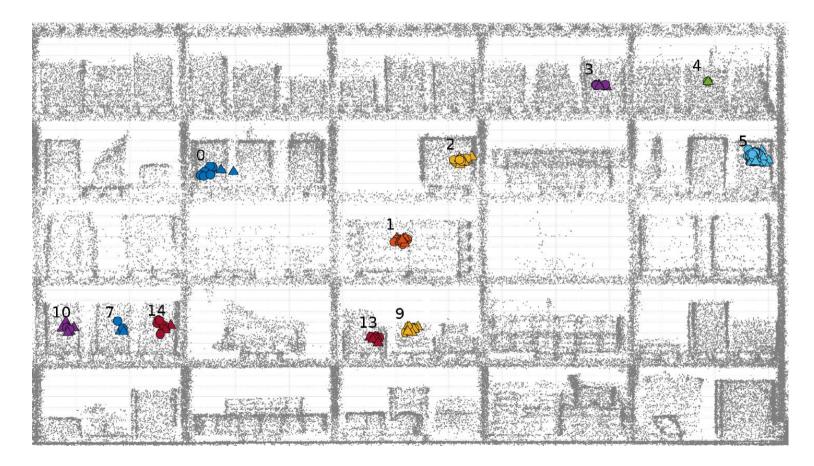
Egocentric planning

Obstacle avoidance

InventAIRy: Autonomous Navigation in a Warehouse



InventAIRy: Detected Tags in Shelf



German Rescue Robotics Center

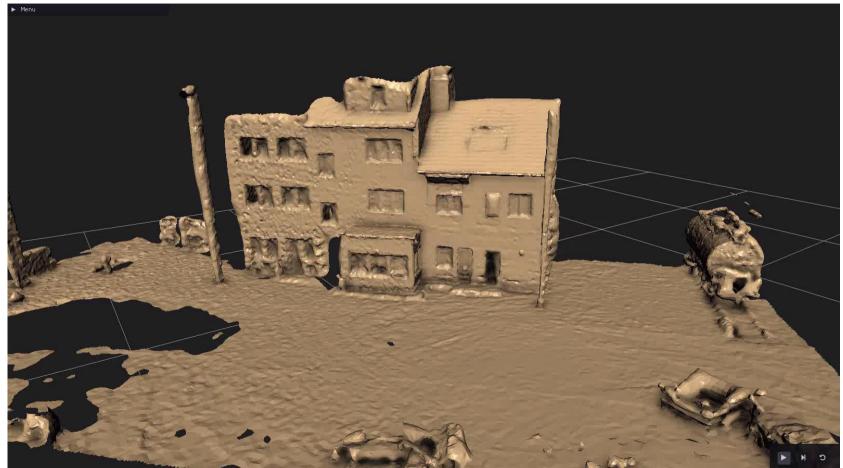
Initial demonstrator

- Basis: DJI Matrice 600 Pro
- Sensors: Velodyne VLP 16, FLIR Boson, 2x FLIR BlackFly S
- Tiltable sensor head

Current demonstrator

- Basis: DJI Matrice 210 v2
- Sensors: Ouster OS-0, FLIR AGX, 2× Intel RealSense D455
- IP43 water resistance

Modeling the Brandhaus Dortmund



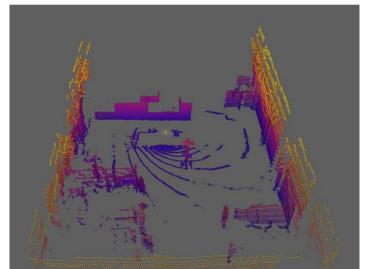
Real-time LiDAR Odometry with Continuous-time Trajectory Optimization

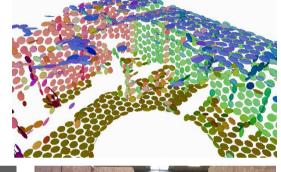
 Simultaneous registration of multiple multiresolution surfel maps using Gaussian mixture models and temporally continuous B-spline

Accelerated by sparse permutohedral voxel grids

and adaptive choice of resolution

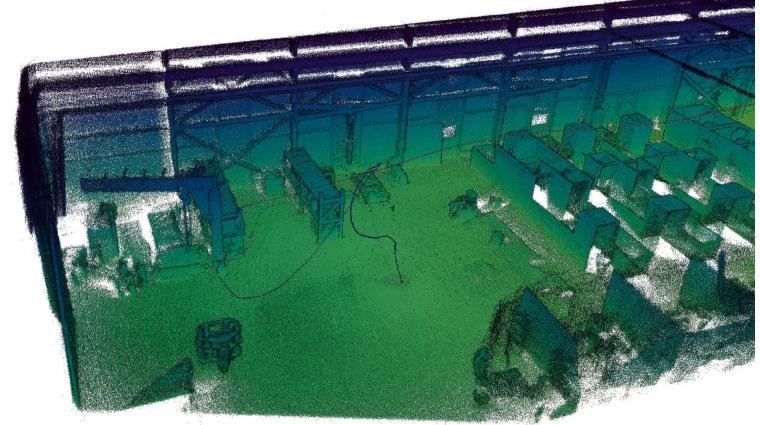
- Real-time onboard processing 16-20 Hz
- Open-Source https://github.com/AIS-Bonn/ lidar_mars_registration



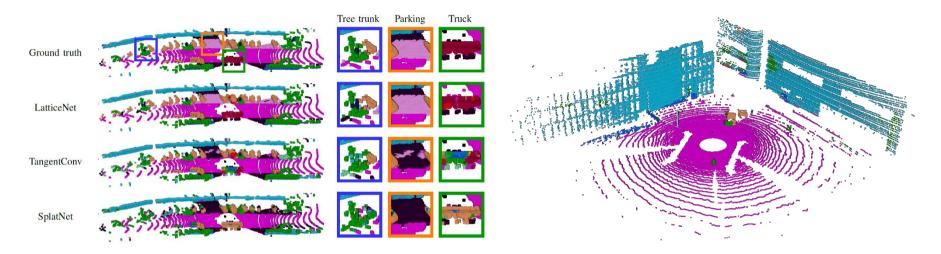


3D LiDAR Mapping

DRZ Living Lab



Semantic Perception: LiDAR Segmentation

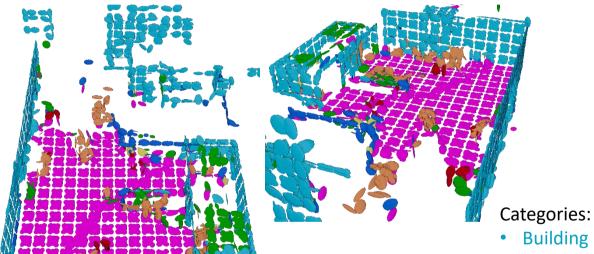


- LatticeNet segmentation of 3D point clouds based on sparse permutohedral grid
- Hierarchical information aggregation through U-Net architecture
- LatticeNet is real-time capable and achieves excellent results in benchmarks

Semantic Fusion: 3D LiDAR Mapping

Segmented point cloud

Minimax-Viking fire house

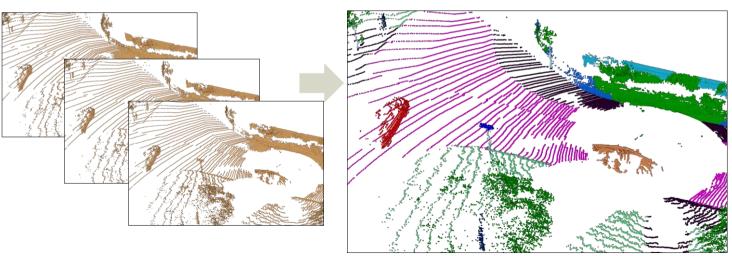


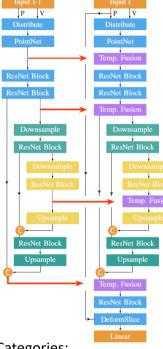
Semantic multiresolution surfel map

- **Building**
- Floor
- Persons
- **Vehicles**
- Fence
- Vegetation

Semantic Fusion: Temporal LatticeNet

- Semantic segmentation of sequences of 3D point clouds
- Integration of recurrent connections
- Trained on three scans of SemanticKITTI
- Distinguishing moving from parking vehicles



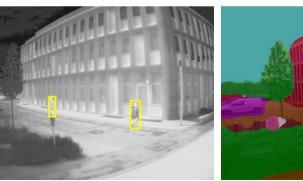


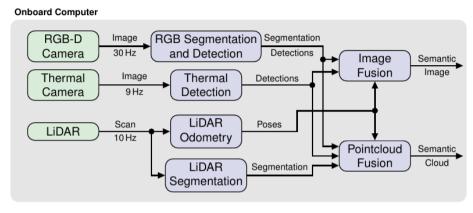
Categories:

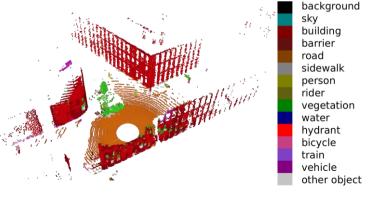
- Street
- Moving Vehicle
- Parking Vehicle
- Vegetation

Onboard Multimodal Semantic Fusion

- Real-time semantic segmentation and object detection (≈9Hz) with EdgeTPU / iGPU
 - SalsaNext for LiDAR
 - DeepLabv3 for RGB images
 - SSD MobileDet for Thermal/RGB
- Late-fusion for
 - Point cloud
 - Image segmentation

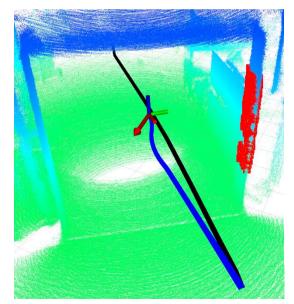


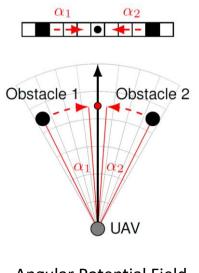




Predictive Angular Potential Field-based Obstacle Avoidance

- Aggregate LiDAR scans in range image
- Adjust direction using angular potential field
- Predict trajectory and range image
- Scale velocity based on time-to-contact



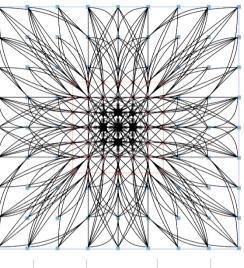


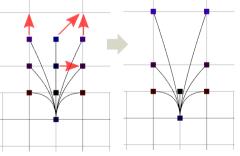
Current scan Aggregated scan

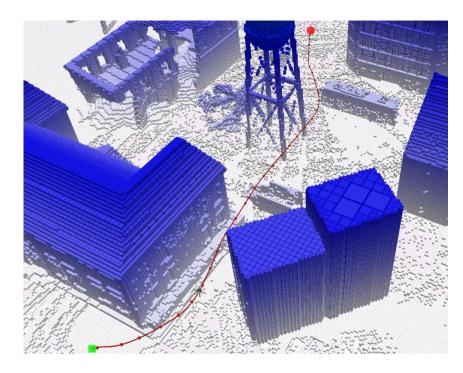
Angular Potential Field

Dynamic 3D Navigation Planning

- Positions and velocities in sparse local multiresolution grid
- Adaptation of movement primitives to grid
- Optimization of flight time and control costs
- 1 Hz replanning



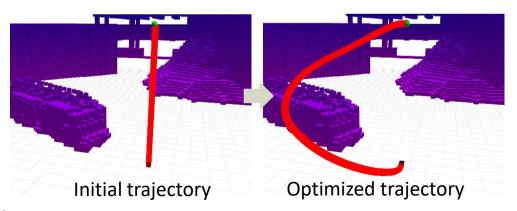


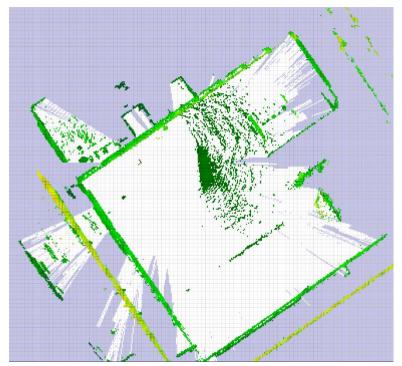


Planning with Visibility Constraints

DEUTSCHES RETTUNGSROBOTIK ZENTRUM

- Extra costs for flight through unmapped volumes
- Consideration of sensor frustum:
 - Coupling of vertical and horizontal motion
 - Preferred forward flight with limited rotational speed

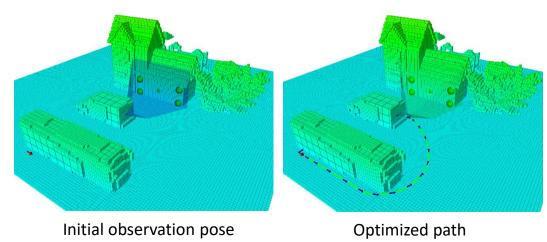


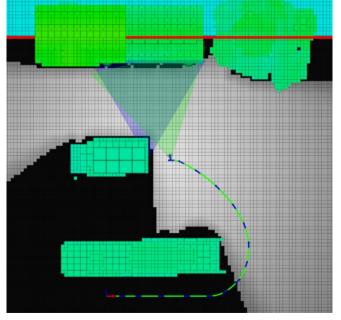


Obstacle map

Observation Pose Planning

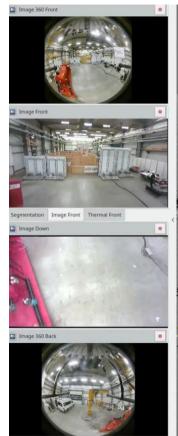
- Planning of observation poses with line of sight to the target object despite occlusions
- Target objects are defined by position, line of sight and distance
- Optimization of observation poses with regard to visibility quality and accessibility

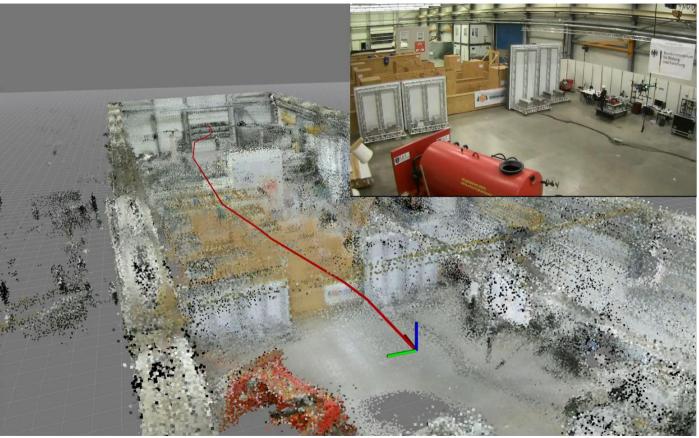




Top-down view

Autonomous Flight without GNSS





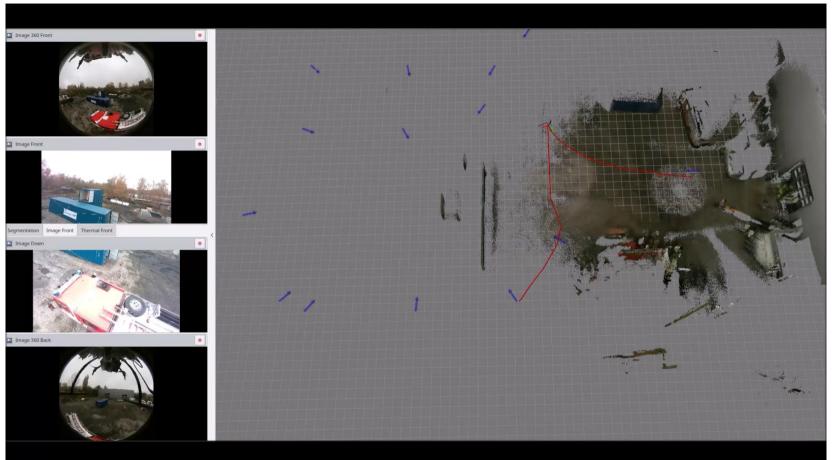
Exploration

DEUTSCHES REITUNGSROBOTIK ZENTRUM

- Definition of target area w.r.t. satellite images or maps
- Simple exploration patterns (spirals, meanders, ...)
- Collision check
- TSP to determine segment sequence
- Continuous replanning

Campus Poppelsdorf

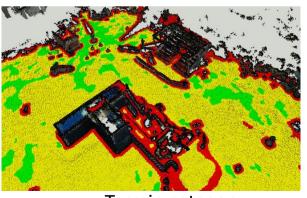
Autonomous Exploration



Terrain Classification for Traversability

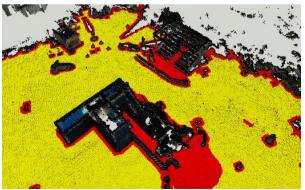
- Based on voxelfiltered aggregated point cloud
- Terrain classification based on local height differences in the robot ground robot footprints
- Categories: drivable, walkable, unpassable
- Reachability analysis

Aggregated colored point cloud



Terrain category [Schleich et al., ICUAS 2021]

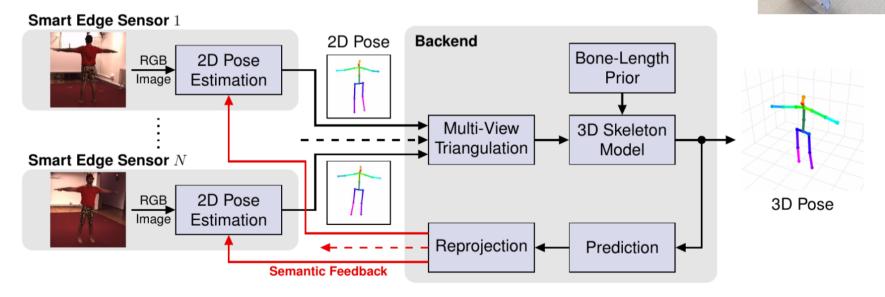
Local height differences



Reachability

Real-Time Multi-View 3D Human Pose Estimation using Semantic Feedback to Smart Edge Sensors

- Triangulation and skeleton model to recover 3D pose
- Semantic feedback channel for bidirectional communication between backend and sensors



Real-Time Multi-View 3D Human Pose Estimation using Semantic Feedback to Smart Edge Sensors

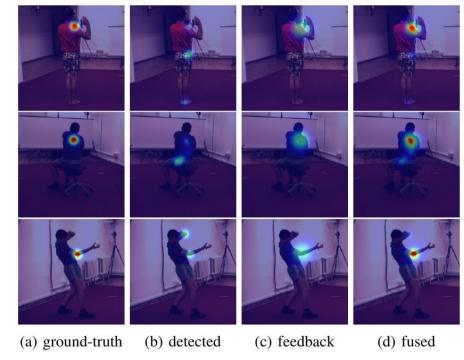
Feedback heatmap is rendered from feedback skeleton and fused with

detection on sensors

 Feedback heatmap helps to recover from incorrect or imprecise 2D joint detections

Examples:

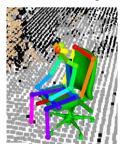
- Occluded left wrist (rows 1 and 2)
- Confusion of left and right elbow (row 3)

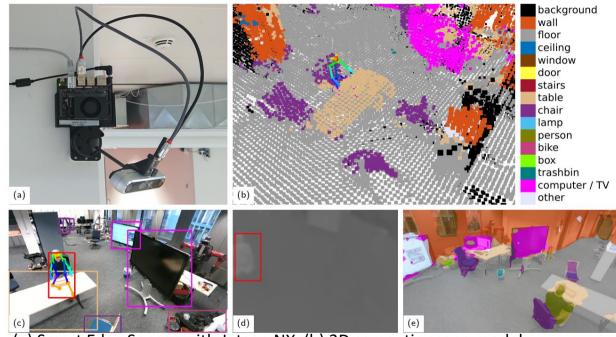


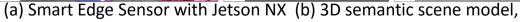
Semantic Perception with Smart Edge Sensor Network

- Object detection and semantic segmentation of RGB images
- Person detection in IR images
- Semantic labelling of RGB-D point clouds
- Pose estimation for mobile robot and objects





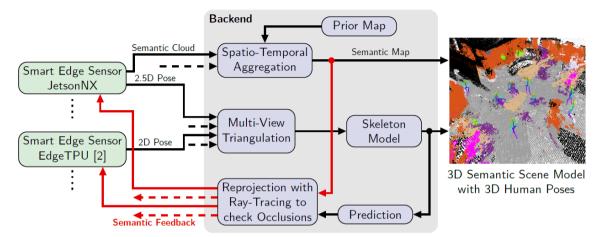




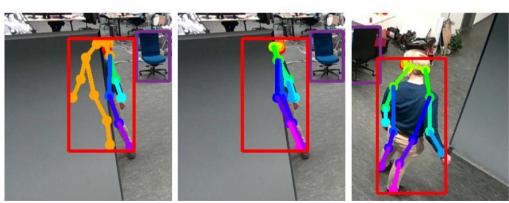
(c) RGB and (d) thermal detections, (e) semantic segmentation

3D Human Pose Estimation with Occlusion Feedback

- Heavy occlusion causes the pose estimation to collapse to the visible side only
- With occlusion feedback occluded joint detections can be discarded and the local model is completed



Unoccluded reference



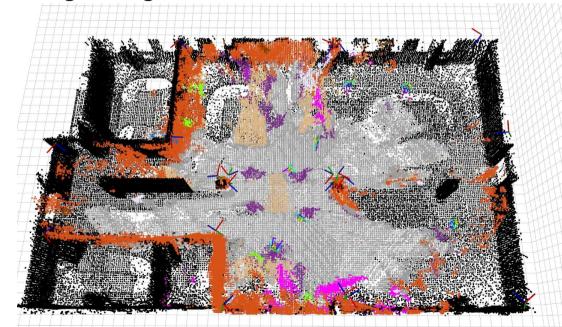
W/o occlusion feedback

Fully occluded

With occlusion feedback

Evaluation in Real-World Multi-Person Scenes

- 20 smart edge sensors (4 Jetson NX, 16 Edge TPU), covering 12×22 m area
- Experiments with 8 persons moving through the scene



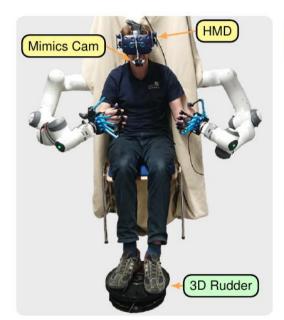
The sensor network provides a complete 3D semantic scene view and estimates dynamic 3D poses of multiple persons in real time.

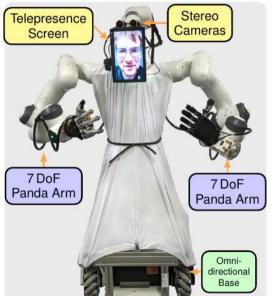
\$10M ANA Avatar XPRIZE Competition

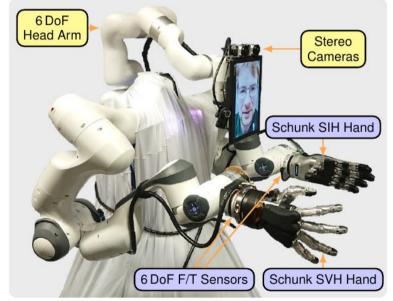
- Requires mobility, manipulation, human-human interaction
- Focuses on the immersion in the remote environment and the presence of the remote operator

NimbRo Avatar Semifinals System

- Two-armed avatar robot designed for teleoperation with immersive visualization
 & force feedback
- Operator station with HMD, exoskeleton and locomotion interface







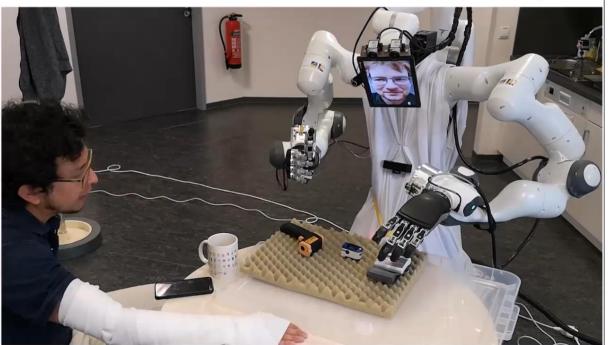
Team NimbRo Semifinal Submission

[Schwarz et al. IROS 2021]

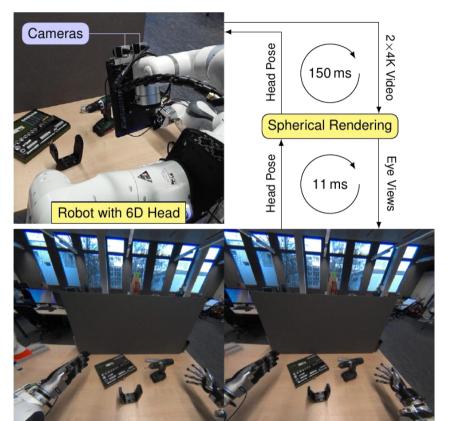
Team NimbRo Semifinal Team Video

Tasks

- 1. Make a coffee
- 2. Greet the recipient
- 3. Measure temperature
- 4. Measure blood pressure
- 5. Measure oxygen saturation
- 6. Help recipient with jacket

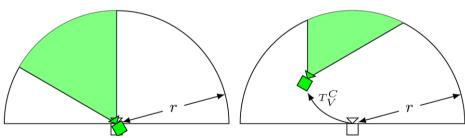


NimbRo Avatar: Immersive Visualization



Stereoscopic VR System

- 4K wide-angle stereo video stream
- 6D neck allows full head movement
 - Very immersive
- Spherical rendering technique hides movement latencies
 - Assumes constant depth



Exact for pure rotations

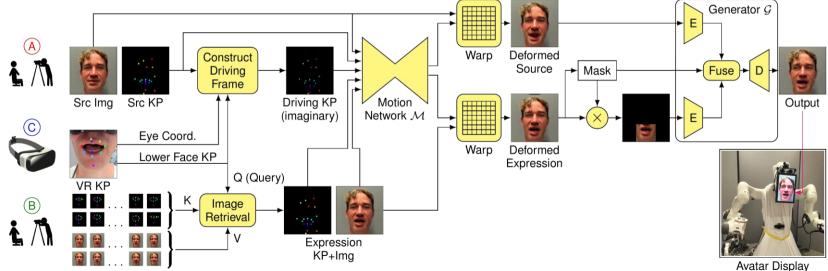
Distortions for translations

NimbRo Avatar: Operator Face Animation

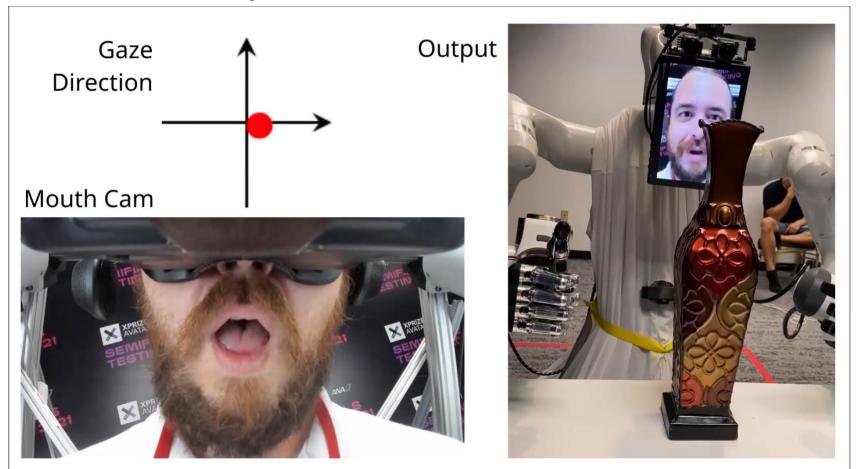
- Operator images without HMD
- Capture mouth and eyes
- Estimate gaze direction and facial keypoints

Right Eye

Generate animated operator face using a warping neural network

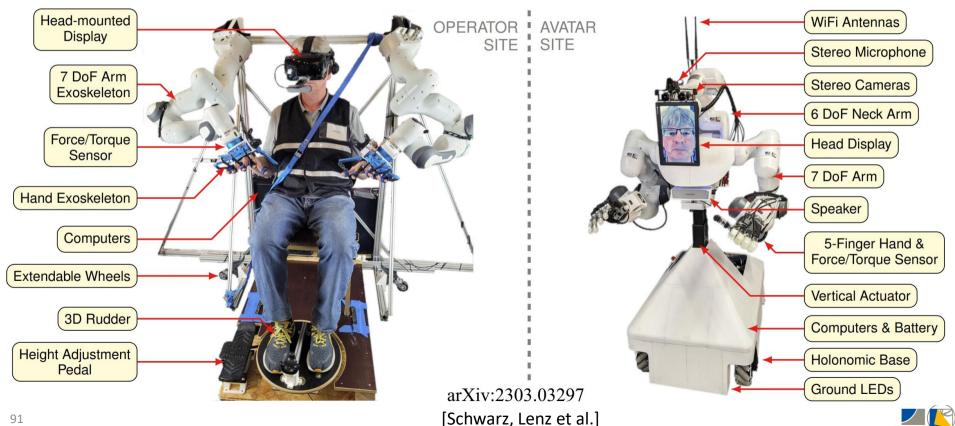


NimbRo Avatar: Operator Face Animation



NimbRo Avatar System for ANA Avatar XPRIZE Finals

New requirements: tetherless, remote perception of haptics, reliability



UNIVERSITÄT

Finals Test Run Day 1

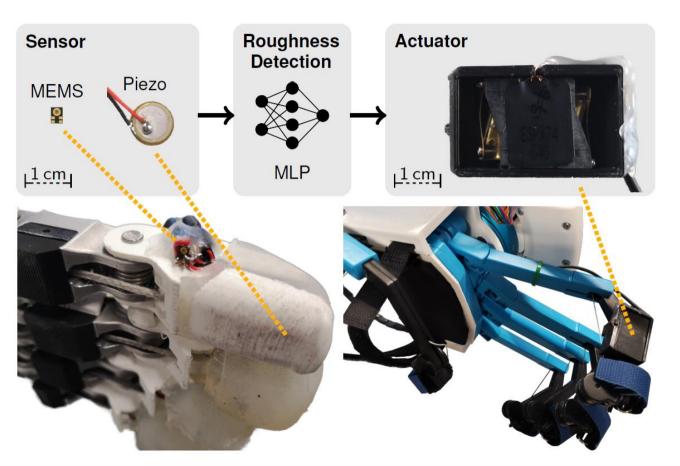
Haptic Perception

Sensors in the finger tips

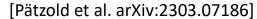
Actuators on the hand exoskeleton

[Pätzold et al. arXiv:2303.07186]

Roughness Perception



Data set of rough and smooth objects



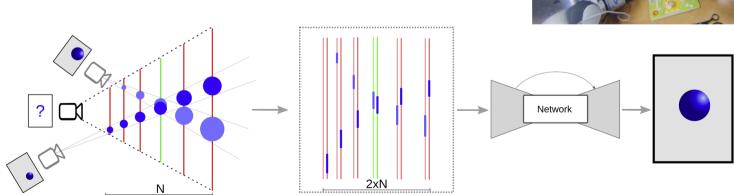
Finals Day 2 Testing

Team NimbRo

[Schwarz, Lenz et al. arXiv:2303.03297]

FaDIV-Syn: Fast Depth-Independent View Synthesis

- Two input views
- Generate novel view from different pose
- Does not require depth
- Handles occlusions, transparency, reflectance, moving objects, ...



FaDIV-Syn: Fast Depth-Independent View Synthesis

- 14× Nikon Z7 DSLR camera
 - 45 MP
 - 64–25600 ISO
 - 24-70 mm Lens

 Recovered camera poses and semi-dense point cloud through Multi-View-Stereo

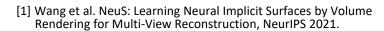
Implicit Surfaces on Permutohedral Lattices

HENOROB

- Geometry represented as Signed Distance Field (SDF)
- Color represented as a direction-dependent color field
- Transform SDF into radiance [1] and train similar to NeRF

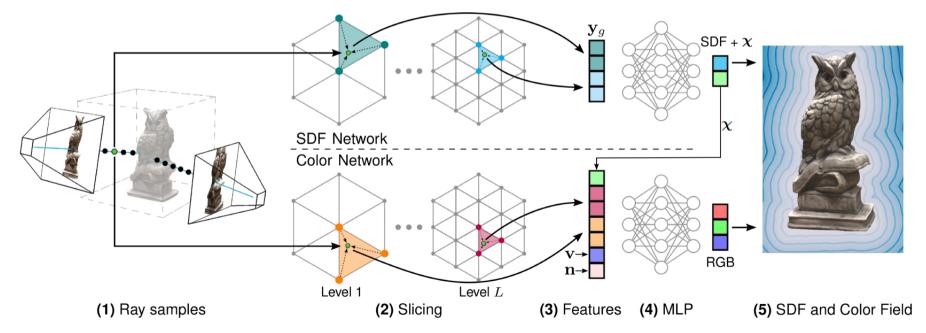
Geometry

Color at the zero level-set of the SDF



Implicit Surfaces on Permutohedral Lattices

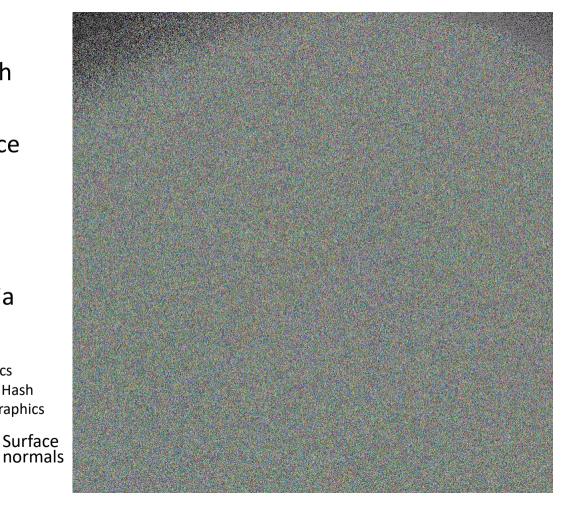
- Geometry represented as Signed Distance Field (SDF)
- Color represented as a direction-dependent color field
- Transform SDF into radiance [1] and train similar to NeRF



THENOROB

- InstantNGP with a Multiresolution Hash Encoding [2]
- Permutohedral lattice
- Small MLPs for SDF and color
- 25 M parameters
- 1 h training on NvidiaRTX 3090 GPU

[2] Müller et al. Instant Neural Graphics
Primitives with a Multiresolution Hash
Encoding ACM Transactions on Graphics
(SIGGRAPH 2022)
Surface

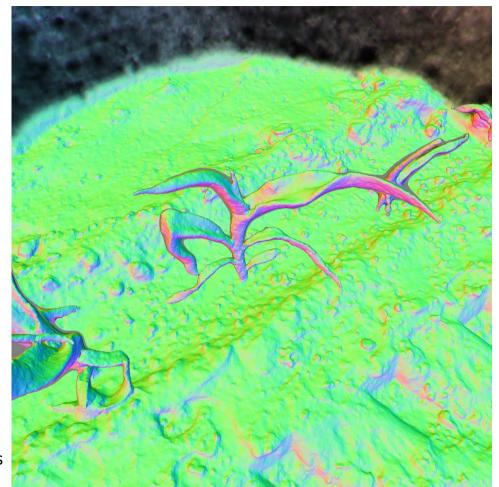


HENOROB

- InstantNGP with a Multiresolution Hash Encoding [2]
- Small MLPs for SDF and color
- 25 M parameters
- 1 h training on Nvidia RTX 3090 GPU

[2] Müller et al. Instant Neural Graphics
Primitives with a Multiresolution Hash
Encoding ACM Transactions on Graphics
(SIGGRAPH 2022)

Surface normals

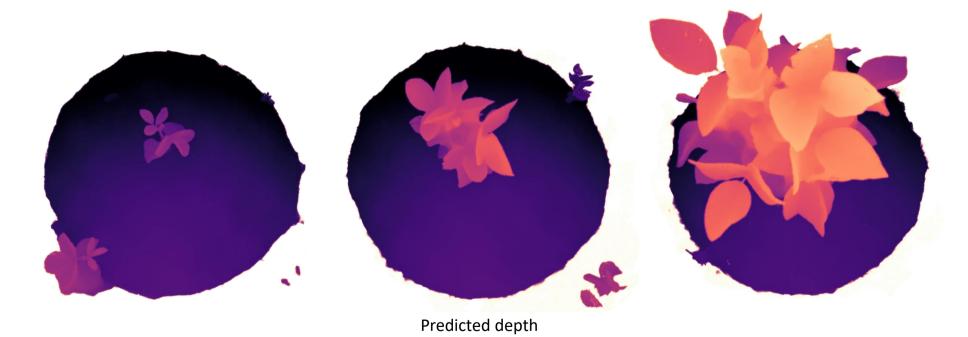


HENOROB

Rendered novel views

Plant Reconstruction over Multiple Days

Plant Reconstruction over Multiple Days



High Geometric and Texture Detail

HENOROB

- Marching cubes on the SDF to recover mesh
- Learnable texture to match color images
- Rendering in real time

Textured mesh



Mesh normal vector

Conclusions

- Developed capable robotic systems for challenging scenarios
 - Bin picking
 - Humanoid soccer
 - Disaster response (UGV, UAV)
 - Plant reconstruction
- Challenges include
 - 4D semantic perception
 - High-dimensional motion planning
- Promising approaches
 - Prior knowledge (pretrained models, inductive bias)
 - Shared experience (fleet learning)
 - Shared autonomy (human-robot)
 - Instrumented environments

