High-resolution In-field Crop Scanning

Radu Alexandru Rosu, Sven Behnke

PhenoRob Core Project 1: In-field 4D Crop Reconstruction

- PIs: Sven Behnke, Maren Bennewitz, Lasse Klingbeil, Heiner Kuhlmann, Uwe Rascher, Cyrill Stachniss, Eduard Zell
- Background:
 - Plant phenotyping technologies have greatly increased in the past years and commercial services and infrastructures are becoming available
 - Methods to quantify relevant plant traits are still missing and correlation-based methods limit the universal interpretation

Objective:

Create time series of aligned high-resolution and geo-referenced 3D models of plants using optical and 3D data from a moving sensor platform. Extract novel phenotypic features of single plants and their evolvement over time for a better scientific understanding of the structural / functional dynamics of selected crops

CP1: Two Scales – Complementary Throughput and Resolution

Detailed reconstruction of single plants & their organs

- > Some features such as early signs of diseases or nutrient imbalance, can only be detected on the small scale
- \succ This requires a 'close look' on single organs and the option to follow the temporal development of single elements
- Precise 3-D reconstructions of single plants in the field throughout the season

- The intelligent combination of different sensors that are brought in the right viewing geometry allows the guantitative, georeferenced mapping of fields
- Combination of radiative transfer inversion and machine learning allows the extraction of novel traits
- Fast method that can be used on larger fields across different sites

Robots for Plant Phenotyping

- Various robots have been used for plant phenotyping
- Few of them have the capabilities for high-resolution scanning

In-Field 4D Crop Reconstruction

Multiple 3D sensors
 + high-resolution cameras
 for in-field plant scanning

- 4D structural textured plant reconstruction
 - 3D + correspondences in time
 - Structural model of plant organs
 - Millimeter-scale geometry (e.g. mesh)
 - Sub-millimeter resolution RGB textures
 - Additional multi/hyperspectral textures
- For computation of phenotypic features

Potted plant reconstructed in 3D

PhenoRob UGV

- Robot for in-field highresolution plant scanning
- Interior of 1.5m x 1.5m
- Thorvald base
- 14 high-res RGB cameras
- 5 Photoneo laser scanners

PhenoRob Robots

UGV on PhenoRob Central Experiment Field

- 14× Nikon Z7 DSLR Camera
 - 45MP
 - 64-25600 ISO
 - 24-70mm Lens
- 5× Photoneo PhoXi[®] 3D
 Scanner
 - Computes mm-accurate 3D cloud and normals
 - Range 0.8m 2.1m

- Block of 2× Nikon + Photoneo
 - Allows for stereo vision
 - Allows to combine and refine depth from RGB with depth from laser

 2020 system with only 1 camera per block

 RGB images + fused point cloud from all laser sensors

More Cameras in 2021

- Added eight Nikon cameras
- Similar to a smaller-scale photogrametry rig used in film industry to create digital twins of actors

Challenges for In-field Scanning: Lighting

- Dynamic light conditions
 - Cameras need to constantly adjust exposure automatically

Challenges for In-field Scanning: Plant Motion

- Moving plants in the wind
 - Needs fast shutter speed to avoid motion blur

Challenges for In-field Scanning: Non-rigid Vehicle

- Calibration between cameras changes due to non-rigid robot frame
 - Need on-line calibration

Camera Parameters

 All Nikon camera settings are programmable by the onboard PC

Camera Parameters: ISO

- All Nikon camera settings are programmable by the onboard PC
 - ISO: camera sensitivity to light
 - Too high = noisy images

Camera Parameters: Shutter

- All Nikon camera settings are programmable by the onboard PC
 - Shutter speed
 - Too high = dark photos
 - Too low = motion blur

Camera Parameters: Aperture

- All Nikon camera settings are programmable by the onboard PC
 - Aperture determines depth-of-field
 - Too high = blurred background
 - Too low = dark photos

- Set the aperture even lower
 =>light diffraction effects
- Both dark AND blurry photos

Camera parameters

- Cameras need constant and automatic adjustment in the field.
- The best image is somewhere within the exposure triangle

In-field Camera Dynamic Exposure

- Start with reasonable camera settings (low aperture, high speed, and low ISO)
- Cameras periodically capture lowresolution images
- Histogram is computed
- ISO of cameras adjusted (within allowed range) to avoid clamping white or blacks
- If ISO is outside the allowed range → change shutter speed
- If still clamped → change aperture

Moving Plants

- Keep shutter speed low (<5ms)
- This creates darker photos.
- We added panel lights inside the robot.

Calibration between cameras

- Robot frame twists while driving
- We added fixed ArUco calibration patterns on the sides of the robot
- At least one side is visible from each camera
- Bundle adjustment to correct camera misalignment (Ceres)

Photoneo

• 3D sensors with millimeter accuracy.

Nikon RGB

Photoneo point cloud

Photoneo

- 3D sensors with millimeter accuracy
- Struggle in strong sunlight
- Emit red visible light while scanning
- Multiple Photoneos cannot scan the same volume simultaneously
- We trigger the Photoneo scanners sequentially

Photoneo + RGB

 Given good calibration between Photoneos and RGB one can recover also a textured mesh with a high resolution texture from the Nikon camera

Photoneo + RGB

- Fine detail of small plants can be captured
- Image shows aggregation from all Photoneos calibrated using the ArUco patterns and colored with RGB from Nikon

Stereo Depth

Photoneo depth can be refined with the depth from the stereo pair of Nikons
 → Need computation of stereo disparity

 PatchMatch with local expansion [Taniai 2017]

Stereo Depth

CNN approaches surpass classic methods in stereo matching

Hierarchical Deep Stereo [Yang et al. 2019]

Stereo Depth Limitations

- Hierarchical Deep Stereo (Yang et al.) require supervised training on datasets with ground-truth depth
- Can process only binocular stereo data and not multi-view stereo

Multi-view Stereo (MVS) Depth

- NeuralMVS: Bridging Multi-View Stereo and Novel View Synthesis (Rosu and Behnke 2021)
 - Unsupervised training \rightarrow trained only with image reconstruction
 - Can process multiple images in order to refine the depth

MVS Depth Approach

- Depth reconstruction as novel view synthesis.
- In order to predict a novel view network is forced to predict correct depth.
- Differentiable sphere tracing to iteratively refine depth.

MVS Depth Example Result

Results on Real Front-Facing dataset

Pheo4D Data Set

- Creted with handheld lidar
- Annotated plant organs
- [Schunck et al.
 PLoS ONE 2021]

Phenotyping: Instance Segmentation

 LatticeNet (Rosu et al.): 3D neural network trained with contrastive loss on Pheno4D data set [Schunck et al. PLoS ONE 2021] performing instance segmentation

- 3D points are embedded in a permutohedral lattice where convolutions are defined
- Output of network is clustered into individual leaf instances

PhenoRob Central Experiment Scanning

- Scanned weekly
 - 16 sugarbeet plants with 4 levels of herbicide (0%, 30%, 60%, 100%)

Sugarbeet 100% herbicide

Sugarbeet 0% herbicide

PhenoRob Central Experiment Scanning

- Scanned weekly
 - 8 corn plants of 4 different varieties
 - Caramelo, Khan, Sugarnugget, Mirza

Sugarnugget corn

PhenoRob Central Experiment Scanning

- Scanned once
 - 16 Lupin plants
 - 16 Brassica

Brassica

- DJI Mini 2 copter
- <250g => not dangerous
- 12 MP RAW camera on gimbal

Beans

Sugar beet

Maize

Conclusions

- High-resolution in-field plant scanning is challenging
 - Ligthing
 - Wind
 - Wether
 - Occlusions
- Developed UGV with many sensors
- Started regular plant scans on the field
- Developed initial reconstruction methods
- Much work is ahead ...

Thank you for your attention!

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy, EXC-2070 - 390732324 -PhenoRob.

