1352 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

Competitive Neural Trees for Pattern Classification

Sven Behnke and Nicolaos B. Karayiannigember, IEEE

Abstract—This paper presentscompetitive neural treeCNeT’s) trees used for load forecasting, power security, and vowel
for pattern classification. The CNeT containsm-ary nodes and recognition. Neural trees were recently introduced for pattern
grows during learning by using inheritance to initialize new o,qgification in an attempt to combine advantages of neural
nodes. At the node level, the CNeT employs unsupervised com- K d decisi h | hi
petitive learning. The CNeT performs hierarchical clustering N€WOrks and decision trees. The neural tree architectures
of the feature vectors presented to it as examples, while its reported in the literature can be grouped according to the
growth is controlled by forward pruning. Because of the tree learning paradigm employed for their training. Most of the
structure, the prototype in the CNeT close to any example can be existing neural tree architectures were directly or indirectly

determined by searching only a fraction of the tree. This paper .
introduces different search methods for the CNeT, which are related to feedforward neural networks, aithough they differ

utilized for training as well as for recall. The CNeT is evaluated ?n terms of the design m?thf)d_omg}/- In fact, the ChafaCFer'
and compared with existing classifiers on a variety of pattern ization “neural tree” was indistinguishably used to describe
classification problems. approaches employing decision trees as tools for building and

Index Terms—Classification, competitive learning, competitive training feedforward neural networks as well as approaches
neural tree, decision tree, neural tree, search method, splitting using feedforward neural networks as building elements in

criterion, stopping criterion, tree pruning. order to improve the design of decision trees.
The first family of approaches attempt to build neural
I. INTRODUCTION networks either by developing tree structured neural net-

. works for function approximation or by mapping decision
ECI.S .ION ”ek‘?s have ti:xtenswely _?eenzliseg to pEl.‘rform_:.eS to multilayer neural networks. Sanger [25] proposed a
ecision making In pattern recogn |_on[] Py apPy NG eq_structured adaptive network for function approximation
the- dgmsmn tree methodology, one d|ff|cu|t. d_eC|S|on can_l? high-dimensional spaces. This approach is based on the
split into a sequence of less difficult decisions. The fir othesis that only few dimensions of the input data are

decision determines which decision has to be made next . . .
indicating which node of the tree should be visited. Becaugecessary to compute the desired output function. A learning

of the tree structure, only some of all possible questions {Rrocedure based on gradient descent grows a neural tree
, Ony P g Whose structure depends on the input data and the function

asked in the process of making the final decision. In fact, the ! .
final decision is made at a terminal node of the tree, whic%ﬂ be approximated. Sethi [29], [30] proposed a procedure

is reached by traversing the tree starting from the root 44 Mmapping a decision tree into a multilayer feedforward

indicated by the decisions made at internal nodes. neural network. This approach can be used for the systematic

The design of decision trees is frequently performed ﬁ#eS'gn of a class of multilayer neural network_s, (_:aﬁaenfopy
a top-down fashion. The nodes are split during the desigﬂet\’vorks'A two-step methodology for deS|gn|ng entropy
process according to some criterion. The existing spittirﬂe;etwprks was proposed along W_'th a rule for incremental
criteria include the impurity measure usectiassification and '©&/NiNg. This methodology specifies the number of neurons
regression tree$CART'’s) [5], [6] and the mutual information needed in each layer of the network and_leads to a learning
measure employed by theverage mutual information gain procedure that aIIO_/vs each layer to be trained separately.
(AMIG) algorithm [31]. The terminal nodes are determined 1€ second family of approaches attempt to develop tree
during the construction of the tree by freezing some of tpdructures containing feedforward neurgl networks in their
nodes according to some stopping criterion or by growing"@des. Sankar and Mammone [26]-{28] introducedrtberal
large tree and performing selective backward pruning. Aftdie® network(NTN), a classifier consisting of single-layered
the final tree structure is determined, the terminal nodes 4¥gural networks connected in a tree architecture. These net-
frequently assigned class labels by using a majority rule. WOrks are used to recursively partition the feature space

Decision trees and multilayer feedforward neural networkdt0 subregions. The NTN grows by a heuristic learning
are essentially competing methodologies for pattern classifi@ocedure based on tifg norm of the classification error. The
tion. Atlas et al. [2] presented a performance comparison dieneralization ability of the NTN is enhanced after training

multilayer neural networks and classification and regressi§i an optimal pruning algorithm. Sankar and Mammone [27]

used the NTN for speaker independent vowel recognition.

Manuscript received January 8, 1996 revised April 24, 1997. Rahim used var_|a_\t|ons of the NTN for phoneme classification
S. Behnke is with the Institute of Computer Science, Free University $22] and recognition of speech features [23]. Faretlhl. [8]

Berlin, 14195 Berlin, Germany. _ modified the learning rule and pruning criteria employed by the
N. B. Karayiannis is with the Department of Electrical and ComputeN.I.N d d th It dified NTN with :

Engineering, University of Houston, Houston, TX 77204-4793 USA. and compare € resulting moare with various

Publisher Item Identifier S 1045-9227(98)08347-7. neural and conventional classifiers on speech recognition.

1045-9227/98%$10.001 1998 IEEE

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1353

Guo and Gelfand [10] used multilayer neural networks #étees(CNeT’s), which perform hierarchical clustering of the
the decision nodes of a binary classification tree to extrdetature vectors and employ competitive learning at the node
nonlinear features. They employed a gradient-type learniteyel [3], [4]. The CNeT employs the same learning rule that
algorithm in conjunction with a class-aggregation algorithis associated with crisp LVQ algorithms. Nevertheless, the
to train the networks and grow the tree. This approach ove@NeT is capable of resolving the uncertainty associated with
comes the problem of selecting the size of feedforward neuthé representation of the feature vectors by the prototypes
networks for classification applications by building a tree diy creating a structured partition of the feature space. This
an appropriate size and architecture. This is accomplished f@ytition depends on the structure of the corresponding tree,
a tree pruning algorithm. Guo and Gelfand evaluated their tredvich is determined by the strategy employed for creating and
structure and compared it with the CART method on waveforpruning nodes during learning as indicated by the structure of
recognition and a handwritten character recognition problerthe feature space.

Most of the approaches mentioned above were motivated byThis paper presents CNeT's that can be grown and trained
the lack of a reliable procedure for determining the appropridty a supervised learning procedure to perform pattern classi-
size of feedforward neural networks in practical classiffication. This paper is organized as follows: Section Il intro-
cation applications. These approaches replace unstructudledes the CNeT architecture and presents a generic learning
feedforward neural networks by structured neural architectur@gorithm. Section Ill describes several search methods. Split-
in order to facilitate learning and/or improve generalizatioting and stopping criteria are presented in Section IV. Recall
by controlling the number of neurons and connections. Aprocedures are described in Section V. Section VI benchmarks
alternative approach to the development of neural trees vihe CNeT using the double spiral problem, the IRIS data set, a
motivated by competitive learning. Lét al. [18], [19] de- vowel recognition problem, and a handwritten digit recognition
veloped adaptive neural trees for classification and vectask. Finally, Section VII summarizes the results and draws
quantization by combining competitive learning principlesonclusions.
with structural adaptation during learning. The adaptive neural
tree is a multilevel competitive neural network the nodes of Il. CNeT ARCHITECTURE AND LEARNING

which are organized in a tree topology. During training, all CNeT’ i . | hi h
nodes of each level compete for each input. The connection el’s are self-organizing neural architectures that com-

weights of the winner are then updated using gradient descB]ﬂe the advantages of competitive neural networks and de-

learning. New nodes are added to the tree when the erflyion trees. Among othgr apphcaﬂoqs, CNeT's can ben used
erform pattern classification Consider a sett ¢ R

rate exceeds a certain threshold and some nodes are delets . ; :
they remain inactive for a long period. The inactive nodes aP _eature vectors_ fr_om am-dimensional Euclidean space
deleted during periodic traversals of the tree. This architect ich belong tos distinct classes, Cy, -+, C,. The classes
splits the input space at each node until the problem is e gy C?’ U Cs forrz] a paitltlon of & SﬂCh thatC; N ¢; =
enough to be solved by a simple node [7], [18]. Vi # g, and Ui Gy = A Let £ = {1, 2, .., s} be
Neural trees are grown and pruned. Some algorithms gr(s set O.f class labels. Eache X,'TQ' assigned a cla_ss I.abel
a perfect tree that classifies all examples correctly [28]. Théie) € £ in such a way thaf(x) = j if x € C;. The objective
a set of pruned subtrees is checked for performance on oﬁﬁe\ pattern classification scheme is to find a representation of
independent testing set of examples and the best performi examples such that th_e _Class lalils) can b_e_: reproduced
subtree is selected. This method is caltkward pruning o the examples. An efflqent pattem classification schgme
Other algorithms perforrforward pruning[7], [8], [18]. While must be capable of producing appropriate class Iab.els., for input
the tree is growing, its performance on an independent testi ctors.tha't do not belong to the training set. This is called
set is checked. The tree stops growing when a stoppiﬂ neralization
criterion triggers. Usually the growing of the tree is terminated .
when its performance on the testing set begins degradify. Architecture
Forward pruning avoids the growth of large branches that will The CNeT has a structured architecture. A hierarchy of
be pruned later. identical nodesforms am-ary tree as shown in Fig. 1(a).
Competitive learning is the key ingredient of several ag-ig. 1(b) shows a node in detail. Each node containslots
proaches to vector quantization design implemented througbia ss, - - -, s, and a countemge that is incremented each
neural model often referred to &sarning vector quantization time an example is presented to that node. The behavior of the
(LVQ) [11]. The combination of competitive learning andhode changes as the coundgje increases. Each slet stores
fuzzy-theoretic concepts resulted in a variety of learning vectarprototypev; € V < IR", a countercount , and a pointer
guantization algorithms that can effectively deal with thto a node. The prototypes are updated to represent clusters of
uncertainty associated with the representation of the feateseamples. The slot counteount is incremented each time
vectors by a finite set of prototypes [11]-[15]. Such LVQhe prototype of that slot is updated to match an example.
models overcome the problems often associated with hardFanally, the pointer contained in each slot may point to a child-
crisp LVQ algorithms, i.e., learning algorithms that allow onlynode assigned to that slot. RULL pointer indicates that no
the update of the prototype that is the closest to the featurede was created as a child so far. In this case, the slot is called
vector presented to the network. An alternative approach terminal slotor leaf. Internal slotsare slots with an assigned
learning vector quantization resulted gompetitive neural child-node. The slots shown in Fig. 1(b) also have class

1354 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

Siot 2

@ (b)

Fig. 1. The architecture of the CNeT: (a) the tree structure and (b) a node in detail.

counters. The class countetsunt;, counts, - - -, count, 1) Life Cycle: Each node goes through a life cycle. The
keep track of the number of examples belonging to a particulaode is created and ages with the exposure to examples. When
class that the prototype responds to. There is a counter éonode is mature, new nodes can be assigned as children to it.

each class in every slot. A child-node is created by copying properties of the slot that is
split to the slots of the new node. More specifically, the child
B. Learning will inherit the prototype of the parent slot as well as fractions

?f its class counters. Right after the creation of a node, all its

In the | i h h ing f i . X o . .
n the learning phase, the tree grows starting from a Sm%fots are identical. They will differentiate with the exposure to
node, the root. The prototypes of each node form a minuscule

competitive network. When an exampiec A’ arrives at a examples. As soon as a child is assigned to a node, that node

o e s s g o 18 Ps o g U r) e
it. If d(x, v;) denotes the distance betwesnand v;, the n(?de may be destrF()) edpafter all of its children have been
prototype vy, is the winner ifd(x, vi) < d(x, v;), Vj # y Y

k. The distance measure used in this paper is the squa] S troyed. The life cycle of a node may be partitioned into

Euclidean norm, defined as he foIIOW|r?g phases.
1) Creation (at age 0):
d(x, v;) = [lx = vy|*. (1) o
N _ a) the node is initialized,;
The competitive learning scheme used at the node level) the node inherits properties from the parent slot

unsupervised learning algorithm proposed to generate crisp counters.

c-partitions of a set of unlabeled data vectors [16], [17].
According to this scheme, the winney, is the only prototype 2) Youth (before the maturity age is reached):
that is attracted by the input arriving at the node. More

specifically, the winnew;, is updated according to the equation a) the prototypes compete to respond to the exam-
ples;
new __ _ old old
ViESY = Vi a(x = Vi) (2) b) the winning prototype is updated:;
where « is the learning rate. The learning ratedecreases ¢) the prototypes split the region of the input space
exponentially with theage of a node according to the equation that the node sees into subregions.

o = ag exp(—ag age) (3) 3) Maturity (after the maturity age has been reached):
where «q is the initial value of the learning rate andg, a) the prototypes still compete for the examples and
determines how fastt decreases. they are updated,;

The update (2) moves the winney, closer to the example b) if a splitting criterion isTRUE then a new child
x and, therefore, decreases the distance between the two. After is created and is assigned to a slot.

a sequence of example presentations and updates, each of o .
the prototypes will respond to examples from a particular 4) Frozen (as soon as a child is assigned):
subregion of the input space. Each prototypge attracts a

cluster of example® ;. Hence the prototypes split the region a) the prototypes compete for the inputs but they are

of the input space that the node sees into subregions. The not updgted; _ _ _
examples that are located in a subregion constitute the input ~ b) if the winner has a child-node assigned, then it
for a node on the next level of the tree that may be created sends the example to the child.

after the node is mature. A new node will only be created if

a splitting criterion iSTRUE 5) Destruction (after all children have been destroyed).

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1355

2) Training Procedure:If the CNeT is used for pattern
classification, its goal is to partition the input space into regions
that arepure or almost pure. A pure region contains only
examples from the same class. The general learning scheme

works as follows.
Do while stopping criterion i$~ALSE /\Q A
1) Select randomly an example Let C; be class thak ﬂ
belongs to. 00

2) Traverse the tree starting from the root to find a terminal
prototypev, that is close tx. Letn, ands;, be the node
and the slot that; belongs to, respectively.

3) If the noden, is not frozen, then update the prototype
vy according to (2).

4) If a splitting criterion for the slog;, is TRUE then assign
a new node as child ts;, and freeze the noday. v

5) Increment the counterount ; for classC;, the counter A
count in slot sg, and the counteage in noden,. f\ /}X

000!

Depending on how the search in Step 2) is implemented,()
various learning algorithms can be developed. The search is © (d)

the only operation in the learning algorithm that depends ‘%[ﬂ . 2. Shaded nodes visited by (a) the greedy search method, (b) the local

the size of the tree. Hence, the speed of the learning procgs§ch method, (c) the globa)(search method, and (d) the full search method.
is mainly determined by the computational complexity of the
search method. Different search methods are described in the) - .
next section. Given a search method, the training procé&cay parameter of the root, respecgvely, siuff|C|ent tralrglng 1S
can be accelerated through some simple modifications of gigaranteed by choosing, = (ro/7:)ag anday = (7o/7)ag.
learning algorithm outlined below.

3) Acceleration of Training:If there is a large number of
examples, a high maturity age may be needed to ensure propérhe search method determines the speed of learning and
training of the tree. This affects the time required for trainingecall as well as the generalization ability of the trained
The higher the maturity ageis chosen, the longer the learningCNeT. A feature vectok constitutes the input for the search.
algorithm runs. Therefore, it might be useful to introducAn exhaustive search of the tree is guaranteed to return
a maturity ager; that is specific to a noda;, instead of the closest prototype; to the input vectorx. Because of
using the same maturity age for all nodes. Since the root the computational and time requirements associated with an
is presented with more examples than any other node of ghaustive search, alternative search methods can be employed
tree, it is necessary to assign the highest maturityrgde the for determining a terminal prototype; that is close, but not
root n, of the tree. The initial high maturity age can decreagdeecessarily the closest, to the input During learning, any
as the training proceeds. Since fewer examples arrive at tegninal prototypev; € V is a candidate to be selected by the
nodes deeper in the tree, the assignment of lower matur@igarch method. In contrast, only the prototypes that responded
ages to these nodes does not have a negative impact onaténg learning to at least one example are candidates to be
clustering of the examples. In fact, decreasing the maturity aglected in the recall phase. Fig. 2 shows which nodes are
of these nodes can accelerate significantly the learning procaésited and expandedn a complete binary tree by the search
The obvious reason is that most of the learning time is spdhgthods described in this section. Expandingramry node
training the nodes at the deepest levels of the tree. means computing the distances between all of its prototypes

In order to grow balanced trees of reasonable depth, the V2, ---, Vin and the feature vectox. Throughout this
maturity age of each node should not be directly dependent BRPer Vi represents the number of terminal prototypes of
the depth of that node. Such a scheme would allow brancB§ tree andD,... represents the depth of the tree, that is, the
that grow deep to split more frequently than shorter branch&d@ximum number of edges on the path from a terminal node
Frequent splitting accelerates the creation of new nodes, ti@sthe root.
resulting in degenerate tree structures. The following scheme
can be used to balance the tradeoff between the speedPoffull Search Method
training and the preservation of a balanced tree structureThe full search method is based on conservative exhaustive
let N},.. be the number of terminal prototypes in the tregearch. To guarantee that the prototypewith the minimum
when the noden; is created. At creation, the node; is distance to the given feature vectois returned, it is necessary
assigned the maturity age = 7o/ log,(V/,..). To ensure to compute the distance¥x, v;) between the input vectat
sufficient training, a node; with low maturity ager; must be and each of the terminal prototypes € V. The prototypevy
assigned a high learning raté, and decay parameter’,. If with the minimum distance is returned. Table | shows the full
a§ anda$ denote the initial values of the learning rate and theearch method in pseudocode.

I1l. SEARCH METHODS

1356 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

TABLE | to the root that was only the second best. The local search
THE FuLL SEARCH METHOD IN PSEUDOCODE method expands the nodes of the tree starting from the root.
When the search method arrives at a certain node, the distances
full(x) between the input vector and all prototypesry, va, ---, v,
in the node are calculated. Then, the local search method is
o dp,in := MAXDISTANCE called recursively for the winning prototype. In the subtree
that is below the winner, the prototypes are still allowed to
® Vuin i= V1 loose. The greedy search method is called for the second best
prototype. In its subtree prototypes are not allowed to loose
once more. They have to win in order to be expanded by
do if (d(x,V;) < dmin) then dmim := d(X,v;), Vuim :=V; the search method. If a winning prototype has no child-node
assigned, it cannot be expanded. Instead it is returned to the
calling function. The two recursive calls to the local and the
greedy search methods will both return a prototype that is
close to the input. The closest of these two prototypes to the

The full search method is the slowest among the searj&PUt is then determined and returned. Table Il shows the
methods described in this section, since it does not ta‘?é:al search method in pseudocode.

advantage of the tree structure to find the closest prototype.] '€ l0cal search method uses only information that is locally

As a result, the full search method runsGH{N,....). On the available to make decisions. At masslots are expanded on

other hand, this is the only search method that guarantees:fﬁeeilth Ievehl of tEeJree. Therefore, _thT time requg)eQd by the
return of the closest prototype to the input vector. ocal search method to return a terminal prototyp@():

tree

which is usuallyO((log Ny,)?). Note that the method is more
B. Greedy Search Method efficient for trees with a high fgn-ouﬂn. The local search
method returns the closest terminal prototype more often than
The greedy search method starts at the root of the trgR greedy method. Thus, the use of the local search method
and proceeds in a greedy fashion. When the search metiyggtead of the greedy search method is expected to improve
arrives at a certain node, the distances between the input veggr generalization ability of the CNeT. Although the local
and all prototypes/;, vy, ---, vy, Of the node are computed.search method is easy to implement and fast for small trees,
The prototypev; with the minimum distance to the presentegts asymptotic running time is quadratic in the depth of the
feature vector is selected and called the winner. If a Ch||d'[ree Dtrﬁe- If the use of a local method is not necessary for
node is assigned to the skt that contains the winner, then they given application, the time required for the search can be

greedy method is applied recursively to that node. Otherwisfioderated by using the global search method.
the winner vy, is returned to the calling function. Table I

shows the greedy search method in pseudocode.
The greedy method expands only one slot per level. Thei®: Global() Search Method

fore the searched subtree is_only a simple path from the rootr o global() search method expands the nodes of the tree
to the retumed prototype. Since the time ”eede?' to equggel by level, starting at the root. After this is done for all

each node is constant, the greedy search run@(@“‘e?)' .the nodes that are to be expanded at this level of the tree,
For trees that are balanced to some extent, the running tigge , ,ototypes with the smallest distances are selected. If a
is O(log Nyree). The greedy sea_rch r_neth_od IS _the fasteg% ected prototype has a child-node assigned, this child-node
among the search methods described in this section and lo t be expanded during the next expansion step. Suppose a

However, whenever a prototype is not the winner, the SUbtr‘snglected prototype is a terminal prototype. If its distance to the
whose root is the corresponding node is not searched. As;

It th q hod will | h , !Qen feature vector is the smallest so far, then the smallest
result, the greedy m(.at' od-wi 'not always return the termingiqianee js updated and the prototype is the new candidate to
prototype with the minimum distance to the presented feat

f th q h hod | loved in th & selected for return. When no more prototypes are to be
vector x. If the greedy search method is employed in thg, ,n4eq the globalj search method terminates and returns

learning phase, the generalization ability of the resulting CNq e best terminal prototype seen. Table IV shows the glabal(
will be inferior to that of a CNeT trained using the full searc@earch method in pseudocode

method.

o for allv, €V

return (Vi)

The global) search method searches a subtree that has a
width of at mostw. Hence, the time required by the globa)(
C. Local Search Method search method to return a terminal prototypedi&uDy,c.).

The local search method is designed to find the termin@learly, the speed of this search method depends on the choice
prototypev;, that is close to the input vector even though af the search widthu. If w = 1, then the globalf) and
prototype on the path from the root tq, has only been the the greedy search methods are equivalent in terms of their
second best prototype in its node. The local search methirde requirements. 1> > 1, then the search by the gloha)(
searches a subtree that has at mosbdes on theth level method takes longer but the probability that the search returns
(i=1, 2, ---, Dyee). The terminal prototypes in this subtreghe closest prototype increases. Thus, the selectianadows
are those which have at most one prototype on their patie user to balance the tradeoff between the time required for

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1357

TABLE I
THE GREEDY SEARCH METHOD IN PSEUDOCODE

greedy(x)
® Vi := Vi € {V1,Va, ...,V } such that d(x,vy) < d(x,v;)Vi # &
® S,in := the slot v,;, belongs to

o if (syn.child # NULL) then return (s,,.child — greedy(x))

else return (V)

TABLE Il
THE LocAL SEARCH METHOD IN PSEUDOCODE

local(x)
® Viin '= Vi, € {V1,Va,..., V) such that d(x, vy) < d(x,v;) V) # ki

® Vi = Vi, € {V1,Vy,...,V,n} such that ky # ki and d(x,vg,) < d(x,V;)V] #
khj 7& k2

® S, = the slot v, belongs to

o if (Syin.child # NULL) then Vi, = Suin.child — local(x)

e s, := the slot v, belongs to

e if (syc.child # NULL) then let v, be ss..child — greedy(x)

o if (d(x,Vsee) < d(X,Vuin)) then return (v,.)

else return (Vi)

the search and the generalization ability of the CNeT. Sinces Large trees need more resources than small trees.

w is a parameter that is not growing with the problem size, « Large trees tend to memorize the examples. This has a
O(wDyye.) is not higher tharO(Dy,...). In other words, the negative impact on generalization.

time required for the global() search method grows with the

problem size only as fast as the time required for the greegdy Splitting

search method. The task of the splitting criterion is to split a slot, if this

improves local classification performance, or not to split it,
if the local classification is satisfactory. This is achieved by

The splitting criterion must b RUEwhen the proposed testing the slot for purity. After the maturity ageis reached,
leaning algorithm splits a slot and creates a new node. Meanslot s, may be split if it is not pure enough. Whether or
ingful splitting criteria are needed for growing trees thatot s; is pure enough is determined by its class counters
have desired features such as balance and small size. ltdant;, counts, ---, count,. The class countefount, with
also important to give each node enough time to find the highest value indicates that the prototype from the
good partition of its input region. For this reason, splittinglot s, has responded most of the times to feature vectors
of immature nodes must be avoided. The splitting criteridmelonging to the clas§,. The slots; is not pure enough if a
will be FALSE for nodes below the maturity age. The significant fraction of its prototypes responds to feature vectors
stopping criterion is used to terminate the training. Splittingelonging to classes other th@n In this case, further splitting
and stopping criteria work together to prevent the tree froia required. Thepurity parameter3 determines the fraction of
growing too large. Extensive growth is not desirable for thecceptable local misclassification and typically varies from 0
following reasons. to 1/2. The recommended default settingsis= 1/8.

IV. SPLITTING AND STOPPING CRITERIA

1358 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

TABLE IV
THE GLOBAL(w) SEARCH METHOD IN PSEUDOCODE

global(x, w)
e d,,;, := MAXDISTANCE
® Viyin i= V1
e active.nodes :=nyp

¢ while (activenodes # @)
do o activeslots:=Q
o for all nodes nj; € active nodes
do for all slots s; in n;
do v, := the prototype in s;
if (s;.child # NULL)
then active slots := activeslots U {s,}

else if (d(x,v;) < dpin) then dyi, = d(X,V;), Vein 1= V;

o activenodes := @
o for the w slots s; € active_slots that have the smallest d(x,v;)

do active.nodes:= activenodes U {s;.child}

e return (Vyin)

B. Stopping is accomplished by maintaining a countein,.,. that
stores the minimum number of incorrect classifications
for the testing set so far. This counter will be updated
frequently in the beginning of the training process, since
every time a slot is split the performance of the tree most
likely improves on the training set’ as well as on the
testing sett’. These updates afin.., will become less
frequent as training progresses. If the number of incorrect
classifications on the testing séf’ is not decreasing
below min.,, for a long time, the tree is most likely
too large due to overtraining. Therefore the testing-set
stopping criterion triggers. When the last decrease of
incorrect classifications on the testing set occurred, the
tree had a better performance and a smaller size. Hence
the tree must be pruned. After the testing-set stopping
criterion triggers, all nodes that did not exist at the time
the last update ofin.. occurred are deleted.

The CNeT can easily be trained until all exampbese
X are classified correctly by choosing the purity parameter
B = 0. However, for the majority of problems this choice
will result in memorization of examples and degradation of
the generalization ability. The generalization ability of the
trained tree can be evaluated using a testing set of examples
X', selected such that’' N X = &.
< Maturity Stopping Criterion : This stopping criterion is
based on a good choice of the purity parametethat
will prevent the tree from growing too large. The maturity
stop criterion become¥RUE as soon as all nodes are
mature. That means the tree does not grow any longer
and all nodes have reached the maturity ag€o achieve
satisfactory generalization, it is important to combine the
maturity stopping criterion with a splitting criterion that
does not split nodes which are almost pure. The purity
parameters influences the size of the grown tree and
decides when the maturity stopping criterion triggers.
 Testing-Set Stopping Criteriort This stopping criterion The trained CNeT contains a representation of the examples
utilizes an independent testing s&t of examples. Ac- X’ that have been presented to it. Once the training process
cording to this criterion, training is terminated if theis complete, the terminal prototypes, vo, ---, v; of the
performance of the tree on the testing s¥t does CNeT represent the example clusté®s, R., ---, R;. For
not improve for7/4 adaptation cycles, where is the this particular application, the tree is grown in such a way that
maturity age. This criterion attempts to minimize theach cluster of example/8; contains exampleg € X which
number of incorrect classifications on the testing set. Thisay belong to one or more classes. The objective of the recall

V. RECALL PROCEDURES

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1359

procedure is to produce a class labet /(x), ¢ € £, for each
input vectorx. The functioné(x) can be approximated by the
compositiong(v(x)), whereg(-) is a function that assigns class
labels to the prototypee;, = v(x) € V. The approximation of
£(-) by g(v(-)) is efficient if the number of clusters inherent ir

Presentation of examples in the recall phase begins
the root of the tree and proceeds down to the leaves. T
prototypes belonging to internal slots are used as signposts
the search. More specifically, these prototypes guide the seg &£
algonthm to find a te.rmmal pro_totypej - v(x) that is close Fig. 3. The double spiral problem: (a) the 256 training samples and (b) the
to the input vectok without looking at all terminal prototypes. gesired generalization.

The same search method used during training is also called
for recall with the input vectok as the argument. The searchyyireme cases = 0 and» = 1. If » — 0, none of the

will return a terminal prototypev,, = v(x) € V, close tox. examples is rejected sinogount/count > 0. If » = 1,

A class labeli = £(x) is then assigned to the input vectolhe example is rejected unlessunt;/count = 1, which

x by composingg(-) and v(-) as£(x) = ¢(vi) = ¢(v(x)). implies that the corresponding slot is perfectly pure. Thus, for
If v belongs to the sloty, then g(vy) is computed on . — 1 this strategy rejects all examples which correspond to
the basis of the class countersunt;, county, -+, counts g slot that is not perfectly pure. Any other valuerof (0,1)
stored in the slot;.. These class counters indicate how oftefetermines the degree of impurity of a slot that is tolerated
the prototypes in the slaf responded to examples from eachyefore the corresponding example is rejected.

class. Depending on the specific objectives, the classification

function ¢(-) can be evaluated according to the following two VI. EXPERIMENTAL RESULTS

methods.

» Crisp Classification: The class label/(x) = g¢(vy)
is produced by majority vote. The feature vectoris
classified to belong to the clags with the highest class o The Double Spiral Problem

countercount; in the slots, that responded to the input . .
vector x. The CNeT was trained to separate two nested spirals.
¢ Likelihood Estimation: This method does not return aThIS IS a pontnwal benchmark problem used. extenswgly
ar evaluating neural architectures and supervised learning

class label but an estimate of the likelihood thatacertag hem A nice feature of the doubl iral oroblem is that
input vector belongs to the classés, Cs, ---, Cs. The schemes. ce Teature of the double spiral problem 1S tha

likelihood that an input vector belongs to the clasis its difficulty can be adjusted easily. The partition of the input

) . 7 space becomes an increasingly difficult problem as the spirals
determined as the ratio between the corresponding class ’

are extended by more rotations. Another advantage of the
countercount,; and the suntount of all class counters.

Furthermore the distance between the input vestand double spiral problem is that the partition of the input space

. . can be visualized on paper since the input space is two-
the responding prototype;. can be utilized as a measure,; : . .

. . . -~ dimensional (2-D). Fig. 3(a) shows two nested spirals, each
of confidence, with a smaller distance corresponding

hiah fid E%ntaining 128 points. The two spirals have the same center
\gher confidence. - but do not intersect. The white and black points in Fig. 3(a)
The recall strategy for the CNeT can be modified to a"‘)\ﬁépresent two classes. These points were used as training

the rejection of some examples in order to improve classifixamples in the experiments. Fig. 3(b) shows the desired
cation accuracy. Supposeis the input example to the CNeT generalization. The desired generalization was computed by
and the search method returns a terminal prototypes V, classifying each poink of the plane as belonging to the class
which belongs to the slo$; that stores the class counterg(x,), wherex; € X is the example closest te.

county, county, ---, count,. Let count be the sum of all A CNeT was trained with the examples using the global(3)
class counterscounti, counts, -- -, count,. According t0 search method. In these experiments, the tree was binary
the recall strategy based on likelihood estimation, the ratq'g;h = 2), the maturity age was set to = 512, the initial
count,;/count provides an estimate of the likelihood that th%arning rate wasy, = 0.1 and the decay of the learning
examplex belongs to théth class, that isx € C;. Letk be the rate wasay = 0.01. Fig. 4(a)—(d) show the response of the
class label such thatount > count;, Vi # k. The decision tree as it grows. In the beginning, the input space is split by
about the examplex is made by comparing the likelihoodthe root node into two regions (not shown). Splitting again
ratio county /count with therejection parameter € [0,1] as yields four regions shown in Fig. 4(a). In the left part of the
follows: if count, /count > 7, then the example is assigned figure the regions are grayed as follows: For every paint
the class labek. The input example isecognizedf % is its in the input space, the recall procedure finds a prototype
actual label andubstitutedotherwise. Ifcount;/count < r, close to it. The gray level of the pixel at the positianis

then the examplex is rejected The role of the rejection proportional to the ratio between the examples corresponding
parameterr € [0,1] becomes clear by considering the twdo white and black points used to updatg during learning.

This section evaluates the performance of the CNeT and ex-
isting classifiers on a variety of pattern classification problems.

1360 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

(@) (d)

Fig. 4. Progress of training: Response of the CNeT after (a) 4, (b) 16, cig- 5. Response of the CNeT trained using: (a) the greedy search method,
64, and (d) 256 adaptation cycles. b) the local search method, (c) the global(3) search method, and (d) the full

search method.

The right part of the figure shows the centroids of the clustersThe second set of experiments investigated the influence
as bright spots and the borders between regions as black lingfsthe search method on the performance of the CNeT. The
In this case, the pixels are grayed according to the distanggrameter setting for this series of experiments was the same
d(v, x). Fig. 4(b)—(d) show the progress of the training. Thas above. Fig. 5(a), (b), (c), and (d) shows the separation of
clusters are split to cover the input space in more and mate 2-D input space produced by four CNeT’s trained using the
detail. According to Fig. 4(d), all examples from the trainingreedy, local, globa}), and full search methods, respectively.
set are classified correctly after 256 adaptation cycles. Furti@early, all trained CNeT’s were able to classify all the training
training will only enhance contrast. examples correctly. The major performance difference due to

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1361

. difficult the problem is, the bigger the tree grows. According
oeedy == | to Fig. 6(a), the number of terminal prototypes grows linearly
oobafll 2= 1 with the problem size while the depth of the tree grows only
logarithmically. This means that the grown tree is balanced
to some extent. Fig. 6(a) also indicates that the search method
has only a slight influence on the size of the tree. Nevertheless,
the greedy search method grows slightly bigger trees than the
other three search methods. The influence of the different
search methods on the computational complexity is shown
in Fig. 6(b) for different problem sizes. The computational
complexity is measured in terms of the average number
of evaluations of the distance functiaf(.,.) for recall on
a fully grown tree. This is justified by the fact that the
evaluation of the distance, which is the only vector operator,
s is computationally more expensive than the remaining scalar
examples in the training set operators. The number of scalar operations needed is linear
() in the number of evaluations of the distance function. As
expected, the recall times grow with the problem size. For
200 —— g T = the full search method the growth is linear. The local method
- | grows sublinearly. The greedy method has the smallest recall
times, since its growth is only logarithmic. The recall time for
the globalB) method also grows logarithmically. However, the
recall times of the global(3) method are longer by a constant
factor than the recall times for the greedy method.

200 |-

150

number of tarminal prototypes / depth of the tree

100

B. The IRIS Data Set

The CNeT was also tested using Anderson’s IRIS data
set [1], which has extensively been used for evaluating the
performance of pattern classification algorithms. This data set
contains 150 feature vectors of dimension four which belong to
three physical classes representing different IRIS subspecies.
Each class contains 50 feature vectors. One of the three classes
is well separated from the other two, which are not easily
separable due to the overlapping of their convex hulls. The

() performance of the algorithms is evaluated by counting the
Fig. 6. thfe_ct offthﬁ problem sizbe (ntlfmber_of Iexamples in/éhe Lraining seumber of classification errors, i.e., the number of feature
e e e eosmcors that are assigned to a wrong physical cluster. The
of the distance function) of different search methods. available 150 examples were split into two seéfsand ",
each containing 75 examples. The examples were randomly

N . ._assigned to a training set and a testing set. This assignment
the search method was the generalization ability of the tramg&s different for each experiment. A CNeT was grown with
pNeT’s, 'th.at is, their response t(,) feature vectors npt mclud training sett” and its generalization ability was evaluated
in the training set. According to Fig. 5, the CNeT trained ”S'nlgsing the testing set”.

the full search method achieved the closest generalization to, binary tree was grown using the glob)learch method
the desired one. The search methods can be rated in termg,qf 5 maturity age of = 256. Fig. 7 shows the number of
their generalization ability as: greedy, global(3), local, and fulfeatyre vectors from the training and testing sets classified to
Given the computational complexity of the search methods,yrong class while the tree was grown. Not surprisingly, the
there is a tradeoff between computational complexity of theneT performed better on the training set after the completion
search method used for training the CNeT and the resultigg aimost every adaptation cycle. After a certain adaptation
generalization ability. cycle, the number of incorrect classifications on the testing set
The third set of experiments investigated the effect @émained almost constant with some fluctuations. On the other
the problem size on the size of the grown tree and tigind, the number of classification errors on the training set
computational complexity of different search methods. Theduced further as the tree kept growing. This is an indication
parameter setting for this series of experiments was the sagi®vertraining, which can be avoided by using the testing-set
as above. Fig. 6(a) shows the depth of the fully grown tree astbpping criterion to terminate the training as shown in Fig. 7.
the number of terminal prototypes as the number of training Because of its properties, the IRIS data set can be used
examples increased from 32 to 512. The size of the fully growta illustrate the learning and pruning procedures described in
CNeT depends on the complexity of the problem. The motkis paper. Fig. 8 shows a grown and pruned CNeT. The bars

evaluations of the distance function

50

266
sxagnples in the training set

1362 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998
35 r r v v . T v T - T -
misclassifications on training set — greagy —e—
misclassifications on testing set ----- locdl —+--
global‘Sﬂ B
30} i ﬁ 6F Ul -se—
2
=
«
@ 25 testing set stopping E =
8 2
2 5
B 20 4 %)
g *n £
2 8
£ X
5 15 i g
2 3
g - i £
g 10 i i s
&
5 2 1f 1
0 0 : " R L A L
0 20 40 60 80 100 120 4 8 16 32 64 128 256 512
number of adaptation cycles maturity age
. - a
Fig. 7. Training a CNeT on the IRIS data set: Number of feature vectors @)
from the training and testing sets classified incorrectly by a CNeT as a function
of the number of adaptation cycles. 10 T T T T T T
greedy -e—
local —+-

M class 1

class 2

O class 3

testing set

number of misclassisfications on training and testing sets

L L
1/8 1/9 110

: 1
/3 1/4 1/5

1/6 17
purity parameter

(b)

Fig. 9. Effect of the maturity age and the purity paramete on the
Fig. 8. Grown CNeT trained to classify the IRIS data: The bars show hoperformance of a CNeT trained to classify the IRIS data: Number of feature
often the prototypes in each node were updated to match feature vectors fr@utors classisfied incorrectly by a CNeT as a function of (a) the maturity age
the three classes. 7 of the nodes and (b) the purity parameter

within the nodes correspond to the prototypes of the tree athd testing-set stopping criterion. Although the maturity age
show how often each prototype was updated to match inmffected significantly the speed of training, it had no significant
vectors belonging to the three classes. In full consistency witifluence on the performance of the trained CNeT. In contrast,
the nature of the IRIS data, the first class was separated frtm performance of the CNeT was affected by the search
the other two by the root of the tree. The rest of the tree wasethod employed. Compared with other search methods, the
grown to separate the feature vectors belonging to the otlygeedy search method resulted in a relatively large number
two classes. of classification errors. For high values of the maturity age,
The last set of experiments investigated the effect of thieere was no significant differences between the performance
maturity ager and the purity parametét on the performance of the CNeT'’s trained using the other three search methods.
of the CNeT trained on the IRIS data. Each experimefig. 9(b) shows the number of feature vectors from the training
was repeated 100 times in order to minimize the effect ahd testing sets that were classified incorrectly by various
the random selection of the training and testing exampléSNeT's trained using different search methods. The training
The number of incorrect classifications shown in Fig. 9 wasas terminated using the maturity stopping criterion while the
obtained by averaging the results of all these experimengsirity parameteys decreased from 1/3 to 1/10. Regardless of
Fig. 9(a) shows the number of feature vectors from the trainitige search method used, the performance of the CNeT'’s on
set classified incorrectly by various CNeT’s trained usintie training set improved as the value of the purity parameter
different search methods. The maturity agevaried from decreased. In contrast, the number of feature vectors from the
4 to 512, while the training was terminated according testing set assigned by the CNeT to a wrong class remained

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1363

almost constant for values of lower than 1/4. In some

Rt
4

cases, there was even an increase of the number of incorrecisoo | head o
classifications on the testing set. This is an indication of Y flod +
overtraining. Note that because of the tree architecture usedgo | v "ﬁ}}é"rg :]
the number of incorrect classifications on the training set can oy w::d :

easily be reduced to zero by choosing smaller valueg.of
However, such a choice would allow the creation of new nodes
and degrade the generalization ability of the CNeT.

»*
2500 F separation — |

~
E
EZOOO

C. Two-Dimensional Vowel Data

The performance of the CNeT was evaluated using a set of'*® |
2-D vowel data formed by computing the first two formants
F1 and F2 from samples of ten vowels spoken by 67 speakergooo
[20], [21]. This data set has been extensively used to compare
different pattern classification approaches because there issoo
significant overlapping between the points corresponding to : F1 (Hz)
different vowels in the F1-F2 plane [20], [21]. The available
671 feature vectors were divided into a training set, containing
338 vectors, and a testing set, containing 333 vectors. ' T T T T

The training set formed from the 2-D vowel data was used woor
to train a CNeT to classify the ten vowels. The CNeT was
grown using the globad) search method and training was
terminated according to the testing-set stopping criterion. The hod
purity parameter wag = 1/4, the maturity age was = 1024, 2500 x separation — J
and the learning parameters involved in the update of the
prototypes wereyy = 0.02 and «y = 0.002. Fig. 10 shows § 2000 |
the partition of the feature space into regions that correspond
to one vowel each that was produced by the trained CNeT. In,g, |
addition to the regions formed by the CNeT, Fig. 10(a) and
(b) also show the training and testing data, respectively. The1
regions in Fig. 10 are composed of the cells of the terminal
prototypes that correspond to the same class. Therefore, the ‘
boundaries of the regions are piecewise linear. Due to the3® 55 200 S0 - 800 1000 1960 1200
extensive overlapping of the vowel classes, it is not possible F1)
to find a partition that classifies correctly all examples from (b)
the training and testing sets [20], [21]. It is clear from Fig. 16ig. 10. Classification of the 2-D vowel data produced by the CNeT shown
that the CNeT attempts to find the best possible Compromisé(@ether with (a) the training data set and (b) the testing data set. The recall

. of the CNeT was based only on the best prototype found.

regions of the input space with extensive overlapping between
the classes. This is accomplished through the stopping criterion
employed, which forces the CNeT to accept some incorrectThe next set of experiments evaluated the effect of the
classifications of examples from the training set in order wombination of splitting and stopping criteria on the perfor-
produce a partition of the feature space that performs well amnce and size of the CNeT grown using different search
the testing set. This improves the generalization ability of threethods. Fig. 12(a) shows the number of feature vectors
CNeT, as indicated by Fig. 10(a) and (b). from the training and testing sets classified incorrectly by the

The recall strategy employed in the previous experimefiNeT’s trained and grown using different values of the purity
assigned a class label to each input example using only farameteys. The number of terminal prototypes and the depth
closest terminal prototype. The next experiment was basedafnthe CNeT’s grown in these experiments are shown as a
the same trained CNeT but a slightly modified recall strategfunction of 5 in Fig. 12(b). The curves shown in Fig. 12 were
More specifically, a class label was assigned to each inmiitained when the CNeT was grown until all of its nodes
example by interpolating between its two closest terminalere mature (maturity stopping criterion). Since the purity
prototypes. The partition of the feature space produced by tp@rameteys determines the impurity of a slot that is tolerated
modified recall strategy is shown in Fig. 11. It is clear fronbefore the slot is split, the acceptable number of incorrect
Fig. 11 that the resulting partition is similar to that showelassifications on the training set decreases as the valge of
in Fig. 10 but the boundaries of the regions produced by thecreases. According to Fig. 12(a), the misclassification rate
modified recall strategy are not necessarily piecewise linean the training set decreasedas /3 decreased from 0.5 to
Since this modified strategy resulted in improved performan6el. However, the performance of the CNeT on the testing set
on both training and testing sets, it was also used in tld@ not improve or even degraded dsdecreased below 0.4.
experiments which follow. This indicates the beginning of overtraining. For low values

3000

XdrdbxO+e0

1600

1364 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

T T 7 T T T v T
| 1 reedy -o—
- " - st e -
v nod + global(3) -=-
had o ull -
hawed x
3000 v heard a | 30
. heed +
v hud »
v who'd ~
hood = 25 B .
2500 separation — | .§) - g T g
- e NN g j maturity stopping
E 3‘2 20} e 4
o 2000 E 'g
153 15 F J
ES
1500 .
10 + -
1000 1 5} maturity stopping
500 y y %s 045 o4 03 0.3 0.2 0.15 0.1
200 400 600 8()0':1 (HZ}OOO 1200 1400 1600 ¥ - purity pérameter b . g
@ (@)
r T T Y T T T
T T T v T r T T grleedvl -~
o ocal +—- |
300 head ¢ 1 512 govalf3) o
hod + ull -ve—
h hag a
awed x L i i
2000 | oard » | -g 256 testing set stopping
heed + .8
o hqg - e I R s
hood = § 128 | maturity stopping 4
2500 separation — | %- terminal prototypes
g }
_ a 64
z K
o~ 2000 1 E
[8 32]
k<)
1500 { 2 16 +
€ depth maturity stopping]
c —
1000 E g
. 4 L L 2 L "))
500 : . L s L 1 0.5 0.45 0.4 03 = 03 0.25 0.2 0.15 0.1
200 400 600 1000 1200 1400 1600 purity parameter
F1 (Hz)
(b)
(b)

Fig. 12. Effect of the purity parametet on the classification of the 2-D

Fig. 11. Classification of the 2-D vowel data produced by the CNeT showowel data: (a) percentage of misclassified examples and (b) size of the CNeT
together with (a) the training data set and (b) the testing data set. The re¢allmber of terminal prototypes/depth).

of the CneT was based on the interpolation between the two best prototypes

found.

TABLE V
of 3 the CNeT memorizes the examp|es from the trainin'gErR PERFORMANCE OF DIFFERENT CLASSIFIERS ON THE2-D VOWEL DATA:

set WhICh de I’adeS |tS eneralization ab|||t Com arison 0 CENTAGE OFEXAMPLES FROM THE TRAINING AND TESTING SETS CLASSIFIED
’ 9 ° 9 Y- . _p INCOrRRECTLY BY THE CNeT, A k-NN CLASSIFIER, AND Two FFNN'’s
the performance of different search methods indicates that

only the greedy search method deviated significantly from (% misclassified
their average behavior. In fact, the performance of the greedy Classifier training set | testing set
search method on the testing set was close to the average CNeT 17.40 17.96
performance of all four search methods for values /bf LN 0455
between 0.35 and 0.3. As the value ®fdecreased, the size o . '
of the trees increased. According to Fig. 12(b), the depth of FFNN (5 hidden units) 2041 2842
the tree increased only slightly despite the substantial growth FFNN (10 hidden unils) 2012 19.82

in the number of terminal prototypes. This indicates that the

tree is well balanced. The CNeT was also grown using the

same search method but a different stopping criterion. In ti#gd size of the CNeT grown fog = 0.35. Fig. 12(a)
case, the testing-set stopping criterion was used to prevent ithdicates that the CNeT grown using the testing-set stopping
tree from growing too large. It was experimentally verifie@riterion resulted in fewer misclassifications on the testing set,
that the selection of the purity parametedid not affect the which implies improved generalization ability. According to
growth of the CNeT when the tree was pruned based on Rig. 12(b), this stopping criterion resulted in a pruned tree
performance on the testing set. Fig. 12 shows the performandgich has a smaller depth and contains a smaller number of

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1365

TABLE VI
PERFORMANCE OF THECNeT oN THE 2-D VoweL DATA WHEN ReJECTIONSWERE ALLOWED: PERCENTAGE OF RECOGNIZED, SUBSTITUTED,
AND REJECTED EXAMPLES FROM THE TRAINING AND TESTING SETS FOR DIFFERENT VALUES OF THE REJECTION PARAMETER 7

training set testing set
r | Y%recognized | %substituted | %rcjected | %recognized | %substituted | %rejected
0.5 79.05 16.81 4.12 79.04 17.06 3.89
0.6 76.99 10.02 12.97 71.55 12.27 16.16
0.7 62.24 5.01 32.74 60.77 7.78 31.43
0.8 42.18 1.76 56.04 43.11 3.89 52.99
0.9 35.69 0 64.30 34.73 1.19 64.07

terminal prototypes compared to that grown using the sam
value of 5 and the maturity stopping criterion. E'O \ ‘L 3 \1 S' Q 7 3 Q

Table V shows the percentage of the examples from the
training and testing sets misclassified by the CNeT grown by @
the globalg) search method, th&-nearest neighbo(k-NN)
classifier, and twéeedforward neural network&FNN'’s) with Q ‘ 2 3 y S G 7 3 q
five and ten hidden units trained using gradient descent. Th '
k-NN classifier uses feature vectors from the training set as (b)
a reference to classify examples from the testing set. Given .) , e
an input example from the testing set, theNN computes ﬁﬂ? % 2 % % % g % %
its Euclidean distance from all the examples included i ’ '
the training set. The closedt examples from the training ©
set are selected and the input example is classified on i@ 13. Digits from the NIST database: (a) ordinary binary images, (b) 32
basis of their labels as follows: if all the Iabels are ngf 22 B images ster one sage o replocessng (sant and sze norma-
identical, then the example igjected If all the labels are (sjant and size normalization followed by wavelet decomposition).
identical, then the example is classified accordingly. More
specifically, the example igcognizedf the label assigned by)
the classifier and the actual label are identicaswbstitutedf confidence (measured by the percentage of accepte_d exam-
the assigned and actual labels are different. A4NN classifier ples). For example, Whgn: 0.9the percentage of substituted
was tested in these experiments with= 1, which implies that examples from the tralnlng and testnjg sgts reduced to 0%, gnd
none of the examples was rejected. For thBIN classifier, almost 1%, respectively. However, in this case the classifier
Table V shows only the misclassifications on the testing SGIECtS more than 2/3 of the examples from both sets.
since the training set is only used as a reference. The CNeT o
performed better than the other classifiers on both trainir% NIST Digits
and testing sets. It is also remarkable that the CNeT classifiedn the last set of experiments, the CNeT was tested and
incorrectly the same percentage of examples from the trainiogmpared with competing techniques on a large-scale hand-
and testing sets, which implies that pruning resulted in a treewfitten digit recognition problem. The objective of a classifier
very satisfactory generalization ability. Both trained FFNN’# this application is the recognition of the digit represented
classified incorrectly the same percentage of examples frawp a binary image of a handwritten numeral. Recognition of
the training set but increasing the number of hidden unitendwritten digits is the key component of automated systems
from five to ten improved the performance on the testing seleveloped for a great variety of real-world applications, includ-
Nevertheless, it was experimentally verified that increasing thrgy mail sorting and check processing. Automated recognition
number of hidden units above ten degraded the ability of tlé handwritten digits is not a trivial task due to the high
trained FFNN’s to generalize. variance of handwritten digits caused by different writing

The CNeT grown using the glob8)(search method was al- styles, pens, etc. Thus, the development of a reliable system for
lowed to reject some ambiguous examples in order to improkandwritten digit recognition requires large databases contain-
its classification accuracy. Table VI shows the percentagey a great variety of samples. Such a collection of handwritten
of recognized, substituted, and rejected examples from tiigits is contained in th&lIST Special Databases &hich was
training and testing sets for different values of the rejectiamsed as a data source in these experiments. The NIST database
parameterr. As the value ofr increased from 0.5 to 0.9, contains 120 000 isolated binary digits that have been extracted
the percentage of substituted examples from both training afindm handwriting sample forms. These digits were handwritten
testing sets decreased with a simultaneous increase in Iiyeabout 2100 field representatives of the United States Census
percentage of rejected examples. It is clear from Table WBureau. The isolated digits were scanned to produce binary
that there is a tradeoff between the reliability of the classifietmages of size 40« 60 pixels, which are centered in a 128
(measured by the percentage of substituted examples) andxit428 box. Fig. 13(a) shows some sample digits from 0 to 9

1366 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

TABLE VII
PERFORMANCE OF THEA-NN CLASSIFIER ON THE TESTING SET FORMED FROM THE NIST DATA FOR DIFFERENT DIGIT REPRESENTATIONS

32 x 32 digit representation 16 x 16 digit representation

(one preprocessing stage) (two preprocessing stages)
k | %recognized ‘ Ysubstituted I %zrejected | %recognized ‘ Jesubstituted ‘ Y%rejected
1 97.35 2.64 0.00 97.71 2.28 0.00
2 95.80 1.05 3.14 96.47 1.13 2.39
4 93.35 0.57 6.06 94.38 0.60 5.01
8 89.68 0.33 9.98 91.27 0.31 8.40
16 84.01 0.16 15.81 86.27 0.17 13.54

from the NIST database used in these experiments. The datdhe representation of the digits produced by the wavelet
set was partitioned in three subsets as follows: 58646 digitecomposition involved in the second preprocessing stage was
were used for training, 30 367 digits were used for testing, aettaluated by using a standard classification method. More
the remaining 30 727 digits constituted the validation set. specifically, the .-NN classifier was tested on the 3

The raw data from the NIST database were preprocessedih digit representation resulting from the first preprocessing
order to reduce the variance of the images that is not relevatdage and the 16< 16 digit representation resulting after
to classification. The first stage of the preprocessing schemavelet decomposition and averaging. Table VIl summarizes
produced a slant and size normalized version of each digit. T results of thé:-NN classifier used on the results of the two
slant of each digit was found by first determining the center sfages of preprocessing for different valueskofTable VII
gravity of each digit, which defines an upper and lower hailfidicates that there is a tradeoff between the reliability of
of it. The centers of gravity of each half were subsequentfjassification and the rejection rates, which mainly depends
computed and provided an estimate of the vertical main axia the value ofk used. As the value of increases, the
of the digit. This axis was then made exactly vertical using substitution rate decreases but more digits are rejected. It is
horizontal shear transformation. In the next step, the minimekar from Table VII that th&-NN classifier performed better
bounding box was determined and the digit was scaled intovlen classification was based on the results of the wavelet
32 x 32 box. This scaling may slightly distort the aspect ratidecomposition instead of the 32 32 representation of the
of the digits by centering, if necessary, the digits in the boxligits produced by the first preprocessing stage. An additional
Fig. 13(b) shows the same digits shown in Fig. 13(a) aftadvantage of using the second preprocessing stage is that the
slant and size normalization. resulting feature vectors need roughly 1/4 of the memory and

The second preprocessing stage involved a four-lesxamputational time required when the feature vectors are the
wavelet decomposition of the 32 32 digit representation result of the first preprocessing stage.
produced by the first preprocessing stage. Each decompositioithe next experiment illustrates the operation of a search
level includes the application of a 2-D Haar wavelet filtemethod applied to a CNeT trained to recognize the NIST digits
in the decomposed image, followed by downsampling hysing the feature vectors obtained after the two preprocessing
two along the horizontal and vertical directions. Becaustages. The CNeT was trained and grown using the gi®dpal(
of downsampling, each decomposition level produces fosearch method. The purity parameter whs= 1/32 and the
subbands of lower resolution, namely a subband that carrreaturity age was = 512. The operation of the search method
background information (containing the low-low frequencys described by Fig. 14. Fig. 14(e) shows thex88 lower-
components of the original subband), two subbands that caright quadrant of the 16x 16 representation of the digit
diagonal details (containing low-high and high-low frequencil” produced after two stages of preprocessing. Fig. 14(a)
components of the original subband), and a subband tifl}, (c), and (d) shows the parts of the tree visited by the
carries the nondiagonal details (containing the high-higiiobal(2) search method after initialization, one training cycle,
frequency components of the original subband). As a resuitjo training cycles, and four training cycles, respectively.
the four-level decomposition of the original 32 32 image Fig. 14(a)—(d) shows only the prototypes whose Euclidean
produced three subbands of sizes %616, 8 x 8, and 4 distances from the input exampteare calculated. As a result,
x 4, and four subbands of size2 2. The 32x 32 image Fig. 14(a)—(d) shows four prototypes per level except of the
produced by wavelet decomposition was subsequently redu¢ed prototypes shown in the first level (initialization). The
to an image of size 16< 16 by representing each 2 2 small plots next to some of the prototypes represent their
window by the average of the four pixels contained in it. Thisormalized histograms. The horizontal axis of each histogram
step reduces the amount of data by 3/4 and has a smoothingesponds to the digit, 1, ---, 9. The locations of the
effect that suppresses the noise present in the &2 image. vertical bars correspond to the digits represented by each
Fig. 13(c) shows the images representing the digits showngrototype while their heights represent the likelihood of this
Fig. 13(a) and (b), resulting after the second preprocessirgpresentation. The distribution of the bars over the horizontal
stage described above. axis reveals the purity of each prototype. The three dots shown

BEHNKE AND KARAYIANNIS

(a)

PerRFORMANCE OF THECNeT oN THE NIST DiGITs FOR DIFFERENT SEARCH WIDTHS OF THE GLOBAL (w)

TABLE VI

: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION

SeARCH METHOD WHEN NO REJECTIONS WERE ALLOWED

training set testing set validation sct
w | %recognized | %substituted | %recognized | %substituted | %recognized | %substituted
8 99.71 0.29 97.53 247 97.72 2.28
16 99.73 0.27 97.63 2.37 97.83 2.17
32 99.74 0.26 97.69 2.31 97.90 2.10

1367

Fig. 14. The parts of the CNeT visited by the gloBalearch method after (a) initialization, (b) one training cycle, (c) two training cycles, and (d)
four training cycles when the example (e) was presented to the tree.

in the right-hand side of some histograms indicate that thereiris Table VIII, which indicates that the performance of the
a subtree (not shown in the figure) whose root is the prototy@®NeT improved consistently as the value ©f increased
next to the histogram. Fig. 14 describes the growth arfidm 8 to 32. Forw = 32, the CNeT classified correctly
training of the CNeT by showing how the prototypes becon®9.71% of the digits from the training set, 97.69% of the
tuned to some examples as training progresses. Moreowdgits from the testing set, and 97.90% of the digits from
Fig. 14 shows that the search method visits only the partstbe validation set. The CNeT performs better than various
the tree that contain prototypes similar to the input examplelassification schemes tested on the same data set [9], none
A CNeT was trained to classify the feature vectors resultiraf which exceeded the recognition rate of 97.5%. The CNeT
from the NIST digits after the two stages of preprocessirig also a strong competitor to FFNN’s tested on this data set.
digits using the globailf) search method. The purity parametefable IX shows the percentage from the training, testing, and
was 3 = 1/32, the maturity age was = 256, and the validation sets recognized or substituted by three FFNN’s with
learning parameters involved in the update of the prototyp&s, 32, and 64 hidden units trained using gradient descent.
were «g = 0.05 and «y = 0.005. The CNeT was pruned The best performance was achieved by the FFNN with 64
for improved performance on the testing set by terminatirtgdden units. This network performed better than the CNeT
its growth and training using the testing-set stopping criterioan the training set. However, its performance was slightly
Recall was performed by interpolating between the two closesferior to that of the CNeT on the testing and validation sets.
prototypes to the input example. For = 8, the maximum After their training, the FFNN and CNeT required roughly the
depth of the grown CNeT was 24. The CNeT consisted shme time for recall. However, the training of the FFNN’s was
10059 terminal prototypes, which indicates that the tree wapproximately ten times longer than the growth and training
well balanced. The effect of the search method on the succe$she CNeT’s. The performance of the CNeT is also close to
rate of the CNeT was evaluated in the case where the classifieat of thek-NN classifier, which classified correctly 97.79%
was not allowed to reject any input examples. Table VIibf the digits from the testing set and 97.98% of the digits from
summarizes the performance of the CNeT trained and growre validation set. In addition to its competitive classification
using the globalg) search method when the search widthccuracy, the CNeT was computationally more efficient than
varied fromw = 8 to w = 32. As w increases, the global] the k-NN. More specifically, the computational time required
method searches a larger subtree and is expected to retwrrthe CNeT to perform this classification task was two orders
more often a terminal prototype that is the closest to tlod magnitude lower than that required for the same task by the
input example. This is consistent with the results summariz&eNN. This is due to the fact that the CNeT computes only

1368

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

TABLE IX

PerFORMANCE OF FFNN's wiTH VARIOUS NUMBERS OF HIDDEN UNITS (V) oN THE NIST DiGITs

training set

testing set

validation set

ny, | %recognized | %substituted | %recognized | %substituted | %recognized | %substituted
16 84.14 15.86 86.46 13.54 86.88 13.12
32 96.45 3.55 95.95 4.05 96.35 3.65
64 99.99 0.01 97.33 2.67 97.54 2.46
o4 , . . .] i CNeT's rejected practically the same number of examples but
0.0 9%32?",‘% - the substitution rate decreased as the search width increased
22} gobalisz) =~ 1 from eight to 32.

] VII.

1 This paper introduced competitive neural trees for pattern
classification. The CNeT combines the advantages of compet-
itive neural networks and decision trees. The CNeT performs
hierarchical clustering by employing competitive unsupervised
learning at the node level. The generalization ability of the
CNeT is guaranteed by forward pruning, which is an inherent
part of the learning process. The main advantage of the CNeT
is its structured, self-organizing architecture that allows for
short learning and recall times.
° The experiments evaluated the proposed learning and recall
procedures and different search methods. The experiments
Fig. 15. Recall of the CNeT using the globab)(for the validation set also investigated the combined effect of splitting and stopping
formed from the NIST digits: The substitution rates are plotted against tgiteria on the generalization ability of trained CNeT’s. The
;egg::élr?rzmrgttﬁ; for different values of the rejection parametend different performan_ce of a trained CNeT depends on the search method
employed in the learning and recall phases. Among the search
methods proposed in this paper, the greedy search method
the Euclidean distances between the input example and a sraallieves the fastest learning and recall at the expense of
portion of the prototypes stored in the CNeT. The recall spegdrformance. On the other hand, the full search method
of the CNeT employing the global(search method was 85achieves the best performance at the expense of learning and
digits per CPU-second on a SUN SPARC-20 workstation. Thigcall speed. The local and global search methods combine
high recall speed makes the implementation of the CNeT @fe advantages of the greedy and full search methods and
serial hardware feasible. On the other hand, the applicatighow for tradeoff's between speed and performance. The
of the k-NN in real-time applications requires special purposgxperiments on the data sets containing overlapping classes
parallel hardware. revealed that the growth of small and balanced trees with
The last set of experiments investigated how the reliabiligatisfactory generalization ability can be accomplished by
of the CNeT improves if some ambiguous examples at®mbining the testing-set stopping criterion with a value of
rejected. The digits from the validation set were classifiafle purity parametep allowing the existence of slots that
by the CNeT trained and grown using the globalearch are not perfectly pure. The experiments on the NIST digits
method withw = 8, w = 16, andw = 32. Fig. 15 plots indicated that the reliability and classification accuracy of
the substitution rates against the rejection rates obtained fio¢ trained CNeT can be improved by a recall strategy that
different values of the rejection parameter The curves allows the rejection of some ambiguous examples. The CNeT
indicate that the development of more reliable classifiers caan be trained in a tiny fraction of the time required for
be accomplished by allowing the CNeT to reject a portiomaining conventional feedforward neural networks to perform
of the examples. As the rejection parametencreases from the same classification task. As an example, the CNeT was
zero to 0.99, the substitution rate decreases. The price totkzned to recognize the NIST digits ten times faster than the
paid for improved reliability is an increase in the rejectiofFNN, which required four days for training. On the other
rate. The most substantial decrease in the substitution rate \waad, the generalization achieved by CNeT'’s was consistently
encountered when the value odecreased from zero to 0.95.comparable or even better than that of feedforward neural
For values ofr above 0.95 the substitution rate decreasetkttworks. The classification accuracy of the CNeT was also
only slightly despite the substantial increase in the rejectidound to be comparable to that of tHeNN classifier. In
rate. Regardless of the value of the rejection parametre fact, thek-NN classifier resulted in slightly higher recognition
performance of the CNeT improved asincreased from 8 to rates on the NIST data because of the large size of the
32. For all values of- used in these experiments, the threwraining set. However, the-NN classifier was computationally

CONCLUSIONS

% Substitution
>
T

1.2

0.8

[

4 5
% Rejection

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1369

more demanding than the CNeT because of the differens]

, “A self learning neural tree network for recognition of speech

search strategy employed. The time required bykﬂ‘l‘éN to features,” inProc. IEEE Int. Conf. Acoust., Speech, Signal Processing,

Minneapolis, MN, Apr. 27-30, 1993, pp. 517-520.

classify an e>_<amp|e in_Cr_eased with the PrOblem size (nur_n_QQJi] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
of examples in the training set). The trained CNeT classified methodology,”|EEE Trans. Syst., Man, Cyberrol. 21, pp. 660-674,

examples much faster than tieNN classifier, especially in . 192

T. D. Sanger, “A tree-structured adaptive network for function approxi-

large-scale classification problems such as the recognition of mation in high-dimensional space$2EE Trans. Neural Networksol.
digits from the NIST database. 2, pp. 285-293, 1991.

(1]
(2]

(3]

(4]

(5]
(6]
(7]

(8]

(9]

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[26] A. Sankar and R. J. Mammone, “Optimal pruning of neural tree networks
for improved generalization,” ifProc. Int. Joint Conf. Neural Networks,
Seattle, WA, July 8-12, 1991, pp. 219-224.

REFERENCES [27] , “Speaker independent vowel recognition using neural tree net-
works,” in Proc. Int. Joint Conf. Neural NetworkSeattle, WA, July
E. A “The IRI f th Peni Il. Amer. IRI 8-12, 1991, pp. 809-814.
Soc n\%alrsgg, pp ez—5 Slzzg the Gaspe Peninsuill. Amer S [28] , “Growing and pruning neural tree networkslEEE Trans.

L. Atlas, R. Cole, Y. Muthusamy, A. Lippman, J. Connor, D. Park, M. Computersyol. 42, pp. 291-299, 1993. ,
El-Sharkawi, and R. J. Marks II, “A performance comparison of traine£129] I. K. Sethi, “Entropy nets: From decision trees to neural networks,
multilayer perceptrons and trained classification treBsgt. IEEE,vol. [30] Proc. IE‘%%(\:/ig:erSt‘rgg- plgr'foeﬂq'alni?_eln?]la?;{céﬁght using an artificial
;.&Bg?]hlig 'arr)m?j' l\%6 éﬁlaﬁggilaﬁ%?s?"‘Competitive neural trees for vector ~ neural network implementation,” irrtificial Neural Networks and
quantization,”Neural Network Worldyol. 6, no. 3, pp. 263-277, 1996. fgﬁﬂﬂ:ﬁﬁg&gf;ﬁiﬂ'tgg’e\}zérseltggin%ﬁ'7K1' ‘33%"" Eds. Ams-
Proc. IEggel-rlm—t %%nr:f‘?e,ggn?a:]?\lug;llérri;\s,;;:ir?gtté?]intilca:isgfsgog_’ejn[31] . K. Sethi and G. P. R. Sarvarayudu, “Hierarchical classifier design
1996, pp. 1439-1444. using mutual information,IEEE Trans. Pattern Anal. Machine Intell.,
L. Brieman, J. H. Friedman, R. A. Olshen, and C. J. St@lassification vol. 4, pp. 441-445, 1982.

and Regression TreesBelmont, CA: Wadsworth, 1984.

P. A. Chou, “Optimal partitioning for classification and regression trees,”
IEEE Trans. Pattern Anal. Machine Intellpl. 13, pp. 340-354, 1991.
L. Fang, A. Jennings, W. X. Wen, K. Q.-Q. Li, and T. Li, “Unsupervised
learning for neural trees,” ifProc. Int. Joint Conf. Neural Networks,
Seattle, WA, July 8-12, 1991, pp. 2709-2715.

K. R. Farrell, R. J. Mammone, and K. T. Assaleh, “Speaker recognitic
using neural networks and conventional classifidiSEE Trans. Speech
Audio Processing, Pt. llyol. 2, pp. 194-205, 1994.

P. J. Grother and G. T. Candela, “Comparison of handprinted dic
classifiers,” Nat. Inst. Standards Technol., Gaithersburg, MD, Tech. Re
NISTIR 5209, 1993.

m Sven Behnkereceived the Diploma degree in com-
puter science from the Martin-Luther University at
Halle-Wittenberg, Germany, in 1997. He is currently
working toward the Ph.D. degree at the Computer
Science Institute of the Free University of Berlin.

During 1994 and 1995, he was a student at the
University of Houston, where he worked in the
Image Processing Laboratory of the Department

H. Guo and S. B. Gelfand, “Classification trees with neural networ of EIectnc_aI and Computer Engineering. During
feature extraction,TEEE Trans. Neural Networksiol. 3, pp. 923-933, .1997' he .d'd research _for Siemens A(_3. His resea_lrch
1992, T _interests include growing neural architectures, hier-
N. B. Karayiannis, “Learning vector quantization: A reviewrit. J. &rchical image analysis, and neural control.
Smart Eng. Syst. Desigmpl. 1, pp. 33-58, 1997.
, “A methodology for constructing fuzzy algorithms for learning
vector quantization,TEEE Trans. Neural Networkspl. 8, pp. 505-518,
1997.
N. B. Karayiannis and J. C. Bezdek, “An integrated approach to fuz:
learning vector quantization and fuzzymeans clustering,[EEE Trans.
Fuzzy Syst.yol. 5, pp. 622—-628, 1997.
N. B. Karayiannis and P.-I Pai, “A family of fuzzy algorithms for
learning vector quantization,” inntell. Eng. Syst. Through Artificial
Neural Networks,C. H. Dagli et al, Eds., vol. 4. New York, NY:
ASME Press, 1994, pp. 219-224.

, “Fuzzy algorithms for learning vector quantizatioffEE Trans.
Neural Networksyol. 7, pp. 1196-1211, 1996. . .
T. Kohonen, Self-Orgar?in)ation and Associative Memorg@rd ed. ‘ i University of Houston, TX. From 1984 to 1991, he
Berlin, Germany: Springer-Verlag, 1989. _ _ worked as a Research and Teaching Assistant at the

. “The self-organizing map, Proc. IEEE, vol. 78, no. 9, pp. University of Toronto. From 1983 to 1984, he was a Research Assistant at
14641480, 1990. the Nucle_ar Research Centgr_“Dempcritos_," Athens, Gr_eece, where he_was
T. Li, L. Fang, and A. Jennings, “Structurally adaptive self-organizin§ndaged in research on multidimensional signal processing. He has published
neural trees,” irProc. Int. Joint Conf. Neural NetworkBaltimore, MD, ~ more than 70 papers, including 28 in technical journals, and is the coauthor
June 7-11, 1992, pp. 11I-329-111-334. of the bookArtificial Neural Networks: Learning Algorithms, Performance
T. le Y.Y. Tang’ S. C. Suen, L. Y. Fang’ and A. J. Jenningsy “A StrucEVaIUatiOr:], and A_pplicationS(BOS_ton, MA: KIUWer,) 1993) H|$ Current)
turally adaptive neural tree for the recognition of large character sef€search interests include supervised and unsupervised learning, applications
in Proc. IEEE Int. Conf. Pattern Recognitionlague, The Netherlands, _of fuzzy logic in neural modeling, applications of artificial neural networks

Nicolaos B. Karayiannis(S'85-M'91) was born in
Greece on January 1, 1960. He received the diploma
degree in electrical engineering from the National
Technical University of Athens in 1983, and the
M.A.Sc. and Ph.D. degrees in electrical engineering
from the University of Toronto, Canada, in 1987 and
1991, respectively.

He is currently an Associate Professor in the De-
partment of Electrical and Computer Engineering,

o
%

Aug. 30-Sept. 4, 1992, pp. 187-190. in image processing and communications, learning vector quantization and its
R. P. Lippmann, “Pattern classification using neural networkSEE applications in image and video compression.
Commun. Mag.yol. 27, pp. 47-54, 1989. Dr. Karayiannis is a member of the International Neural Network Society

K. Ng and R. P. Lippmann, “Practical characteristics of neural netwokfNNS) and the Technical Chamber of Greece. He is the recipient of the
and conventional pattern classifiers,” Advances in Neural Inform. W. T. Kittinger Outstanding Teacher Award. He is also a corecipient of a
Processing Syst. . P. Lippmanret al.,Eds. San Mateo, CA: Morgan Theoretical Development Award for a paper presented at the Artificial Neural
Kaufmann, 1991, pp. 970-976. Networks in Engineering’94 Conference. He is an Associate Editor of the
M. G. Rahim, “A neural tree network for phoneme classification WitHEEE TRANSACTIONS ON NEURAL NETWORKS and the IEEE RANSACTIONS ON
experiments on the TIMIT database,” Rroc. IEEE Int. Conf. Acoust., Fuzzy SysTems. He also served as the General Chair of the 1997 International
Speech, Signal Processin§an Francisco, CA, Mar. 23—-26, 1992, pp.Conference on Neural Networks (ICNN’97), held in Houston, TX, June 9-12,
345-348. 1997.

