
1352 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

Competitive Neural Trees for Pattern Classification
Sven Behnke and Nicolaos B. Karayiannis,Member, IEEE

Abstract—This paper presentscompetitive neural trees(CNeT’s)
for pattern classification. The CNeT containsmmm-ary nodes and
grows during learning by using inheritance to initialize new
nodes. At the node level, the CNeT employs unsupervised com-
petitive learning. The CNeT performs hierarchical clustering
of the feature vectors presented to it as examples, while its
growth is controlled by forward pruning. Because of the tree
structure, the prototype in the CNeT close to any example can be
determined by searching only a fraction of the tree. This paper
introduces different search methods for the CNeT, which are
utilized for training as well as for recall. The CNeT is evaluated
and compared with existing classifiers on a variety of pattern
classification problems.

Index Terms—Classification, competitive learning, competitive
neural tree, decision tree, neural tree, search method, splitting
criterion, stopping criterion, tree pruning.

I. INTRODUCTION

DECISION trees have extensively been used to perform
decision making in pattern recognition [24]. By applying

the decision tree methodology, one difficult decision can be
split into a sequence of less difficult decisions. The first
decision determines which decision has to be made next by
indicating which node of the tree should be visited. Because
of the tree structure, only some of all possible questions are
asked in the process of making the final decision. In fact, the
final decision is made at a terminal node of the tree, which
is reached by traversing the tree starting from the root as
indicated by the decisions made at internal nodes.

The design of decision trees is frequently performed in
a top-down fashion. The nodes are split during the design
process according to some criterion. The existing spitting
criteria include the impurity measure used inclassification and
regression trees(CART’s) [5], [6] and the mutual information
measure employed by theaverage mutual information gain
(AMIG) algorithm [31]. The terminal nodes are determined
during the construction of the tree by freezing some of the
nodes according to some stopping criterion or by growing a
large tree and performing selective backward pruning. After
the final tree structure is determined, the terminal nodes are
frequently assigned class labels by using a majority rule.

Decision trees and multilayer feedforward neural networks
are essentially competing methodologies for pattern classifica-
tion. Atlas et al. [2] presented a performance comparison of
multilayer neural networks and classification and regression

Manuscript received January 8, 1996; revised April 24, 1997.
S. Behnke is with the Institute of Computer Science, Free University of

Berlin, 14195 Berlin, Germany.
N. B. Karayiannis is with the Department of Electrical and Computer

Engineering, University of Houston, Houston, TX 77204-4793 USA.
Publisher Item Identifier S 1045-9227(98)08347-7.

trees used for load forecasting, power security, and vowel
recognition. Neural trees were recently introduced for pattern
classification in an attempt to combine advantages of neural
networks and decision trees. The neural tree architectures
reported in the literature can be grouped according to the
learning paradigm employed for their training. Most of the
existing neural tree architectures were directly or indirectly
related to feedforward neural networks, although they differ
in terms of the design methodology. In fact, the character-
ization “neural tree” was indistinguishably used to describe
approaches employing decision trees as tools for building and
training feedforward neural networks as well as approaches
using feedforward neural networks as building elements in
order to improve the design of decision trees.

The first family of approaches attempt to build neural
networks either by developing tree structured neural net-
works for function approximation or by mapping decision
trees to multilayer neural networks. Sanger [25] proposed a
tree-structured adaptive network for function approximation
in high-dimensional spaces. This approach is based on the
hypothesis that only few dimensions of the input data are
necessary to compute the desired output function. A learning
procedure based on gradient descent grows a neural tree
whose structure depends on the input data and the function
to be approximated. Sethi [29], [30] proposed a procedure
for mapping a decision tree into a multilayer feedforward
neural network. This approach can be used for the systematic
design of a class of multilayer neural networks, calledentropy
networks. A two-step methodology for designing entropy
networks was proposed along with a rule for incremental
learning. This methodology specifies the number of neurons
needed in each layer of the network and leads to a learning
procedure that allows each layer to be trained separately.

The second family of approaches attempt to develop tree
structures containing feedforward neural networks in their
nodes. Sankar and Mammone [26]–[28] introduced theneural
tree network(NTN), a classifier consisting of single-layered
neural networks connected in a tree architecture. These net-
works are used to recursively partition the feature space
into subregions. The NTN grows by a heuristic learning
procedure based on the norm of the classification error. The
generalization ability of the NTN is enhanced after training
by an optimal pruning algorithm. Sankar and Mammone [27]
used the NTN for speaker independent vowel recognition.
Rahim used variations of the NTN for phoneme classification
[22] and recognition of speech features [23]. Farrellet al. [8]
modified the learning rule and pruning criteria employed by the
NTN and compared the resulting modified NTN with various
neural and conventional classifiers on speech recognition.

1045–9227/98$10.00 1998 IEEE

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1353

Guo and Gelfand [10] used multilayer neural networks at
the decision nodes of a binary classification tree to extract
nonlinear features. They employed a gradient-type learning
algorithm in conjunction with a class-aggregation algorithm
to train the networks and grow the tree. This approach over-
comes the problem of selecting the size of feedforward neural
networks for classification applications by building a tree of
an appropriate size and architecture. This is accomplished by
a tree pruning algorithm. Guo and Gelfand evaluated their tree
structure and compared it with the CART method on waveform
recognition and a handwritten character recognition problem.

Most of the approaches mentioned above were motivated by
the lack of a reliable procedure for determining the appropriate
size of feedforward neural networks in practical classifi-
cation applications. These approaches replace unstructured
feedforward neural networks by structured neural architectures
in order to facilitate learning and/or improve generalization
by controlling the number of neurons and connections. An
alternative approach to the development of neural trees was
motivated by competitive learning. Liet al. [18], [19] de-
veloped adaptive neural trees for classification and vector
quantization by combining competitive learning principles
with structural adaptation during learning. The adaptive neural
tree is a multilevel competitive neural network the nodes of
which are organized in a tree topology. During training, all
nodes of each level compete for each input. The connection
weights of the winner are then updated using gradient descent
learning. New nodes are added to the tree when the error
rate exceeds a certain threshold and some nodes are deleted if
they remain inactive for a long period. The inactive nodes are
deleted during periodic traversals of the tree. This architecture
splits the input space at each node until the problem is easy
enough to be solved by a simple node [7], [18].

Neural trees are grown and pruned. Some algorithms grow
a perfect tree that classifies all examples correctly [28]. Then
a set of pruned subtrees is checked for performance on an
independent testing set of examples and the best performing
subtree is selected. This method is calledbackward pruning.
Other algorithms performforward pruning[7], [8], [18]. While
the tree is growing, its performance on an independent testing
set is checked. The tree stops growing when a stopping
criterion triggers. Usually the growing of the tree is terminated
when its performance on the testing set begins degrading.
Forward pruning avoids the growth of large branches that will
be pruned later.

Competitive learning is the key ingredient of several ap-
proaches to vector quantization design implemented through a
neural model often referred to aslearning vector quantization
(LVQ) [11]. The combination of competitive learning and
fuzzy-theoretic concepts resulted in a variety of learning vector
quantization algorithms that can effectively deal with the
uncertainty associated with the representation of the feature
vectors by a finite set of prototypes [11]–[15]. Such LVQ
models overcome the problems often associated with hard or
crisp LVQ algorithms, i.e., learning algorithms that allow only
the update of the prototype that is the closest to the feature
vector presented to the network. An alternative approach to
learning vector quantization resulted incompetitive neural

trees (CNeT’s), which perform hierarchical clustering of the
feature vectors and employ competitive learning at the node
level [3], [4]. The CNeT employs the same learning rule that
is associated with crisp LVQ algorithms. Nevertheless, the
CNeT is capable of resolving the uncertainty associated with
the representation of the feature vectors by the prototypes
by creating a structured partition of the feature space. This
partition depends on the structure of the corresponding tree,
which is determined by the strategy employed for creating and
pruning nodes during learning as indicated by the structure of
the feature space.

This paper presents CNeT’s that can be grown and trained
by a supervised learning procedure to perform pattern classi-
fication. This paper is organized as follows: Section II intro-
duces the CNeT architecture and presents a generic learning
algorithm. Section III describes several search methods. Split-
ting and stopping criteria are presented in Section IV. Recall
procedures are described in Section V. Section VI benchmarks
the CNeT using the double spiral problem, the IRIS data set, a
vowel recognition problem, and a handwritten digit recognition
task. Finally, Section VII summarizes the results and draws
conclusions.

II. CNeT ARCHITECTURE AND LEARNING

CNeT’s are self-organizing neural architectures that com-
bine the advantages of competitive neural networks and de-
cision trees. Among other applications, CNeT’s can be used
to perform pattern classification. Consider a set
of feature vectors from an -dimensional Euclidean space
which belong to distinct classes . The classes

form a partition of such that
, and . Let be

the set of class labels. Each is assigned a class label
in such a way that if . The objective

of a pattern classification scheme is to find a representation of
the examples such that the class labels can be reproduced
for the examples. An efficient pattern classification scheme
must be capable of producing appropriate class labels for input
vectors that do not belong to the training set. This is called
generalization.

A. Architecture

The CNeT has a structured architecture. A hierarchy of
identical nodes forms a -ary tree as shown in Fig. 1(a).
Fig. 1(b) shows a node in detail. Each node containsslots

and a counterage that is incremented each
time an example is presented to that node. The behavior of the
node changes as the counterage increases. Each slot stores
a prototype , a countercount , and a pointer
to a node. The prototypes are updated to represent clusters of
examples. The slot countercount is incremented each time
the prototype of that slot is updated to match an example.
Finally, the pointer contained in each slot may point to a child-
node assigned to that slot. ANULL pointer indicates that no
node was created as a child so far. In this case, the slot is called
terminal slotor leaf. Internal slotsare slots with an assigned
child-node. The slots shown in Fig. 1(b) also have class

1354 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

(a) (b)

Fig. 1. The architecture of the CNeT: (a) the tree structure and (b) a node in detail.

counters. The class counters
keep track of the number of examples belonging to a particular
class that the prototype responds to. There is a counter for
each class in every slot.

B. Learning

In the learning phase, the tree grows starting from a single
node, the root. The prototypes of each node form a minuscule
competitive network. When an example arrives at a
node, all of its prototypes compete to match
it. If denotes the distance betweenand , the
prototype is the winner if

. The distance measure used in this paper is the squared
Euclidean norm, defined as

(1)

The competitive learning scheme used at the node level
resembles that employed by the (unlabeled data) LVQ, an
unsupervised learning algorithm proposed to generate crisp
-partitions of a set of unlabeled data vectors [16], [17].

According to this scheme, the winner is the only prototype
that is attracted by the input arriving at the node. More
specifically, the winner is updated according to the equation

(2)

where is the learning rate. The learning ratedecreases
exponentially with theage of a node according to the equation

(3)

where is the initial value of the learning rate and
determines how fast decreases.

The update (2) moves the winner closer to the example
and, therefore, decreases the distance between the two. After

a sequence of example presentations and updates, each of
the prototypes will respond to examples from a particular
subregion of the input space. Each prototype attracts a
cluster of examples . Hence the prototypes split the region
of the input space that the node sees into subregions. The
examples that are located in a subregion constitute the input
for a node on the next level of the tree that may be created
after the node is mature. A new node will only be created if
a splitting criterion isTRUE.

1) Life Cycle: Each node goes through a life cycle. The
node is created and ages with the exposure to examples. When
a node is mature, new nodes can be assigned as children to it.
A child-node is created by copying properties of the slot that is
split to the slots of the new node. More specifically, the child
will inherit the prototype of the parent slot as well as fractions
of its class counters. Right after the creation of a node, all its
slots are identical. They will differentiate with the exposure to
examples. As soon as a child is assigned to a node, that node
is frozen. Its prototypes are no longer updated in order to keep
the partition of the input space for the child-nodes constant.
A node may be destroyed after all of its children have been
destroyed. The life cycle of a node may be partitioned into
the following phases.

1) Creation (at age 0):

a) the node is initialized;
b) the node inherits properties from the parent slot

such as the prototype and a fraction of the class
counters.

2) Youth (before the maturity age is reached):

a) the prototypes compete to respond to the exam-
ples;

b) the winning prototype is updated;
c) the prototypes split the region of the input space

that the node sees into subregions.

3) Maturity (after the maturity age has been reached):

a) the prototypes still compete for the examples and
they are updated;

b) if a splitting criterion isTRUE, then a new child
is created and is assigned to a slot.

4) Frozen (as soon as a child is assigned):

a) the prototypes compete for the inputs but they are
not updated;

b) if the winner has a child-node assigned, then it
sends the example to the child.

5) Destruction (after all children have been destroyed).

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1355

2) Training Procedure: If the CNeT is used for pattern
classification, its goal is to partition the input space into regions
that arepure or almost pure. A pure region contains only
examples from the same class. The general learning scheme
works as follows.

Do while stopping criterion isFALSE:

1) Select randomly an example. Let be class that
belongs to.

2) Traverse the tree starting from the root to find a terminal
prototype that is close to . Let and be the node
and the slot that belongs to, respectively.

3) If the node is not frozen, then update the prototype
according to (2).

4) If a splitting criterion for the slot is TRUE, then assign
a new node as child to and freeze the node .

5) Increment the countercount for class , the counter
count in slot , and the counterage in node .

Depending on how the search in Step 2) is implemented,
various learning algorithms can be developed. The search is
the only operation in the learning algorithm that depends on
the size of the tree. Hence, the speed of the learning process
is mainly determined by the computational complexity of the
search method. Different search methods are described in the
next section. Given a search method, the training process
can be accelerated through some simple modifications of the
learning algorithm outlined below.

3) Acceleration of Training:If there is a large number of
examples, a high maturity age may be needed to ensure proper
training of the tree. This affects the time required for training.
The higher the maturity ageis chosen, the longer the learning
algorithm runs. Therefore, it might be useful to introduce
a maturity age that is specific to a node , instead of
using the same maturity age for all nodes. Since the root
is presented with more examples than any other node of the
tree, it is necessary to assign the highest maturity ageto the
root of the tree. The initial high maturity age can decrease
as the training proceeds. Since fewer examples arrive at the
nodes deeper in the tree, the assignment of lower maturity
ages to these nodes does not have a negative impact on the
clustering of the examples. In fact, decreasing the maturity age
of these nodes can accelerate significantly the learning process.
The obvious reason is that most of the learning time is spent
training the nodes at the deepest levels of the tree.

In order to grow balanced trees of reasonable depth, the
maturity age of each node should not be directly dependent on
the depth of that node. Such a scheme would allow branches
that grow deep to split more frequently than shorter branches.
Frequent splitting accelerates the creation of new nodes, thus
resulting in degenerate tree structures. The following scheme
can be used to balance the tradeoff between the speed of
training and the preservation of a balanced tree structure:
let be the number of terminal prototypes in the tree
when the node is created. At creation, the node is
assigned the maturity age . To ensure
sufficient training, a node with low maturity age must be
assigned a high learning rate and decay parameter . If

and denote the initial values of the learning rate and the

(a) (b)

(c) (d)

Fig. 2. Shaded nodes visited by (a) the greedy search method, (b) the local
search method, (c) the global(3) search method, and (d) the full search method.

decay parameter of the root, respectively, sufficient training is
guaranteed by choosing and .

III. SEARCH METHODS

The search method determines the speed of learning and
recall as well as the generalization ability of the trained
CNeT. A feature vector constitutes the input for the search.
An exhaustive search of the tree is guaranteed to return
the closest prototype to the input vector . Because of
the computational and time requirements associated with an
exhaustive search, alternative search methods can be employed
for determining a terminal prototype that is close, but not
necessarily the closest, to the input. During learning, any
terminal prototype is a candidate to be selected by the
search method. In contrast, only the prototypes that responded
during learning to at least one example are candidates to be
selected in the recall phase. Fig. 2 shows which nodes are
visited and expandedin a complete binary tree by the search
methods described in this section. Expanding an-ary node
means computing the distances between all of its prototypes

and the feature vector . Throughout this
paper, represents the number of terminal prototypes of
the tree and represents the depth of the tree, that is, the
maximum number of edges on the path from a terminal node
to the root.

A. Full Search Method

The full search method is based on conservative exhaustive
search. To guarantee that the prototypewith the minimum
distance to the given feature vectoris returned, it is necessary
to compute the distances between the input vector
and each of the terminal prototypes . The prototype
with the minimum distance is returned. Table I shows the full
search method in pseudocode.

1356 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

TABLE I
THE FULL SEARCH METHOD IN PSEUDOCODE

The full search method is the slowest among the search
methods described in this section, since it does not take
advantage of the tree structure to find the closest prototype.
As a result, the full search method runs in . On the
other hand, this is the only search method that guarantees the
return of the closest prototype to the input vector.

B. Greedy Search Method

The greedy search method starts at the root of the tree
and proceeds in a greedy fashion. When the search method
arrives at a certain node, the distances between the input vector
and all prototypes of the node are computed.
The prototype with the minimum distance to the presented
feature vector is selected and called the winner. If a child-
node is assigned to the slot that contains the winner, then the
greedy method is applied recursively to that node. Otherwise,
the winner is returned to the calling function. Table II
shows the greedy search method in pseudocode.

The greedy method expands only one slot per level. There-
fore the searched subtree is only a simple path from the root
to the returned prototype. Since the time needed to expand
each node is constant, the greedy search runs in .
For trees that are balanced to some extent, the running time
is . The greedy search method is the fastest
among the search methods described in this section and local.
However, whenever a prototype is not the winner, the subtree
whose root is the corresponding node is not searched. As a
result, the greedy method will not always return the terminal
prototype with the minimum distance to the presented feature
vector . If the greedy search method is employed in the
learning phase, the generalization ability of the resulting CNeT
will be inferior to that of a CNeT trained using the full search
method.

C. Local Search Method

The local search method is designed to find the terminal
prototype that is close to the input vector even though a
prototype on the path from the root to has only been the
second best prototype in its node. The local search method
searches a subtree that has at mostnodes on theth level
(). The terminal prototypes in this subtree
are those which have at most one prototype on their path

to the root that was only the second best. The local search
method expands the nodes of the tree starting from the root.
When the search method arrives at a certain node, the distances
between the input vector and all prototypes
in the node are calculated. Then, the local search method is
called recursively for the winning prototype. In the subtree
that is below the winner, the prototypes are still allowed to
loose. The greedy search method is called for the second best
prototype. In its subtree prototypes are not allowed to loose
once more. They have to win in order to be expanded by
the search method. If a winning prototype has no child-node
assigned, it cannot be expanded. Instead it is returned to the
calling function. The two recursive calls to the local and the
greedy search methods will both return a prototype that is
close to the input. The closest of these two prototypes to the
input is then determined and returned. Table III shows the
local search method in pseudocode.

The local search method uses only information that is locally
available to make decisions. At mostslots are expanded on
the th level of the tree. Therefore, the time required by the
local search method to return a terminal prototype is ,
which is usually . Note that the method is more
efficient for trees with a high fan-out . The local search
method returns the closest terminal prototype more often than
the greedy method. Thus, the use of the local search method
instead of the greedy search method is expected to improve
the generalization ability of the CNeT. Although the local
search method is easy to implement and fast for small trees,
its asymptotic running time is quadratic in the depth of the
tree . If the use of a local method is not necessary for
a given application, the time required for the search can be
moderated by using the global search method.

D. Global() Search Method

The global() search method expands the nodes of the tree
level by level, starting at the root. After this is done for all
the nodes that are to be expanded at this level of the tree,
the prototypes with the smallest distances are selected. If a
selected prototype has a child-node assigned, this child-node
will be expanded during the next expansion step. Suppose a
selected prototype is a terminal prototype. If its distance to the
given feature vector is the smallest so far, then the smallest
distance is updated and the prototype is the new candidate to
be selected for return. When no more prototypes are to be
expanded, the global() search method terminates and returns
the best terminal prototype seen. Table IV shows the global()
search method in pseudocode.

The global() search method searches a subtree that has a
width of at most . Hence, the time required by the global()
search method to return a terminal prototype is .
Clearly, the speed of this search method depends on the choice
of the search width . If , then the global() and
the greedy search methods are equivalent in terms of their
time requirements. If , then the search by the global()
method takes longer but the probability that the search returns
the closest prototype increases. Thus, the selection ofallows
the user to balance the tradeoff between the time required for

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1357

TABLE II
THE GREEDY SEARCH METHOD IN PSEUDOCODE

TABLE III
THE LOCAL SEARCH METHOD IN PSEUDOCODE

the search and the generalization ability of the CNeT. Since
is a parameter that is not growing with the problem size,

is not higher than . In other words, the
time required for the global() search method grows with the
problem size only as fast as the time required for the greedy
search method.

IV. SPLITTING AND STOPPING CRITERIA

The splitting criterion must beTRUEwhen the proposed
leaning algorithm splits a slot and creates a new node. Mean-
ingful splitting criteria are needed for growing trees that
have desired features such as balance and small size. It is
also important to give each node enough time to find a
good partition of its input region. For this reason, splitting
of immature nodes must be avoided. The splitting criterion
will be FALSE for nodes below the maturity age. The
stopping criterion is used to terminate the training. Splitting
and stopping criteria work together to prevent the tree from
growing too large. Extensive growth is not desirable for the
following reasons.

• Large trees need more resources than small trees.
• Large trees tend to memorize the examples. This has a

negative impact on generalization.

A. Splitting

The task of the splitting criterion is to split a slot, if this
improves local classification performance, or not to split it,
if the local classification is satisfactory. This is achieved by
testing the slot for purity. After the maturity ageis reached,
a slot may be split if it is not pure enough. Whether or
not is pure enough is determined by its class counters

. The class counter with
the highest value indicates that the prototype from the
slot has responded most of the times to feature vectors
belonging to the class . The slot is not pure enough if a
significant fraction of its prototypes responds to feature vectors
belonging to classes other than. In this case, further splitting
is required. Thepurity parameter determines the fraction of
acceptable local misclassification and typically varies from 0
to 1/2. The recommended default setting is .

1358 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

TABLE IV
THE GLOBAL(!) SEARCH METHOD IN PSEUDOCODE

B. Stopping

The CNeT can easily be trained until all examples
are classified correctly by choosing the purity parameter

. However, for the majority of problems this choice
will result in memorization of examples and degradation of
the generalization ability. The generalization ability of the
trained tree can be evaluated using a testing set of examples

, selected such that .

• Maturity Stopping Criterion : This stopping criterion is
based on a good choice of the purity parameter, that
will prevent the tree from growing too large. The maturity
stop criterion becomesTRUE as soon as all nodes are
mature. That means the tree does not grow any longer
and all nodes have reached the maturity age. To achieve
satisfactory generalization, it is important to combine the
maturity stopping criterion with a splitting criterion that
does not split nodes which are almost pure. The purity
parameter influences the size of the grown tree and
decides when the maturity stopping criterion triggers.

• Testing-Set Stopping Criterion: This stopping criterion
utilizes an independent testing set of examples. Ac-
cording to this criterion, training is terminated if the
performance of the tree on the testing set does
not improve for adaptation cycles, where is the
maturity age. This criterion attempts to minimize the
number of incorrect classifications on the testing set. This

is accomplished by maintaining a counter that
stores the minimum number of incorrect classifications
for the testing set so far. This counter will be updated
frequently in the beginning of the training process, since
every time a slot is split the performance of the tree most
likely improves on the training set as well as on the
testing set . These updates of will become less
frequent as training progresses. If the number of incorrect
classifications on the testing set is not decreasing
below for a long time, the tree is most likely
too large due to overtraining. Therefore the testing-set
stopping criterion triggers. When the last decrease of
incorrect classifications on the testing set occurred, the
tree had a better performance and a smaller size. Hence
the tree must be pruned. After the testing-set stopping
criterion triggers, all nodes that did not exist at the time
the last update of occurred are deleted.

V. RECALL PROCEDURES

The trained CNeT contains a representation of the examples
that have been presented to it. Once the training process

is complete, the terminal prototypes of the
CNeT represent the example clusters . For
this particular application, the tree is grown in such a way that
each cluster of examples contains examples which
may belong to one or more classes. The objective of the recall

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1359

procedure is to produce a class label , for each
input vector . The function can be approximated by the
composition , where is a function that assigns class
labels to the prototypes . The approximation of

by is efficient if the number of clusters inherent in
the example set is small compared to the number of examples.

Presentation of examples in the recall phase begins at
the root of the tree and proceeds down to the leaves. The
prototypes belonging to internal slots are used as signposts for
the search. More specifically, these prototypes guide the search
algorithm to find a terminal prototype that is close
to the input vector without looking at all terminal prototypes.
The same search method used during training is also called
for recall with the input vector as the argument. The search
will return a terminal prototype , close to .
A class label is then assigned to the input vector

by composing and as .
If belongs to the slot , then is computed on
the basis of the class counters
stored in the slot . These class counters indicate how often
the prototypes in the slot responded to examples from each
class. Depending on the specific objectives, the classification
function can be evaluated according to the following two
methods.

• Crisp Classification: The class label
is produced by majority vote. The feature vectoris
classified to belong to the class with the highest class
counter in the slot that responded to the input
vector .

• Likelihood Estimation : This method does not return a
class label but an estimate of the likelihood that a certain
input vector belongs to the classes . The
likelihood that an input vector belongs to the classis
determined as the ratio between the corresponding class
counter and the sum of all class counters.
Furthermore the distance between the input vectorand
the responding prototype can be utilized as a measure
of confidence, with a smaller distance corresponding to
higher confidence.

The recall strategy for the CNeT can be modified to allow
the rejection of some examples in order to improve classifi-
cation accuracy. Supposeis the input example to the CNeT
and the search method returns a terminal prototype ,
which belongs to the slot that stores the class counters

. Let be the sum of all
class counters . According to
the recall strategy based on likelihood estimation, the ratio

provides an estimate of the likelihood that the
example belongs to theth class, that is, . Let be the
class label such that . The decision
about the example is made by comparing the likelihood
ratio with the rejection parameter as
follows: if , then the example is assigned
the class label . The input example isrecognizedif is its
actual label andsubstitutedotherwise. If ,
then the example is rejected. The role of the rejection
parameter becomes clear by considering the two

Fig. 3. The double spiral problem: (a) the 256 training samples and (b) the
desired generalization.

extreme cases and . If , none of the
examples is rejected since . If ,
the example is rejected unless , which
implies that the corresponding slot is perfectly pure. Thus, for

this strategy rejects all examples which correspond to
a slot that is not perfectly pure. Any other value of
determines the degree of impurity of a slot that is tolerated
before the corresponding example is rejected.

VI. EXPERIMENTAL RESULTS

This section evaluates the performance of the CNeT and ex-
isting classifiers on a variety of pattern classification problems.

A. The Double Spiral Problem

The CNeT was trained to separate two nested spirals.
This is a nontrivial benchmark problem used extensively
for evaluating neural architectures and supervised learning
schemes. A nice feature of the double spiral problem is that
its difficulty can be adjusted easily. The partition of the input
space becomes an increasingly difficult problem as the spirals
are extended by more rotations. Another advantage of the
double spiral problem is that the partition of the input space
can be visualized on paper since the input space is two-
dimensional (2-D). Fig. 3(a) shows two nested spirals, each
containing 128 points. The two spirals have the same center
but do not intersect. The white and black points in Fig. 3(a)
represent two classes. These points were used as training
examples in the experiments. Fig. 3(b) shows the desired
generalization. The desired generalization was computed by
classifying each point of the plane as belonging to the class

, where is the example closest to.
A CNeT was trained with the examples using the global(3)

search method. In these experiments, the tree was binary
, the maturity age was set to , the initial

learning rate was and the decay of the learning
rate was . Fig. 4(a)–(d) show the response of the
tree as it grows. In the beginning, the input space is split by
the root node into two regions (not shown). Splitting again
yields four regions shown in Fig. 4(a). In the left part of the
figure the regions are grayed as follows: For every point
in the input space, the recall procedure finds a prototype
close to it. The gray level of the pixel at the positionis
proportional to the ratio between the examples corresponding
to white and black points used to update during learning.

1360 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

(a)

(b)

(c)

(d)

Fig. 4. Progress of training: Response of the CNeT after (a) 4, (b) 16, (c)
64, and (d) 256 adaptation cycles.

The right part of the figure shows the centroids of the clusters
as bright spots and the borders between regions as black lines.
In this case, the pixels are grayed according to the distance

. Fig. 4(b)–(d) show the progress of the training. The
clusters are split to cover the input space in more and more
detail. According to Fig. 4(d), all examples from the training
set are classified correctly after 256 adaptation cycles. Further
training will only enhance contrast.

(a)

(b)

(c)

(d)

Fig. 5. Response of the CNeT trained using: (a) the greedy search method,
(b) the local search method, (c) the global(3) search method, and (d) the full
search method.

The second set of experiments investigated the influence
of the search method on the performance of the CNeT. The
parameter setting for this series of experiments was the same
as above. Fig. 5(a), (b), (c), and (d) shows the separation of
the 2-D input space produced by four CNeT’s trained using the
greedy, local, global(), and full search methods, respectively.
Clearly, all trained CNeT’s were able to classify all the training
examples correctly. The major performance difference due to

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1361

(a)

(b)

Fig. 6. Effect of the problem size (number of examples in the training set)
on (a) the size of the tree (number of treminal prototypes/depth) grown by
different search methods and (b) the computational complexity (evaluations
of the distance function) of different search methods.

the search method was the generalization ability of the trained
CNeT’s, that is, their response to feature vectors not included
in the training set. According to Fig. 5, the CNeT trained using
the full search method achieved the closest generalization to
the desired one. The search methods can be rated in terms of
their generalization ability as: greedy, global(3), local, and full.
Given the computational complexity of the search methods,
there is a tradeoff between computational complexity of the
search method used for training the CNeT and the resulting
generalization ability.

The third set of experiments investigated the effect of
the problem size on the size of the grown tree and the
computational complexity of different search methods. The
parameter setting for this series of experiments was the same
as above. Fig. 6(a) shows the depth of the fully grown tree and
the number of terminal prototypes as the number of training
examples increased from 32 to 512. The size of the fully grown
CNeT depends on the complexity of the problem. The more

difficult the problem is, the bigger the tree grows. According
to Fig. 6(a), the number of terminal prototypes grows linearly
with the problem size while the depth of the tree grows only
logarithmically. This means that the grown tree is balanced
to some extent. Fig. 6(a) also indicates that the search method
has only a slight influence on the size of the tree. Nevertheless,
the greedy search method grows slightly bigger trees than the
other three search methods. The influence of the different
search methods on the computational complexity is shown
in Fig. 6(b) for different problem sizes. The computational
complexity is measured in terms of the average number
of evaluations of the distance function(.,.) for recall on
a fully grown tree. This is justified by the fact that the
evaluation of the distance, which is the only vector operator,
is computationally more expensive than the remaining scalar
operators. The number of scalar operations needed is linear
in the number of evaluations of the distance function. As
expected, the recall times grow with the problem size. For
the full search method the growth is linear. The local method
grows sublinearly. The greedy method has the smallest recall
times, since its growth is only logarithmic. The recall time for
the global() method also grows logarithmically. However, the
recall times of the global(3) method are longer by a constant
factor than the recall times for the greedy method.

B. The IRIS Data Set

The CNeT was also tested using Anderson’s IRIS data
set [1], which has extensively been used for evaluating the
performance of pattern classification algorithms. This data set
contains 150 feature vectors of dimension four which belong to
three physical classes representing different IRIS subspecies.
Each class contains 50 feature vectors. One of the three classes
is well separated from the other two, which are not easily
separable due to the overlapping of their convex hulls. The
performance of the algorithms is evaluated by counting the
number of classification errors, i.e., the number of feature
vectors that are assigned to a wrong physical cluster. The
available 150 examples were split into two setsand ,
each containing 75 examples. The examples were randomly
assigned to a training set and a testing set. This assignment
was different for each experiment. A CNeT was grown with
the training set and its generalization ability was evaluated
using the testing set .

A binary tree was grown using the global() search method
and a maturity age of . Fig. 7 shows the number of
feature vectors from the training and testing sets classified to
a wrong class while the tree was grown. Not surprisingly, the
CNeT performed better on the training set after the completion
of almost every adaptation cycle. After a certain adaptation
cycle, the number of incorrect classifications on the testing set
remained almost constant with some fluctuations. On the other
hand, the number of classification errors on the training set
reduced further as the tree kept growing. This is an indication
of overtraining, which can be avoided by using the testing-set
stopping criterion to terminate the training as shown in Fig. 7.

Because of its properties, the IRIS data set can be used
to illustrate the learning and pruning procedures described in
this paper. Fig. 8 shows a grown and pruned CNeT. The bars

1362 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

Fig. 7. Training a CNeT on the IRIS data set: Number of feature vectors
from the training and testing sets classified incorrectly by a CNeT as a function
of the number of adaptation cycles.

Fig. 8. Grown CNeT trained to classify the IRIS data: The bars show how
often the prototypes in each node were updated to match feature vectors from
the three classes.

within the nodes correspond to the prototypes of the tree and
show how often each prototype was updated to match input
vectors belonging to the three classes. In full consistency with
the nature of the IRIS data, the first class was separated from
the other two by the root of the tree. The rest of the tree was
grown to separate the feature vectors belonging to the other
two classes.

The last set of experiments investigated the effect of the
maturity age and the purity parameter on the performance
of the CNeT trained on the IRIS data. Each experiment
was repeated 100 times in order to minimize the effect of
the random selection of the training and testing examples.
The number of incorrect classifications shown in Fig. 9 was
obtained by averaging the results of all these experiments.
Fig. 9(a) shows the number of feature vectors from the training
set classified incorrectly by various CNeT’s trained using
different search methods. The maturity agevaried from
4 to 512, while the training was terminated according to

(a)

(b)

Fig. 9. Effect of the maturity age� and the purity parameter� on the
performance of a CNeT trained to classify the IRIS data: Number of feature
vectors classisfied incorrectly by a CNeT as a function of (a) the maturity age
� of the nodes and (b) the purity parameter�.

the testing-set stopping criterion. Although the maturity age
affected significantly the speed of training, it had no significant
influence on the performance of the trained CNeT. In contrast,
the performance of the CNeT was affected by the search
method employed. Compared with other search methods, the
greedy search method resulted in a relatively large number
of classification errors. For high values of the maturity age,
there was no significant differences between the performance
of the CNeT’s trained using the other three search methods.
Fig. 9(b) shows the number of feature vectors from the training
and testing sets that were classified incorrectly by various
CNeT’s trained using different search methods. The training
was terminated using the maturity stopping criterion while the
purity parameter decreased from 1/3 to 1/10. Regardless of
the search method used, the performance of the CNeT’s on
the training set improved as the value of the purity parameter
decreased. In contrast, the number of feature vectors from the
testing set assigned by the CNeT to a wrong class remained

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1363

almost constant for values of lower than 1/4. In some
cases, there was even an increase of the number of incorrect
classifications on the testing set. This is an indication of
overtraining. Note that because of the tree architecture used,
the number of incorrect classifications on the training set can
easily be reduced to zero by choosing smaller values of.
However, such a choice would allow the creation of new nodes
and degrade the generalization ability of the CNeT.

C. Two-Dimensional Vowel Data

The performance of the CNeT was evaluated using a set of
2-D vowel data formed by computing the first two formants
F1 and F2 from samples of ten vowels spoken by 67 speakers
[20], [21]. This data set has been extensively used to compare
different pattern classification approaches because there is
significant overlapping between the points corresponding to
different vowels in the F1-F2 plane [20], [21]. The available
671 feature vectors were divided into a training set, containing
338 vectors, and a testing set, containing 333 vectors.

The training set formed from the 2-D vowel data was used
to train a CNeT to classify the ten vowels. The CNeT was
grown using the global() search method and training was
terminated according to the testing-set stopping criterion. The
purity parameter was , the maturity age was ,
and the learning parameters involved in the update of the
prototypes were and . Fig. 10 shows
the partition of the feature space into regions that correspond
to one vowel each that was produced by the trained CNeT. In
addition to the regions formed by the CNeT, Fig. 10(a) and
(b) also show the training and testing data, respectively. The
regions in Fig. 10 are composed of the cells of the terminal
prototypes that correspond to the same class. Therefore, the
boundaries of the regions are piecewise linear. Due to the
extensive overlapping of the vowel classes, it is not possible
to find a partition that classifies correctly all examples from
the training and testing sets [20], [21]. It is clear from Fig. 10
that the CNeT attempts to find the best possible compromise in
regions of the input space with extensive overlapping between
the classes. This is accomplished through the stopping criterion
employed, which forces the CNeT to accept some incorrect
classifications of examples from the training set in order to
produce a partition of the feature space that performs well on
the testing set. This improves the generalization ability of the
CNeT, as indicated by Fig. 10(a) and (b).

The recall strategy employed in the previous experiment
assigned a class label to each input example using only its
closest terminal prototype. The next experiment was based on
the same trained CNeT but a slightly modified recall strategy.
More specifically, a class label was assigned to each input
example by interpolating between its two closest terminal
prototypes. The partition of the feature space produced by this
modified recall strategy is shown in Fig. 11. It is clear from
Fig. 11 that the resulting partition is similar to that shown
in Fig. 10 but the boundaries of the regions produced by the
modified recall strategy are not necessarily piecewise linear.
Since this modified strategy resulted in improved performance
on both training and testing sets, it was also used in the
experiments which follow.

(a)

(b)

Fig. 10. Classification of the 2-D vowel data produced by the CNeT shown
together with (a) the training data set and (b) the testing data set. The recall
of the CNeT was based only on the best prototype found.

The next set of experiments evaluated the effect of the
combination of splitting and stopping criteria on the perfor-
mance and size of the CNeT grown using different search
methods. Fig. 12(a) shows the number of feature vectors
from the training and testing sets classified incorrectly by the
CNeT’s trained and grown using different values of the purity
parameter . The number of terminal prototypes and the depth
of the CNeT’s grown in these experiments are shown as a
function of in Fig. 12(b). The curves shown in Fig. 12 were
obtained when the CNeT was grown until all of its nodes
were mature (maturity stopping criterion). Since the purity
parameter determines the impurity of a slot that is tolerated
before the slot is split, the acceptable number of incorrect
classifications on the training set decreases as the value of
decreases. According to Fig. 12(a), the misclassification rate
on the training set decreased toas decreased from 0.5 to
0.1. However, the performance of the CNeT on the testing set
did not improve or even degraded asdecreased below 0.4.
This indicates the beginning of overtraining. For low values

1364 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

(a)

(b)

Fig. 11. Classification of the 2-D vowel data produced by the CNeT shown
together with (a) the training data set and (b) the testing data set. The recall
of the CneT was based on the interpolation between the two best prototypes
found.

of the CNeT memorizes the examples from the training
set, which degrades its generalization ability. Comparison of
the performance of different search methods indicates that
only the greedy search method deviated significantly from
their average behavior. In fact, the performance of the greedy
search method on the testing set was close to the average
performance of all four search methods for values of
between 0.35 and 0.3. As the value ofdecreased, the size
of the trees increased. According to Fig. 12(b), the depth of
the tree increased only slightly despite the substantial growth
in the number of terminal prototypes. This indicates that the
tree is well balanced. The CNeT was also grown using the
same search method but a different stopping criterion. In this
case, the testing-set stopping criterion was used to prevent the
tree from growing too large. It was experimentally verified
that the selection of the purity parameterdid not affect the
growth of the CNeT when the tree was pruned based on its
performance on the testing set. Fig. 12 shows the performance

(a)

(b)

Fig. 12. Effect of the purity parameter� on the classification of the 2-D
vowel data: (a) percentage of misclassified examples and (b) size of the CNeT
(number of terminal prototypes/depth).

TABLE V
PERFORMANCE OFDIFFERENT CLASSIFIERS ON THE2-D VOWEL DATA:

PERCENTAGE OFEXAMPLES FROM THE TRAINING AND TESTING SETS CLASSIFIED

INCORRECTLY BY THE CNeT, A k-NN CLASSIFIER, AND TWO FFNN’S

and size of the CNeT grown for . Fig. 12(a)
indicates that the CNeT grown using the testing-set stopping
criterion resulted in fewer misclassifications on the testing set,
which implies improved generalization ability. According to
Fig. 12(b), this stopping criterion resulted in a pruned tree
which has a smaller depth and contains a smaller number of

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1365

TABLE VI
PERFORMANCE OF THECNeT ON THE 2-D VOWEL DATA WHEN REJECTIONSWERE ALLOWED: PERCENTAGE OFRECOGNIZED, SUBSTITUTED,

AND REJECTED EXAMPLES FROM THE TRAINING AND TESTING SETS FOR DIFFERENT VALUES OF THE REJECTION PARAMETER r

terminal prototypes compared to that grown using the same
value of and the maturity stopping criterion.

Table V shows the percentage of the examples from the
training and testing sets misclassified by the CNeT grown by
the global() search method, the-nearest neighbor(-NN)
classifier, and twofeedforward neural networks(FFNN’s) with
five and ten hidden units trained using gradient descent. The

-NN classifier uses feature vectors from the training set as
a reference to classify examples from the testing set. Given
an input example from the testing set, the-NN computes
its Euclidean distance from all the examples included in
the training set. The closest examples from the training
set are selected and the input example is classified on the
basis of their labels as follows: if all the labels are not
identical, then the example isrejected. If all the labels are
identical, then the example is classified accordingly. More
specifically, the example isrecognizedif the label assigned by
the classifier and the actual label are identical orsubstitutedif
the assigned and actual labels are different. The-NN classifier
was tested in these experiments with , which implies that
none of the examples was rejected. For the-NN classifier,
Table V shows only the misclassifications on the testing set
since the training set is only used as a reference. The CNeT
performed better than the other classifiers on both training
and testing sets. It is also remarkable that the CNeT classified
incorrectly the same percentage of examples from the training
and testing sets, which implies that pruning resulted in a tree of
very satisfactory generalization ability. Both trained FFNN’s
classified incorrectly the same percentage of examples from
the training set but increasing the number of hidden units
from five to ten improved the performance on the testing set.
Nevertheless, it was experimentally verified that increasing the
number of hidden units above ten degraded the ability of the
trained FFNN’s to generalize.

The CNeT grown using the global() search method was al-
lowed to reject some ambiguous examples in order to improve
its classification accuracy. Table VI shows the percentage
of recognized, substituted, and rejected examples from the
training and testing sets for different values of the rejection
parameter . As the value of increased from 0.5 to 0.9,
the percentage of substituted examples from both training and
testing sets decreased with a simultaneous increase in the
percentage of rejected examples. It is clear from Table VI
that there is a tradeoff between the reliability of the classifier
(measured by the percentage of substituted examples) and its

(a)

(b)

(c)

Fig. 13. Digits from the NIST database: (a) ordinary binary images, (b) 32
� 32 binary images after one stage of preprocessing (slant and size normal-
ization), and (c) 16� 16 images of the digits after two stages of perprocessing
(slant and size normalization followed by wavelet decomposition).

confidence (measured by the percentage of accepted exam-
ples). For example, when the percentage of substituted
examples from the training and testing sets reduced to 0% and
almost 1%, respectively. However, in this case the classifier
rejects more than 2/3 of the examples from both sets.

D. NIST Digits

In the last set of experiments, the CNeT was tested and
compared with competing techniques on a large-scale hand-
written digit recognition problem. The objective of a classifier
in this application is the recognition of the digit represented
by a binary image of a handwritten numeral. Recognition of
handwritten digits is the key component of automated systems
developed for a great variety of real-world applications, includ-
ing mail sorting and check processing. Automated recognition
of handwritten digits is not a trivial task due to the high
variance of handwritten digits caused by different writing
styles, pens, etc. Thus, the development of a reliable system for
handwritten digit recognition requires large databases contain-
ing a great variety of samples. Such a collection of handwritten
digits is contained in theNIST Special Databases 3, which was
used as a data source in these experiments. The NIST database
contains 120 000 isolated binary digits that have been extracted
from handwriting sample forms. These digits were handwritten
by about 2100 field representatives of the United States Census
Bureau. The isolated digits were scanned to produce binary
images of size 40 60 pixels, which are centered in a 128

128 box. Fig. 13(a) shows some sample digits from 0 to 9

1366 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

TABLE VII
PERFORMANCE OF THEk-NN CLASSIFIER ON THE TESTING SET FORMED FROM THE NIST DATA FOR DIFFERENT DIGIT REPRESENTATIONS

from the NIST database used in these experiments. The data
set was partitioned in three subsets as follows: 58 646 digits
were used for training, 30 367 digits were used for testing, and
the remaining 30 727 digits constituted the validation set.

The raw data from the NIST database were preprocessed in
order to reduce the variance of the images that is not relevant
to classification. The first stage of the preprocessing scheme
produced a slant and size normalized version of each digit. The
slant of each digit was found by first determining the center of
gravity of each digit, which defines an upper and lower half
of it. The centers of gravity of each half were subsequently
computed and provided an estimate of the vertical main axis
of the digit. This axis was then made exactly vertical using a
horizontal shear transformation. In the next step, the minimal
bounding box was determined and the digit was scaled into a
32 32 box. This scaling may slightly distort the aspect ratio
of the digits by centering, if necessary, the digits in the box.
Fig. 13(b) shows the same digits shown in Fig. 13(a) after
slant and size normalization.

The second preprocessing stage involved a four-level
wavelet decomposition of the 32 32 digit representation
produced by the first preprocessing stage. Each decomposition
level includes the application of a 2-D Haar wavelet filter
in the decomposed image, followed by downsampling by
two along the horizontal and vertical directions. Because
of downsampling, each decomposition level produces four
subbands of lower resolution, namely a subband that carries
background information (containing the low-low frequency
components of the original subband), two subbands that carry
diagonal details (containing low-high and high-low frequency
components of the original subband), and a subband that
carries the nondiagonal details (containing the high-high
frequency components of the original subband). As a result,
the four-level decomposition of the original 32 32 image
produced three subbands of sizes 1616, 8 8, and 4

4, and four subbands of size 2 2. The 32 32 image
produced by wavelet decomposition was subsequently reduced
to an image of size 16 16 by representing each 2 2
window by the average of the four pixels contained in it. This
step reduces the amount of data by 3/4 and has a smoothing
effect that suppresses the noise present in the 3232 image.
Fig. 13(c) shows the images representing the digits shown in
Fig. 13(a) and (b), resulting after the second preprocessing
stage described above.

The representation of the digits produced by the wavelet
decomposition involved in the second preprocessing stage was
evaluated by using a standard classification method. More
specifically, the -NN classifier was tested on the 32
32 digit representation resulting from the first preprocessing
stage and the 16 16 digit representation resulting after
wavelet decomposition and averaging. Table VII summarizes
the results of the -NN classifier used on the results of the two
stages of preprocessing for different values of. Table VII
indicates that there is a tradeoff between the reliability of
classification and the rejection rates, which mainly depends
on the value of used. As the value of increases, the
substitution rate decreases but more digits are rejected. It is
clear from Table VII that the -NN classifier performed better
when classification was based on the results of the wavelet
decomposition instead of the 32 32 representation of the
digits produced by the first preprocessing stage. An additional
advantage of using the second preprocessing stage is that the
resulting feature vectors need roughly 1/4 of the memory and
computational time required when the feature vectors are the
result of the first preprocessing stage.

The next experiment illustrates the operation of a search
method applied to a CNeT trained to recognize the NIST digits
using the feature vectors obtained after the two preprocessing
stages. The CNeT was trained and grown using the global()
search method. The purity parameter was and the
maturity age was . The operation of the search method
is described by Fig. 14. Fig. 14(e) shows the 88 lower-
right quadrant of the 16 16 representation of the digit
“1” produced after two stages of preprocessing. Fig. 14(a)
(b), (c), and (d) shows the parts of the tree visited by the
global(2) search method after initialization, one training cycle,
two training cycles, and four training cycles, respectively.
Fig. 14(a)–(d) shows only the prototypes whose Euclidean
distances from the input exampleare calculated. As a result,
Fig. 14(a)–(d) shows four prototypes per level except of the
two prototypes shown in the first level (initialization). The
small plots next to some of the prototypes represent their
normalized histograms. The horizontal axis of each histogram
corresponds to the digits . The locations of the
vertical bars correspond to the digits represented by each
prototype while their heights represent the likelihood of this
representation. The distribution of the bars over the horizontal
axis reveals the purity of each prototype. The three dots shown

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1367

Fig. 14. The parts of the CNeT visited by the global(2) earch method after (a) initialization, (b) one training cycle, (c) two training cycles, and (d)
four training cycles when the example (e) was presented to the tree.

TABLE VIII
PERFORMANCE OF THECNeT ON THE NIST DIGITS FOR DIFFERENT SEARCH WIDTHS OF THE GLOBAL (!)

SEARCH METHOD WHEN NO REJECTIONS WERE ALLOWED

in the right-hand side of some histograms indicate that there is
a subtree (not shown in the figure) whose root is the prototype
next to the histogram. Fig. 14 describes the growth and
training of the CNeT by showing how the prototypes become
tuned to some examples as training progresses. Moreover,
Fig. 14 shows that the search method visits only the parts of
the tree that contain prototypes similar to the input example.

A CNeT was trained to classify the feature vectors resulting
from the NIST digits after the two stages of preprocessing
digits using the global() search method. The purity parameter
was , the maturity age was , and the
learning parameters involved in the update of the prototypes
were and . The CNeT was pruned
for improved performance on the testing set by terminating
its growth and training using the testing-set stopping criterion.
Recall was performed by interpolating between the two closest
prototypes to the input example. For , the maximum
depth of the grown CNeT was 24. The CNeT consisted of
10 059 terminal prototypes, which indicates that the tree was
well balanced. The effect of the search method on the success
rate of the CNeT was evaluated in the case where the classifier
was not allowed to reject any input examples. Table VIII
summarizes the performance of the CNeT trained and grown
using the global() search method when the search width
varied from to . As increases, the global()
method searches a larger subtree and is expected to return
more often a terminal prototype that is the closest to the
input example. This is consistent with the results summarized

in Table VIII, which indicates that the performance of the
CNeT improved consistently as the value of increased
from 8 to 32. For , the CNeT classified correctly
99.71% of the digits from the training set, 97.69% of the
digits from the testing set, and 97.90% of the digits from
the validation set. The CNeT performs better than various
classification schemes tested on the same data set [9], none
of which exceeded the recognition rate of 97.5%. The CNeT
is also a strong competitor to FFNN’s tested on this data set.
Table IX shows the percentage from the training, testing, and
validation sets recognized or substituted by three FFNN’s with
16, 32, and 64 hidden units trained using gradient descent.
The best performance was achieved by the FFNN with 64
hidden units. This network performed better than the CNeT
on the training set. However, its performance was slightly
inferior to that of the CNeT on the testing and validation sets.
After their training, the FFNN and CNeT required roughly the
same time for recall. However, the training of the FFNN’s was
approximately ten times longer than the growth and training
of the CNeT’s. The performance of the CNeT is also close to
that of the -NN classifier, which classified correctly 97.79%
of the digits from the testing set and 97.98% of the digits from
the validation set. In addition to its competitive classification
accuracy, the CNeT was computationally more efficient than
the -NN. More specifically, the computational time required
by the CNeT to perform this classification task was two orders
of magnitude lower than that required for the same task by the

-NN. This is due to the fact that the CNeT computes only

1368 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

TABLE IX
PERFORMANCE OFFFNN’S WITH VARIOUS NUMBERS OF HIDDEN UNITS (Nh) ON THE NIST DIGITS

Fig. 15. Recall of the CNeT using the global (!) for the validation set
formed from the NIST digits: The substitution rates are plotted against the
rejection rates for different values of the rejection parameterr and different
search widths.

the Euclidean distances between the input example and a small
portion of the prototypes stored in the CNeT. The recall speed
of the CNeT employing the global() search method was 85
digits per CPU-second on a SUN SPARC-20 workstation. This
high recall speed makes the implementation of the CNeT on
serial hardware feasible. On the other hand, the application
of the -NN in real-time applications requires special purpose
parallel hardware.

The last set of experiments investigated how the reliability
of the CNeT improves if some ambiguous examples are
rejected. The digits from the validation set were classified
by the CNeT trained and grown using the global() search
method with , , and . Fig. 15 plots
the substitution rates against the rejection rates obtained for
different values of the rejection parameter. The curves
indicate that the development of more reliable classifiers can
be accomplished by allowing the CNeT to reject a portion
of the examples. As the rejection parameterincreases from
zero to 0.99, the substitution rate decreases. The price to be
paid for improved reliability is an increase in the rejection
rate. The most substantial decrease in the substitution rate was
encountered when the value ordecreased from zero to 0.95.
For values of above 0.95 the substitution rate decreased
only slightly despite the substantial increase in the rejection
rate. Regardless of the value of the rejection parameter, the
performance of the CNeT improved asincreased from 8 to
32. For all values of used in these experiments, the three

CNeT’s rejected practically the same number of examples but
the substitution rate decreased as the search width increased
from eight to 32.

VII. CONCLUSIONS

This paper introduced competitive neural trees for pattern
classification. The CNeT combines the advantages of compet-
itive neural networks and decision trees. The CNeT performs
hierarchical clustering by employing competitive unsupervised
learning at the node level. The generalization ability of the
CNeT is guaranteed by forward pruning, which is an inherent
part of the learning process. The main advantage of the CNeT
is its structured, self-organizing architecture that allows for
short learning and recall times.

The experiments evaluated the proposed learning and recall
procedures and different search methods. The experiments
also investigated the combined effect of splitting and stopping
criteria on the generalization ability of trained CNeT’s. The
performance of a trained CNeT depends on the search method
employed in the learning and recall phases. Among the search
methods proposed in this paper, the greedy search method
achieves the fastest learning and recall at the expense of
performance. On the other hand, the full search method
achieves the best performance at the expense of learning and
recall speed. The local and global search methods combine
the advantages of the greedy and full search methods and
allow for tradeoff’s between speed and performance. The
experiments on the data sets containing overlapping classes
revealed that the growth of small and balanced trees with
satisfactory generalization ability can be accomplished by
combining the testing-set stopping criterion with a value of
the purity parameter allowing the existence of slots that
are not perfectly pure. The experiments on the NIST digits
indicated that the reliability and classification accuracy of
the trained CNeT can be improved by a recall strategy that
allows the rejection of some ambiguous examples. The CNeT
can be trained in a tiny fraction of the time required for
training conventional feedforward neural networks to perform
the same classification task. As an example, the CNeT was
trained to recognize the NIST digits ten times faster than the
FFNN, which required four days for training. On the other
hand, the generalization achieved by CNeT’s was consistently
comparable or even better than that of feedforward neural
networks. The classification accuracy of the CNeT was also
found to be comparable to that of the-NN classifier. In
fact, the -NN classifier resulted in slightly higher recognition
rates on the NIST data because of the large size of the
training set. However, the-NN classifier was computationally

BEHNKE AND KARAYIANNIS: COMPETITIVE NEURAL TREES FOR PATTERN CLASSIFICATION 1369

more demanding than the CNeT because of the different
search strategy employed. The time required by the-NN to
classify an example increased with the problem size (number
of examples in the training set). The trained CNeT classified
examples much faster than the-NN classifier, especially in
large-scale classification problems such as the recognition of
digits from the NIST database.

REFERENCES

[1] E. Anderson, “The IRISes of the Gaspe Peninsula,”Bull. Amer. IRIS
Soc.,vol. 59, pp. 2–5, 1939.

[2] L. Atlas, R. Cole, Y. Muthusamy, A. Lippman, J. Connor, D. Park, M.
El-Sharkawi, and R. J. Marks II, “A performance comparison of trained
multilayer perceptrons and trained classification trees,”Proc. IEEE,vol.
78, no. 10, pp. 1614–1619, 1990.

[3] S. Behnke and N. B. Karayiannis, “Competitive neural trees for vector
quantization,”Neural Network World,vol. 6, no. 3, pp. 263–277, 1996.

[4] , “CNeT: Competitive neural trees for pattern classification,” in
Proc. IEEE Int. Conf. Neural Networks,Washington, D.C., June 3–6,
1996, pp. 1439–1444.

[5] L. Brieman, J. H. Friedman, R. A. Olshen, and C. J. Stone,Classification
and Regression Trees.Belmont, CA: Wadsworth, 1984.

[6] P. A. Chou, “Optimal partitioning for classification and regression trees,”
IEEE Trans. Pattern Anal. Machine Intell.,vol. 13, pp. 340–354, 1991.

[7] L. Fang, A. Jennings, W. X. Wen, K. Q.-Q. Li, and T. Li, “Unsupervised
learning for neural trees,” inProc. Int. Joint Conf. Neural Networks,
Seattle, WA, July 8–12, 1991, pp. 2709–2715.

[8] K. R. Farrell, R. J. Mammone, and K. T. Assaleh, “Speaker recognition
using neural networks and conventional classifiers,”IEEE Trans. Speech
Audio Processing, Pt. II,vol. 2, pp. 194–205, 1994.

[9] P. J. Grother and G. T. Candela, “Comparison of handprinted digit
classifiers,” Nat. Inst. Standards Technol., Gaithersburg, MD, Tech. Rep.
NISTIR 5209, 1993.

[10] H. Guo and S. B. Gelfand, “Classification trees with neural network
feature extraction,”IEEE Trans. Neural Networks,vol. 3, pp. 923–933,
1992.

[11] N. B. Karayiannis, “Learning vector quantization: A review,”Int. J.
Smart Eng. Syst. Design,vol. 1, pp. 33–58, 1997.

[12] , “A methodology for constructing fuzzy algorithms for learning
vector quantization,”IEEE Trans. Neural Networks,vol. 8, pp. 505–518,
1997.

[13] N. B. Karayiannis and J. C. Bezdek, “An integrated approach to fuzzy
learning vector quantization and fuzzyc-means clustering,”IEEE Trans.
Fuzzy Syst.,vol. 5, pp. 622–628, 1997.

[14] N. B. Karayiannis and P.-I Pai, “A family of fuzzy algorithms for
learning vector quantization,” inIntell. Eng. Syst. Through Artificial
Neural Networks,C. H. Dagli et al., Eds., vol. 4. New York, NY:
ASME Press, 1994, pp. 219–224.

[15] , “Fuzzy algorithms for learning vector quantization,”IEEE Trans.
Neural Networks,vol. 7, pp. 1196–1211, 1996.

[16] T. Kohonen, Self-Organization and Associative Memory,3rd ed.
Berlin, Germany: Springer-Verlag, 1989.

[17] , “The self-organizing map,”Proc. IEEE, vol. 78, no. 9, pp.
1464–1480, 1990.

[18] T. Li, L. Fang, and A. Jennings, “Structurally adaptive self-organizing
neural trees,” inProc. Int. Joint Conf. Neural Networks,Baltimore, MD,
June 7–11, 1992, pp. III-329–III-334.

[19] T. Li, Y. Y. Tang, S. C. Suen, L. Y. Fang, and A. J. Jennings, “A struc-
turally adaptive neural tree for the recognition of large character set,”
in Proc. IEEE Int. Conf. Pattern Recognition,Hague, The Netherlands,
Aug. 30–Sept. 4, 1992, pp. 187–190.

[20] R. P. Lippmann, “Pattern classification using neural networks,”IEEE
Commun. Mag.,vol. 27, pp. 47–54, 1989.

[21] K. Ng and R. P. Lippmann, “Practical characteristics of neural network
and conventional pattern classifiers,” inAdvances in Neural Inform.
Processing Syst. 3,R. P. Lippmannet al.,Eds. San Mateo, CA: Morgan
Kaufmann, 1991, pp. 970–976.

[22] M. G. Rahim, “A neural tree network for phoneme classification with
experiments on the TIMIT database,” inProc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing,San Francisco, CA, Mar. 23–26, 1992, pp.
345–348.

[23] , “A self learning neural tree network for recognition of speech
features,” inProc. IEEE Int. Conf. Acoust., Speech, Signal Processing,
Minneapolis, MN, Apr. 27–30, 1993, pp. 517–520.

[24] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,”IEEE Trans. Syst., Man, Cybern.,vol. 21, pp. 660–674,
1991.

[25] T. D. Sanger, “A tree-structured adaptive network for function approxi-
mation in high-dimensional spaces,”IEEE Trans. Neural Networks,vol.
2, pp. 285–293, 1991.

[26] A. Sankar and R. J. Mammone, “Optimal pruning of neural tree networks
for improved generalization,” inProc. Int. Joint Conf. Neural Networks,
Seattle, WA, July 8–12, 1991, pp. 219–224.

[27] , “Speaker independent vowel recognition using neural tree net-
works,” in Proc. Int. Joint Conf. Neural Networks,Seattle, WA, July
8–12, 1991, pp. 809–814.

[28] , “Growing and pruning neural tree networks,”IEEE Trans.
Computers,vol. 42, pp. 291–299, 1993.

[29] I. K. Sethi, “Entropy nets: From decision trees to neural networks,”
Proc. IEEE,vol. 78, no. 10, pp. 1605–1613, 1990.

[30] , “Decision tree performance enhancement using an artificial
neural network implementation,” inArtificial Neural Networks and
Statistical Pattern Recognition,I. K. Sethi and A. K. Jain, Eds. Ams-
terdam, The Netherlands: Elsevier, 1991, pp. 71–88.

[31] I. K. Sethi and G. P. R. Sarvarayudu, “Hierarchical classifier design
using mutual information,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. 4, pp. 441–445, 1982.

Sven Behnkereceived the Diploma degree in com-
puter science from the Martin-Luther University at
Halle-Wittenberg, Germany, in 1997. He is currently
working toward the Ph.D. degree at the Computer
Science Institute of the Free University of Berlin.

During 1994 and 1995, he was a student at the
University of Houston, where he worked in the
Image Processing Laboratory of the Department
of Electrical and Computer Engineering. During
1997, he did research for Siemens AG. His research
interests include growing neural architectures, hier-

archical image analysis, and neural control.

Nicolaos B. Karayiannis(S’85–M’91) was born in
Greece on January 1, 1960. He received the diploma
degree in electrical engineering from the National
Technical University of Athens in 1983, and the
M.A.Sc. and Ph.D. degrees in electrical engineering
from the University of Toronto, Canada, in 1987 and
1991, respectively.

He is currently an Associate Professor in the De-
partment of Electrical and Computer Engineering,
University of Houston, TX. From 1984 to 1991, he
worked as a Research and Teaching Assistant at the

University of Toronto. From 1983 to 1984, he was a Research Assistant at
the Nuclear Research Center “Democritos,” Athens, Greece, where he was
engaged in research on multidimensional signal processing. He has published
more than 70 papers, including 28 in technical journals, and is the coauthor
of the bookArtificial Neural Networks: Learning Algorithms, Performance
Evaluation, and Applications(Boston, MA: Kluwer, 1993). His current
research interests include supervised and unsupervised learning, applications
of fuzzy logic in neural modeling, applications of artificial neural networks
in image processing and communications, learning vector quantization and its
applications in image and video compression.

Dr. Karayiannis is a member of the International Neural Network Society
(INNS) and the Technical Chamber of Greece. He is the recipient of the
W. T. Kittinger Outstanding Teacher Award. He is also a corecipient of a
Theoretical Development Award for a paper presented at the Artificial Neural
Networks in Engineering’94 Conference. He is an Associate Editor of the
IEEE TRANSACTIONS ON NEURAL NETWORKS and the IEEE TRANSACTIONS ON

FUZZY SYSTEMS. He also served as the General Chair of the 1997 International
Conference on Neural Networks (ICNN’97), held in Houston, TX, June 9–12,
1997.

