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Abstract

This article presents a case study on the combination of classi�ers for the recognition of handwritten

digits. Four di�erent classi�ers are brie
y described and evaluated using the NIST-digits data set. Di�er-

ent parallel and sequential combination schemes are introduced. Furthermore, it is described how to tune

the sequential combination using a boosting technique. These combination methods are benchmarked

using the NIST-digits. The experimental results indicate that all investigated classi�er combinations

outperform the best individual classi�er. The sequential combination yields slightly better results than

the parallel combination and has a much lower computational complexity. In addition, it is possible to

improve the performance of the sequential combination by boosting.

1 Introduction

Automatic handwriting recognition has a variety of applications at the interface between man and machine.
In this article we will focus on o�-line systems that are a key component for some important real world
problems, such as mail sorting and check processing.

The pattern recognition task, to tell which digit is represented by a pixel-image of a handwritten numeral,
is di�cult because of the high variability of the scanned image caused by the peculiar writing style of di�erent
persons, the context of the digit, di�erent writing devices and media. The scanned digits are generally of
di�erent size and slant, and the strokes that constitute the digits vary in width and shape.

The problem of handwriting recognition has been studied for decades and many methods have been
developed. Some use only the pixel-image as input to a powerful statistical or neural classi�er. Others
preprocess the data in order to extract some features that are fed into a classi�er. Structural methods of
digit recognition rely on structural information in order to produce a classi�cation decision.

None of those approaches is able to solve the problem perfectly. All classi�ers have their particular
strengths and weaknesses. Pixel oriented methods, for example, are able to tolerate structural defects much
better than structural methods. In contrast, the latter perform well on deformed images that have a typical
structure. Thus, it is worth to investigate how to combine the outputs of di�erent classi�ers. If the individual
classi�ers don't make the same mistakes and there is a way to judge the reliability of a classi�ers output,
the overall classi�cation performance is expected to improve.

There are several methods to combine classi�ers. Some combination methods use only the class-labels
of the individual classi�ers e.g. for a voting mechanism [1]. Other methods incorporate more information
from the classi�er output, like con�dence values for all possible classes and suggestions for rejections [6].
In this case, the function which the combination system has to approximate is usually complex and highly
nonlinear. Therefore, the utilization of neural networks for the combination seems promising.

The remainder of the paper is organized as follows. In section 2 the individual classi�cation systems are
described. Some approaches for the combination of classi�ers are introduced in section 3. The performance of
the individual classi�ers is reported in section 4 and is compared to the results of the investigated combination
methods. The paper concludes with a discussion of the results and an outlook to future work.
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Figure 1: Digits from the NIST-Database: (a) original binary images, (b) slant and size normalized (32�32),
(c) wavelet representation (16�16).

2 Individual Classi�ers

In order to develop and evaluate a reliable system for the recognition of handwritten digits, large datasets
that contain all typical images of handwritten digits are needed. The NIST Special Databases 19 is such
a large writing sample. There are about 180.000 isolated binarized digits available from NIST [3] that
have been extracted from handwriting sample forms. These digits were written by 1.500 di�erent persons,
distributed across the United States. Some of these digits are shown in Figure 1(a).

The available digits were partitioned as follows. The �rst 58.646 digits were used for the training of the
individual classi�ers and the last 30.000 digits were used as an independent validation set. The remaining
digits were used to train the neural networks that combine the classi�er outputs and for boosting.

2.1 Classi�cation based on Wavelet-Preprocessing

In order to reduce the variance of the images that is not relevant for recognition, some preprocessing is
applied prior to the classi�cation. First, the vertical main axis of the digit is estimated and a horizontal
shear transformation is used to normalize it to be exactly vertical. In the next step the digit is scaled into
a 32�32 box. This scaling may distort the aspect ratio to a limited degree only, centering the digit in the
box, if necessary (see �gure 1(b)).

The last preprocessing step produces a wavelet representation that contains the digit in di�erent resolu-
tions and decomposed by directed �lters. A 2-D Haar-wavelet transformation is applied to the 32�32 pixel
image, decomposing it into vertical, horizontal and diagonal detail images of di�erent resolutions (16�16,
8�8, 4�4, 2�2). The diagonal details seem to be irrelevant for recognition and are replaced by sub-sampled
versions of the original image. The data is then reduced further by accumulating each 2�2 window of the
representation to a single pixel, which also reduces the noise. The resulting images (see Figure 1(c)) are of
size 16�16 and contain the information that is relevant for classi�cation.

Two di�erent neural classi�ers use the wavelet representation as input. Both have a 256-256-10 feed-
forward architecture with one hidden layer. The �rst network uses hidden units that have a Radial-Basis-

Function (RBF) characteristic. In contrast to most RBF-networks, the activation function used here is not a
Gaussian, but has a hyperbolic shape, de�ned by 1=(1+rjjx�wijj

2), where x is the input vector, wi denotes
the weight vector of the hidden unit with index i, and r determines the size of the activation function. The
second network, referred as BP-classi�er, uses �-units with a sigmoidal output function in the hidden layer.
The output-layer of both networks consists of one sigmoidal �-unit for each class. Both networks are trained
using the backpropagation algorithm [5, 8].

2.2 Classi�cation based on Structural Features

This hybrid classi�er is described in more detail in [2]. Structural information and quantitative features
are extracted from the pixel image of the digit and are used for classi�cation. The goal is to preserve the
information essential for recognition and to discard the unnecessary details. Figure 2 shows the stages of the
recognition process.



In the vectorization step the normalized and smoothed digit is skeletonized. Nodes are placed on the
skeleton and connected according to the principles of Gestalt psychology to represent strokes. After the
graph is simpli�ed, the digit is represented by a line-drawing.

A more abstract representation consisting of strokes which are merged to larger curves is constructed in
the structural analysis step. A stroke is formed by several consecutive lines, which don't include turning
points or sharp angles and don't cross other strokes. A set of strokes is merged to a curve if the strokes form
a good continuation of each other. Quantitative features, such as rotation angle and length of the curves
and the normalized coordinates of characteristic points are computed. After a simpli�cation step, they are
used to represent the digit by an attributed structural graph.

In the prototype matching step the structural graph is matched to structural prototypes that have been
extracted from the training set. These typical structures represent not only perfect digits, but frequent
structural deviations as well. For each prototype there is a neural classi�er which is used in the classi�cation
step to distinguish digits having the same structure based on the extracted quantitative features. Feed-
forward networks are trained using the Cascade-Correlation [8] algorithm on the digits of the training set
that match the corresponding structural prototype. The training is terminated and a rejection parameter is
determined based on the performance on a test set.

2.3 Classi�cation using Time-Delayed Neural Networks

The Time-delayed neural network (TDNN) classi�cation system described here is another approach to con-
struct a robust classi�cation system. Some of the variance of the digits is removed by preprocessing tech-
niques, such as size and slant normalization as described in section 2.1. In order to be additionally invariant
to nonlinear deformations, the system has to detect those characteristic features of the digit, which also
help us humans to discriminate and `classify' it (see Figure 3). These features may be shifted horizontally
(Figure 3 a), vertically, or in both directions (Figure 3 b), depending on the writer, the digit and the pre-
conditioning (slant removal) of the digit. Attractive and typical features of TDNNs, such as weight sharing
receptive �elds or the inclusion of perceptron activations of previous time-steps into actual computations
have proofed successful in the detection of distinct patterns in larger context. Thus, the use of a TDNN
to scan the normalized pixel image of the digit to perform a shift-invariant detection of its features seems
appropriate.

The general architecture of TDNNs is shown in Figure 4 (for more details see e.g. [8]). Each group of
input nodes (called the receptive �elds with shared weights) `sees' only a small window of the input stream,
which `marches' through the windows one step further in each time-step. The output of the hidden layer
is also covered with receptive windows using shared weights. The network output consists of the sum of
squares of the di�erent time-steps of the output neurons.

The input of the TDNN consists of the gray-scale image of an isolated digit, which is scaled to a �xed
height PH and a �xed width PW . There are R1 receptive �elds, each one `sees' R0 columns of the picture.
During the scanning process the columns are moved through the input window of the receptive �elds. Best
results have been obtained with �eld-sizes R0 � PW . The di�erent windows are shifted by a �xed amount
of columns of the pixel-image. The hidden layer consists of NH hidden nodes in R1 time-states. This is
realized by connecting each group of NH hidden nodes with the corresponding input window. The output

layer of the network consists of 10 nodes, each one representing one class of the digits `0' to `9', which are
fully connected to all hidden nodes. The output layer thus works without receptive �elds. This modi�cation
of the standard TDNN is motivated by two ideas. First of all, it accelerates and simpli�es the learning
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Figure 2: Stages of Recognition.
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Figure 3: Locations of characteristica of the same digit depend on the writer.
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Figure 4: Receptive �elds with shared weights in di�erent layers of the TDNN.

algorithm of the TDNN. Secondly, working in this manner, the output layer gets a `full view' over all time
states of all hidden nodes, which also signi�cantly improves the networks performance.

The TDNN is trained using a simple online gradient descent algorithm, similar to backpropagation [7, 8].
The only di�erence is, that during the weight-update step the corrections for the di�erent receptive �elds
have to be averaged to guarantee the identity of the weights of the di�erent receptive �elds.

3 Combining Classi�ers

For the combination of the available N classi�cation experts e1; : : : ; eN we assume that each of the experts
ei outputs a con�dence-vector oi with one entry per class when asked to classify a digit. These con�dence-
values oij ; i 2 f1; : : : ; Ng; j 2 f1; : : : ;Mg are restricted to the interval [0; 1] and constitute a generalized
one-out-of-M -coding, where M = 10 is the number of possible classes. Furthermore, we assume that the
classi�er ei indicates that it is not able to reliably classify the presented digit by a reject suggestion ri. This
binary signal can either be generated internally by the classi�er or externally by inspecting the con�dence
values of its output-vector oi. In the latter case, we choose to set ri = TRUE, i� oimax < oisec + R, where
oimax and oisec are the maximal and second largest con�dences and the reject parameter R 2 [0; 1] determines
the reject rate.

3.1 Parallel Combination

The parallel combination of classi�ers described here is depicted in �gure 5(a). In the parallel combination
all N experts are consulted. The output vectors o1; : : : ;oN of the individual experts are concatenated to
form the input of the combination network. The length of this input vector MN grows with the number of
experts. The task of the combination network c is to produce an output-vector oc that codes the correct
class of the presented digit. Several strategies are possible to achieve this. One could add or multiply the
corresponding con�dence values or use maximal/minimal values. Furthermore, one could apply voting or
ranking schemes. All these approaches assume a certain unique interpretation of the con�dence values, for
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Figure 5: Classi�er combination: (a) parallel, (b) sequential.

instance as a posteriori probabilities. Due to the speci�c characteristics of the individual classi�cation experts
this is not the case. For instance the structural classi�er signals by a con�dence value of 0.9 that it is almost
sure about the classi�cation decision, while the same con�dence value at the output of the TDNN would
signal uncertainty. Thus, the function that the combination network has to approximate is highly nonlinear.
Feed-forward neural networks (FFNN) are a suitable tool for such function approximation problems. We use
here a simple FFNN with one hidden layer. The training is done on a set of digits that is independent of
the training set that was used for the training of the individual classi�ers. An independent test set is used
to stop the training. The performance of the parallel combination network is evaluated on an independent
validation set.

3.2 Sequential Combination

In order to produce a classi�cation decision, the parallel combination has to evaluate all experts. This is not
necessary for most of the digits, since in typical cases the experts agree on the classi�cation decision. These
digits could as well be classi�ed when only a subset of the experts is consulted. The sequential combination
that is shown in �gure 5(b) takes advantage of this situation. The classi�cation experts are arranged in
a chain where the individual classi�ers are evaluated in sequential order. A classi�er ei in this chain is

only consulted if the combined output oc
i�2

of the previous classi�ers suggests to reject the digit. The
combination network consists of a sequence of simple 2M-H-M FFNNs ci that combine the output vector

oi+1 of the corresponding expert ei+1 and the output vector oc
i�1

of the previous FFNN ci�1. The output

of the entire combination network is the output oc
k

of the FFNN ck that �rst suggests via rc
k

to accept the
presented digit.

With this design the combination network can not recover from substitutions. A wrong classi�cation
decision of a combination network ck can only be modi�ed by experts el; l > k + 1, later in the chain, if
the digit has not been accepted before. Consequently, one has to place at the beginning of the chain the
classi�ers that are able to produce very low substitution rates when allowed to reject a larger portion of
the digits. At the end of the chain this property gets less important. Here a low substitution rate for the
zero-rejection case is crucial.

The second factor that has to be considered when determining the sequence of classi�ers is their running
times. Since the �rst expert is consulted for every digit, it is useful to pick the fastest classi�er for the �rst



0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

su
bs

tit
ut

io
n 

ra
te

 in
 %

reject rate in %

wavelet RBF
wavelet BP

structural (STR)
TDNN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5
reject rate in %

voting
parallel combination

serial combination
boosted serial combination

(a) (b)

Figure 6: Performance of (a) individual classi�ers, (b) classi�er combinations.

position. The experts placed later in the chain receive smaller and smaller fractions of the digits for detailed
inspection. Therefore, they can allocate longer running times without causing a signi�cant increase of the
average running time. In fact, if we are able to design a fast �rst classi�er, the sequential combination of
experts will be faster than most of the incorporated individual classi�ers.

The sequential combination acts like a �lter that passes only the digits that are hard to recognize to
the classi�cation experts at the end of the chain. Thus, these experts operate on a dataset that is very
di�erent from the original training set. Boosting techniques [9] are a way to take advantage of that fact. The
classi�cation experts are presented resampled versions of the training set in order to increase the classi�cation
expertise for the hard digits at the expense of the classi�cation results for the easy digits. This competence
decrease for the easy digits does not impact the overall performance, since these digits are recognized earlier
in the chain. Unlike most boosting techniques, we do not focus on the substitutions from earlier experts,
but on rejections, since the later expert is not consulted for substitutions. We use the digits that have been
rejected from the combined preceding experts as a training set for classi�er modi�cation. Since this set is
not large, the training does not start from scratch, but the parameters of the classi�er are initialized using
the parameters that have been learned from the original training set. In order to resemble the distribution of
the arriving digits, it is necessary to extract them from a set of digits that has not been used for the training
of the preceding combined classi�ers.

4 Experimental Results

4.1 Individual Classi�ers

Results for the individual classi�ers on an independent validation set of 30.000 digits are shown in �gure 6(a)
where substitution rates are plotted against the rejection rates. The curves show that there is a tradeo� be-
tween reliability and recognition rate. The TDNN has the best performance of the four individual classi�ers.
When no digits are rejected, the TDNN classi�es 99.11% correctly. The reliability of the recognition can be
improved to 99.90% when rejecting 4.84% of the digits. The classi�ers that use the wavelet-preprocessing
substitute slightly more digits than the TDNN. At zero-rejection the RBF-classi�er has a substitution rate
of 1.23% and the BP-classi�er substitutes 1.30% of the digits. This is a good result when considering the
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Figure 7: The �rst ten substitutions from the validation set of the boosted sequential classi�er combination.
Correct label: best class (con�dence), second best class (con�dence).

fact that the TDNN has a much higher algorithmic complexity than the wavelet based methods. In addi-
tion, the classi�ers that use the wavelet-preprocessing yield lower substitution rates than the TDNN when a
larger portion of the digits is rejected. The RBF-classi�er, for example, substitutes only 0.01% of the digits
when it is allowed to reject 20%. The structural classi�er yields the highest substitution rates. Most of its
substitutions are due to structural de�cits of the digits and can be avoided when allowing the classi�er to
reject ambiguous digits. For a rejection rate of 11.55% a substitution rate of 0.19% is observed. Although
this is still higher than the respective rates of the other classi�ers, the structural classi�er is included in
the combination because the structural approach is almost orthogonal to the pixel-oriented methods and
therefore substitutes di�erent digits.

4.2 Combined Classi�ers

The performance of di�erent methods for classi�er combination is shown in �gure 6(b). The �rst curve
shows for comparison the results of a voting scheme. For this curve the three most con�dent classes of each
classi�er were given four, two and one vote, respectively. The normalized number of total votes was used
as output con�dence. This voting scheme resulted in a zero-rejection substitution rate of 0.74%. When
rejecting 5.06% of the digits 0.10% of the digits were substituted.

The second curve shows the results of the parallel combination. FFNNs with di�erent numbers of hidden
units have been trained and benchmarked. The resulting zero-rejection substitution rates range from 0.61%
for 16 hidden units, to 0.60% for 32 hidden units, to 0.59% for 64 hidden units. The latter FFNN was used
to draw the curve. In order to reduce the substitutions to 0.10% a fraction of 2.42% of the digits had to be
rejected.

In the third curve the performance of the sequential combination of the four classi�cation experts is
shown. The experts were arranged in the sequence: RBF, BP, STR, TDNN. When no rejections were
allowed, the combination network substituted 0.58% of the digits. In this case, the RBF-classi�er rejected
19.98% of the digits and substituted only four. The BP-classi�er was adjusted to a rejection rate of 31.44% of
the remaining digits. From the 4110 digits that were accepted by the combination of the �rst two classi�ers
only 18 were substituted. A number of 62 substitutions was caused by the combination of the STR-classi�er
with the former two. At this stage 14.01% of the arriving 1885 digits were rejected. For these 264 digits the
TDNN was consulted and 91 were substituted by the last combination network. When not the zero-rejection
rate, but the reduction of the substitutions is interesting, more digits need to be rejected by the FFNNs in
the chain in order to be able to reject a larger percentage of the digits by the last combination network.
About 2.35% of the digits need to be rejected in order to reduce the substitution rate to 0.1%. In this case
the TDNN was consulted for 944 digits.

The last curve shows the results of the sequential combination after the TDNN was retrained on a set of
984 digits that were rejected by the combined preceding classi�ers from a set of 30727 independent digits.
This boosting improves the classi�cation performance. The zero-rejection substitution rate drops to 0.50%
and only 2.28% of the digits need to be rejected in order to reach a substitution rate of 0.1%. These results
compare favorably to the results published by NIST [3, 4]. Figure 7 illustrates the di�culties of recognition.
The �rst ten zero-rejection substitutions from the validation set are shown.



5 Conclusions

Four di�erent classi�ers for handwritten digits were brie
y described in this paper and evaluated using the
NIST-digits dataset. It was investigated how the outputs of individual classi�ers can be combined. A parallel
as well as a sequential combination scheme that utilize small feed-forward neural networks were introduced
and benchmarked on the NIST data against a voting method.

The experimental results show that all investigated classi�er combinations outperform the best individual
classi�er. Furthermore, the two proposed methods perform signi�cantly better than voting. The sequential
combination yields slightly better results than the parallel combination and has a much lower computational
complexity. The average running time of the sequential combination is lower than the running times of most
of the incorporated individual classi�ers.

In addition, the performance of the sequential combination can be boosted when the classi�ers later in
the chain are modi�ed using resampled versions of the training set. For this boosting a small subset of hard
digits is selected from the original digit source. Since these digits need to be independent of the digits used
to train the preceding experts and their combination network, the boosting consumes a signi�cant part of
the available digits.

Clearly, if one could provide a larger amount of interesting digits, the overall performance would bene�t.
Since the manual labeling of huge amounts of digits is not practical, two options seem promising. The
�rst is to distort labeled digits in order to produce more examples. This approach requires the de�nition
of a group of transformations for that the classi�cation should be invariant. The second approach is to
automatically select the hard digits from a source of unlabeled digits. These digits can then be labeled and
used for boosting. The automatic selection could be done by using the digits that are rejected by a sequential
combination of experts. We plan to investigate both options in future work.
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